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Abstract: To prevent endotracheal tube-related barotrauma or leakage, the intracuff pressure should
be adjusted to 20–30 cm H2O. However, changes in the nasotracheal tube intracuff pressure relative
to neck posture are unclear. In this study, we investigated the effect of head and neck positioning
on nasotracheal tube intracuff pressure. Fifty adult patients with nasotracheal tubes who were
scheduled for surgery under general anesthesia were enrolled. Following intubation, intracuff
pressure was measured by connecting the pilot balloon to a device that continuously monitors the
intracuff pressure. Subsequently, the intracuff pressure was set to 24.48 cm H2O (=18 mmHg) for
the neutral position. We recorded the intracuff pressures based on the patients’ position during
head flexion, extension, and rotation. The initial intracuff pressure was 42.2 cm H2O [29.6–73.1] in
the neutral position. After pressure adjustment in the neutral position, the intracuff pressure was
significantly different from the neutral to flexed (p < 0.001), extended (p = 0.003), or rotated (p < 0.001)
positions. Although the median change in intracuff pressure was <3 cm H2O when each patient’s
position was changed, overinflation to >30 cm H2O occurred in 12% of patients. Therefore, it is
necessary to adjust the intracuff pressure after tracheal intubation and each positional change.

Keywords: intratracheal/instrumentation; intubation; intratracheal/adverse effects; pressure

1. Introduction

After tracheal intubation for general anesthesia, the intracuff pressure of the tracheal
tube should be adjusted to 20–30 cm H2O [1]. Insufficient cuff inflation may lead to
air leakage, inability to achieve adequate tidal volume in mechanical ventilation, and
ventilator-associated pneumonia due to aspiration of contaminated oropharyngeal secre-
tions [2]. Conversely, an excessively inflated cuff causes ischemia by pressing against the
capillaries in the mucous membrane of the inner wall of the trachea, increasing the risk of
complications such as sore throat, tracheal stenosis, tracheal rupture, and nerve injury [3,4].
Therefore, the cuff must be appropriately inflated so that it contacts the tracheal wall at a
reasonable pressure.

The intracuff pressure does not remain constant during surgery and varies due to
several factors such as the patient’s body temperature, airway pressure, endotracheal
intubation time, and anesthesia with nitrous oxide [4–8]. Moreover, the head-down position
and pneumoperitoneum caused by carbon dioxide insufflation can lead to increased airway
and intracuff pressures [9,10]. A manual cuff pressure manometer can be used to set
the initial intracuff pressure and adjusted relative to subsequent changes in the intracuff
pressure. However, this method risks a pressure drop at each measurement, potentially
resulting in cuff underinflation [11]. Therefore, continuous cuff pressure regulation is
preferable to intermittently measuring intracuff pressure using a manual manometer [12].

In head and neck surgery, the patient’s head and neck are positioned to facilitate the
operation by exposing the surgical field. Moreover, intraoperative head and neck position
changes are required in cases of surgery of several areas. The head and neck position can
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alter orotracheal tube intracuff pressure [13–15] since the airway’s length and dimension
changes with neck flexion, extension, and rotation. This can cause tube displacement and
cuff compression or release [16–18].

Similar to the orotracheal tube, a nasotracheal tube can move relative to head and neck
positioning [19], leading to too-high or too-low intracuff pressures. However, the pressure
changes within differently shaped nasotracheal tubes, and with the use of “soft” tubes to
reduce nosebleeds, may differ from those observed with orotracheal tubes. Changes in
the nasotracheal tube intracuff pressure relative to neck posture have not been researched.
The Portex® (Smiths Medical International, Hythe, UK) nasotracheal tube—considered the
most malleable and widely used—is used in our hospital [20]. We observed changes in the
nasotracheal tube intracuff pressure relative to the head and neck position using continuous
cuff pressure monitoring. The primary study outcome was the intracuff pressure recorded
during various head and neck postures.

2. Materials and Methods
2.1. Study Population

This prospective, single-center, observational study was approved by the Institutional
Review Board of Severance Hospital, Yonsei University Health System (Seoul, Korea;
numbers: 4-2020-0442; 9 June 2020). The study protocol was registered at www.clinicaltrials.
gov (NCT04441970, 22 June 2020). Written informed consent was obtained from all patients
participating in this study. This manuscript adheres to the Strengthening the Reporting
of Observational Studies in Epidemiology guidelines (Checklist S1). From June 2020 to
September 2020, adult patients aged ≥20 years scheduled to undergo surgery under general
anesthesia and with a nasotracheal tube were enrolled. We excluded patients with cervical
spine disease or a history of cervical spine surgery.

2.2. Anesthetic Management and Measurements

In the operating room, the patients placed their heads on a pillow in a supine po-
sition. Before inducing anesthesia, we evaluated head flexion, extension, and rotation.
Standard monitors for pulse oximetry, three-lead electrocardiography, and non-invasive
blood pressure measurement were attached. Anesthesia was induced using 1–2 mg/kg
propofol, 0.5–1.0 µg/kg remifentanil, and 0.6–1.0 mg/kg rocuronium. Mask ventilation
was performed using oxygen at 5 L/min and sevoflurane 2–4 vol%. After establishing
a complete neuromuscular block, intubation was performed using a video laryngoscope
with nasotracheal tubes with an internal diameter (ID) of 6.0–7.0 (Ivory PVC Portex® North
Facing Nasal Soft-Seal Cuffed Polar Preformed Endotracheal Tube, Smiths Medical Interna-
tional, Hythe, UK). Endotracheal intubation was confirmed by the presence of an end-tidal
CO2 waveform and adequate breath sounds at lung auscultation. The tube was fixed on the
nares using tape. The tube’s cuff was inflated by injecting air into the pilot balloon using a
10 mL syringe. The anesthesiologists assessed the adequacy of cuff inflation by palpating
the pilot balloon with their fingers. The breathing circuit was connected to the tube, and
mechanical ventilation was started in a volume-controlled mode. The target tidal volume
was 8 mL/kg ideal body weight with a fresh gas flow of 2 L/min, respiratory rate of
12 breaths/min, an inspiratory-expiratory ratio of 1:2, and positive end-expiratory pressure
of 5 cm H2O. After 30 s, intracuff pressure was measured by connecting the pilot balloon to
a calibrated manometer for continuous intracuff pressure monitoring (TruWaveTM PX260,
Edwards Lifesciences LLC, CA, USA). This monitoring device was connected to a separate
workstation via a cable. When connected to the pilot balloon, the intracuff pressure value
registered immediately [21]. All raw pressure data were initially measured in mmHg, then
converted to cm H2O by multiplying by 1.36. Following this, the intracuff pressure was set
at 24.48 cm H2O (=18 mmHg) in the neutral position. We measured the intracuff pressures
during head flexion, extension, and rotation. Patients’ characteristics such as age, sex,
height, weight, body mass index, American Society of Anesthesiologists physical class, and
nasotracheal tube size were recorded.

www.clinicaltrials.gov
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2.3. Study Endpoints

The primary outcome of this study was the intracuff pressure at various head and
neck postures.

2.4. Statistical Analysis

Using a singed-rank test, we compared the intracuff pressure observed while the
head and neck were in the neutral position to the intracuff pressures when the head and
neck were extended, flexed, or rotated. The magnitude of change in the intracuff pressure
when the head was changed from a neutral position to a flexed, extended, or rotated
position was also compared using a signed-rank test. The same statistical method was
applied for changes in peak inspiratory pressure with head positioning. We compared the
number of cases where the intracuff pressure decreased or increased and the number of
cases where the intracuff pressure was outside the appropriate range of 20–30 cm H2O
using McNemar’s test. Spearman’s correlations were performed to analyze the relationship
between changes in peak inspiratory pressure changes and intracuff pressure changes
with head positioning. Values are presented as mean ± SD, median [IQR], or numbers
(percentages). Analyses were conducted using SAS software version 9.4 (SAS Institute Inc.,
Cary, NC, USA). A p-value of 0.016 was considered statistically significant. To adjust for
multiple comparisons, we applied a Bonferroni correction.

2.5. Sample Number Calculation

The primary outcome was the nasotracheal tube intracuff pressure. To determine
the sample size, we estimated the intracuff pressure based on a previous report [14]. A
sample size of 38 achieved 80% power to detect a mean of paired differences of 0.5 with
an estimated standard deviation of differences of 0.9 and with an alpha of 0.016 using a
two-sided paired t-test. A total of 47 participants were required after accounting for a 20%
dropout rate and 50 participants were enrolled in this study.

3. Results

Of the 53 patients screened, 50 patients were enrolled and completed the study
(Figure 1), no missing data were recorded for any patient.

Figure 1. Flowchart of study patient enrollment.

The patients’ baseline characteristics summarized in Tables 1 and 2 show the initial
intracuff pressure set by palpating the pilot balloon. The initial median intracuff pressure
was 42.2 [29.6–73.1] cm H2O in the neutral position. Only 12% of patients had intracuff
pressures between 20 and 30 cm H2O in the neutral position.
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Table 1. Patients’ characteristics.

Variable Total (n = 50)

Age, y 35.2 ± 13.8
Sex (M/F) 28 (56%)/22 (44%)
Weight, kg 69.7 ± 15.1
Height, cm 168.4 ± 8.4

Body mass index, kg/m2 24.5 ± 4.3
Nasotracheal tube size (6/6.5/7), internal diameter (mm) 22/21/7

American Society of Anesthesiologists class, 1/2/3 39 (78%)/9 (18%)/2 (4%)
Data are presented as mean ± SD or numbers (percentages).

Table 2. Initial intracuff pressure in the neutral head position when the cuff pressure was set by pilot
balloon palpation.

Parameter Initial Neutral Position

Intracuff pressure (cm H2O) 42.2 [29.6–73.1]
Range of intracuff pressure (cm H2O) 15.0–178.2

Number of cuffs with intracuff pressure <20 cm H2O 7 (14%)
Number of cuffs with intracuff pressures 20–30 cm H2O 6 (12%)
Number of cuffs with intracuff pressures >30 cm H2O 37 (74%)

Data are presented as median [IQR] or numbers (percentages).

Table 3 documents the changes in intracuff pressure when the pressure was set as
24.48 cm H2O. The intracuff pressure was significantly different between neutral and
flexed (p < 0.001), extended (p = 0.003), and rotated (p < 0.001) positions. These changes
from the neutral position pressures were all <10 cm H2O. The number of patients with
increases in intracuff pressure in the flexed, extended, and rotated positions was 40 (80%),
24 (48%), and 31 (62%), respectively. The number of patients with decreases in the intracuff
pressure in the flexed, extended, and rotated positions was 3 (6%), 10 (20%), and 4 (8%),
respectively. The number of patients with intracuff pressures >30 cm H2O in the flexed,
extended, and rotated positions was 6 (12%), 2 (4%), and 3 (6%), respectively. No patient
demonstrated intracuff pressures <20 cm H2O in any of the positions. Table 4 shows the
changes in peak inspiratory pressure with head positioning. The maximum change in
peak inspiratory pressure according to the head positioning was 1 cm H2O. There were
no statistically significant correlations between changes in peak inspiratory pressure and
changes in intracuff pressure with head positioning (Table 5).

Table 3. Changes in the intracuff pressure with head positioning when the initial value was set as 24.48 cm H2O (=18 mmHg)
using a pressure monitoring device.

Parameter Flexion Extension Rotation

Intracuff pressure (cm H2O) 27.2 [25.8–28.6] a 24.5 [24.5–27.2] a 25.8 [24.5–27.2] a

Range of intracuff pressure (cm H2O) 23.1–34.0 21.8–31.3 23.1–32.6
Change from neutral position (cm H2O) 2.7 [1.4–4.1] c,d 0 [0–2.7] b 1.4 [0–2.7] b

Number that decreased from neutral position 3 (6%) 10 (20%) 4 (8%)
Number with no change 7 (14%) 16 (32%) 15 (30%)

Number that increased from neutral position 40 (80%) c,d 24 (48%) b 31 (62%) b

Number of cuffs with intracuff pressure <20 cm H2O 0 (0%) 0 (0%) 0 (0%)
Number of cuffs with intracuff pressure 20–30 cm H2O 44 (88%) 48 (96%) 47 (94%)
Number of cuffs with intracuff pressure >30 cm H2O 6 (12%) 2 (4%) 3 (6%)

Data are presented as median [IQR] or numbers (percentages). a p < 0.016 vs. neutral position. b p < 0.016 vs. flexed position. c p < 0.016 vs.
extended position. d p < 0.016 vs. rotated position.
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Table 4. Changes in peak inspiratory pressure with head positioning when the initial intracuff
pressure was set as 24.48 cm H2O (=18 mmHg) using a pressure monitoring device.

Parameter Neutral Flexion Extension Rotation

Peak inspiratory
pressure

(cm H2O)

21.0
[19.0–22.0]

21.0
[19.0–22.0]

20.0
[19.0–22.0] a

20.5
[19.0–22.0] a

Change from neutral
position (cm H2O) 0.0 [0.0–0.0] c 0.0 [−1.0–0.0] b 0.0 [−1.0–0.0]

Data are presented as median [IQR]. a p < 0.016 vs. neutral position. b p < 0.016 vs. flexed position. c p < 0.016 vs.
extended position.

Table 5. Correlation coefficient of peak inspiratory pressure changes to intracuff pressure changes
with head positioning.

Parameter Correlation Coefficient (r) p-Value

Change from neutral to extension 0.198 0.169
Change from neutral to flexion −0.107 0.461
Change from neutral to rotation 0.125 0.387

4. Discussion

Head and neck positioning affects the nasotracheal tube intracuff pressure. When
pilot balloon palpation was used to determine the intracuff pressure, the initial pressure
was out-of-range in 88% of patients. When the initial intracuff pressure was adjusted to an
appropriate value using a manometer, increases in intracuff pressure occurred most during
neck flexion. Although the median change in the intracuff pressure was <3 cm H2O when
the patient’s position was changed, 12% of patients experienced overinflation >30 cm H2O.

In this study, the nasotracheal tube intracuff pressure changed significantly from the
neutral to flexed, extended, and rotated neck positions. Our novel finding agrees with
that of a prior study, intracuff orotracheal tube pressures are affected by head and neck
positioning [14,17]. Komosawa et al. found that, in adults, head flexion increased the
intracuff pressure by a median of 10.3 cm H2O, head extension increased the pressure by a
median of 5.0 cm H2O [14]. Additionally, in pediatric patients, Kako et al. noted that neck
flexion increased intracuff pressure with the greatest magnitude of mean 6.9 cm H2O [17].
Similarly, in our study, intracuff pressure was most increased by neck flexion compared to
the neck extension and rotation. In fact, in 80% of our patients, intracuff pressure increased
with neck flexion.

The mechanism of this change in intracuff pressure by head and neck positioning
has been suggested as tube migration and deformation of the shapes of adjacent anatomic
structures [15,22]. The airway length changes as the head or neck posture changes and the
tube is pulled outward or inward along the trachea [19]. Kim et al. observed orotracheal
tube tip withdrawal from the carina with head rotation [13]. Jordi Ritz et al. showed that
neck flexion moved the tube toward the carina and neck extension moved the tube away
from the carina [18]. In addition, Kako et al. explained the cuff pressure changes as follows:
Neck flexion displaces the trachea posteriorly, causing cuff compression by the esophagus
and cervical spine, while neck extension moves the trachea anteriorly, causing cuff pressure
release [17]. Therefore, we suggest that nasotracheal tube movements along the airway
and the change in the force exerted on the cuff by surrounding structures are the reasons
for intracuff pressure changes in different head and neck positions.

Nevertheless, in our study, the median change in intracuff pressure was minimal—
<3 cm H2O–and most patients (88%) still demonstrated intracuff pressures of 20–30 cm
H2O after changing positions. This finding contrasts with that of Komosawa et al., they
found that neck flexion and extension caused intracuff pressure to exceed 30 cm H2O
with high incidences of 90% (flexion) and 50% (extension) [14]. One potential reason
for our observations of stable intracuff pressure for the nasotracheal tube could be that
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nasotracheal tubes move less during posture changes than orotracheal tubes. Tailleur et al.
found that the orotracheal tube was displaced unpredictably with head position changes
(even causing right main stem bronchial intubation at one point) [16]. Yamanaka et al.
investigated the airway length changes during nasotracheal intubation in pediatric patients.
They found that the head flexion-to-extension positional changes caused a slight change
in the length of the pharyngeal cavity, the authors asserted that the cuff position was also
likely to be changed [23]. Hartrey et al. found that the magnitude of movement was
smaller with nasotracheal, compared to that with orotracheal tubes [19]. This may explain
why the intracuff pressures in our study were relatively well-maintained. Moreover, Kim
et al. noted that the degree of orotracheal tube displacement differed depending on where
the tube was fixed [13]. Nasotracheal tubes are fixed in the nares, which are relatively
closer to the center of the face, which will be on the head positioning axis. Therefore,
even if the posture is changed, the pathway of the nasotracheal tube is likely to be well-
maintained with minimal distortion. Moreover, the Portex® nasotracheal tube is the most
malleable and can bend easily [24], additionally, the cuff is highly elastic [24]. Matsuki
et al. found that the ID of flexible Portex® nasotracheal tube could be decreased from
the cuff pressure at 20 cm H2O in 38 ◦C hot water. In contrast, no significant changes
were observed with harder nasotracheal tubes such as the MallinckrodtTM Nasal RAETM

tracheal tube and the Parker Flex-Tip® Tracheal tube [25]. These characteristics may be
helpful for compensating for intracuff pressure increases by compliant cuff expansion into
an unobstructed direction [24].

Despite the small change in intracuff pressure, it is worth noting that the intracuff
pressure exceeded 30 cm H2O in 12% of the cases according to the positional change.
Seegobin and van Hasselt showed that intracuff pressure above 30 cm H2O impairs mucosal
capillary blood flow [1]. In addition, Calder et al. showed that in pediatric elective day-
case surgery, the incidence of sore throat significantly increased from 20% when the cuff
pressure was 21–30 cm H2O to 68% when the cuff pressure was 31–40 cm H2O [26].

We additionally estimated the initial intracuff pressure with patients placed in a neu-
tral head position when the cuff pressure was set by pilot balloon palpation (and without
using a manometer). The pilot balloon palpation method is still the most commonly and
simple method of determining cuff pressure [27]. The pressure exceeded the appropriate
range in 88% of patients, and excess pressure was applied more often (74%) than less
pressure. This finding is consistent with that of Giusti et al.’s study which showed that
manual palpation accurately estimated cuff pressure in only 10% of participants [28]. Mich-
lig et al. noted that only 34% of participants correctly determined that a cuff pressure of
120 cm H2O was too high, while 32% of participants misidentified the pressure as too
low [29]. We thought that the pilot balloon palpation method would be more reliable with
the Portex® nasotracheal tube since the pilot balloon of the Portex® nasotracheal tube has
a relatively large diameter, this would improve tactile sensation according to Laplace’s
law [30,31]. However, our results showed that—for the Portex® nasotracheal tube—pilot
balloon palpation did not accurately determine the cuff pressure. Excess cuff pressure can
lead to serious complications such as tracheal injury or rupture [3]. Therefore, we do not
recommend solely relying on the pilot balloon palpation method.

Our use of a manometer for continuous pressure monitoring is based on a previ-
ous study [21]. Continuous monitoring is recommended since pressure decreases when
the manometer is attached or removed from the pilot balloon. Even if the pressure is
within the appropriate range at the time of measurement, it may leave this range after
measurement [11]. Aeppli et al. demonstrated that the cuff pressure drops occurred by dis-
connecting the manometer from the pilot balloon in about 80% of cases by 0.6 cm H2O, this
phenomenon leads to low intracuff pressure (<20 cm H2O in 31% of cases) and increases
the risk of tracheal aspiration [11]. Our use of a continuous monitoring device produced
more accurate data than intermittent measurements could have.

This study had several limitations. First, we did not compare different tube types. The
Portex® nasotracheal tube has a malleable shaft and cylindrical polyvinyl chloride cuff.
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Other tubes with more-rigid tube shafts or conical cuffs or cuffs made with polyurethane
material were also used [32]. Therefore, our results may not be applicable for different
tube types. Second, the position changes of the tube were not observed. Third, our study
enrolled adult patients. The smaller airways in children may produce larger changes in
intracuff pressure, resulting in higher incidences of overinflation and underinflation [17].

5. Conclusions

Pilot balloon palpation is an unreliable means of controlling the nasotracheal tube
intracuff pressure. If the initial intracuff pressure is accurately adjusted to within a safe
range using a nanometer, in most cases minimal changes will be observed upon head and
neck repositioning. However, there is no guarantee that the intracuff pressure will fall
within the safe range in all patients when their postures changes. Thus, it is necessary to
adjust the intracuff pressure after tracheal intubation and repositioning.
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.3390/jcm10173910/s1, Checklist S1: STROBE Statement—checklist of items that should be included
in reports of observational studies.

Author Contributions: Conceptualization, all authors; methodology, H.J.K. (Hye Jin Kim), J.J., S.Y.K.
and H.J.K. (Hyun Joo Kim); software, H.J.K. (Hye Jin Kim); validation, H.J.K. (Hye Jin Kim), W.K.P.,
S.Y.K. and H.J.K. (Hyun Joo Kim); formal analysis, H.J.K. (Hye Jin Kim), J.J. and H.J.K. (Hyun Joo
Kim); investigation, H.J.K. (Hye Jin Kim), J.J. and H.J.K. (Hyun Joo Kim); data curation, H.J.K. (Hye
Jin Kim), S.Y.K. and W.K.P.; writing—original draft preparation, H.J.K. (Hye Jin Kim), J.J. and H.J.K.
(Hyun Joo Kim); writing—review and editing, all authors; visualization, H.J.K. (Hye Jin Kim), J.J.
and H.J.K. (Hyun Joo Kim); supervision, H.J.K. (Hyun Joo Kim). All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This prospective, single-center, observational study was
approved by the institutional review board of Severance Hospital, Yonsei University Health System
(Seoul, Korea; numbers: 4-2020-0442; 9 June 2020). The study protocol was registered at www.
clinicaltrials.gov (NCT04441970, 22 June 2020). Written informed consent was obtained from all
patients participating in this study.

Informed Consent Statement: Informed consent was obtained from all participants involved in
the study.

Data Availability Statement: The datasets generated for this study are available on request to the
corresponding author. The data are not publicly available due to privacy reasons.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Seegobin, R.D.; van Hasselt, G.L. Endotracheal cuff pressure and tracheal mucosal blood flow: Endoscopic study of effects of four

large volume cuffs. Br. Med. J. (Clin. Res. Ed.) 1984, 288, 965–968. [CrossRef] [PubMed]
2. Bouadma, L.; Wolff, M.; Lucet, J.C. Ventilator-associated pneumonia and its prevention. Curr. Opin. Infect. Dis. 2012, 25, 395–404.

[CrossRef] [PubMed]
3. Liu, J.; Zhang, X.; Gong, W.; Li, S.; Wang, F.; Fu, S.; Zhang, M.; Hang, Y. Correlations between controlled endotracheal tube cuff

pressure and postprocedural complications: A multicenter study. Anesth. Analg. 2010, 111, 1133–1137. [CrossRef] [PubMed]
4. Combes, X.; Schauvliege, F.; Peyrouset, O.; Motamed, C.; Kirov, K.; Dhonneur, G.; Duvaldestin, P. Intracuff pressure and

tracheal morbidity: Influence of filling with saline during nitrous oxide anesthesia. Anesthesiology 2001, 95, 1120–1124.
[CrossRef] [PubMed]

5. Coorey, A.; Brimacombe, J.; Keller, C. Saline as an alternative to air for filling the laryngeal mask airway cuff. Br. J. Anaesth. 1998,
81, 398–400. [CrossRef]

6. Rosero, E.B.; Ozayar, E.; Eslava-Schmalbach, J.; Minhajuddin, A.; Joshi, G.P. Effects of Increasing Airway Pressures on the Pressure
of the Endotracheal Tube Cuff During Pelvic Laparoscopic Surgery. Anesth. Analg. 2018, 127, 120–125. [CrossRef]

7. Okgun Alcan, A.; van Yavuz Giersbergen, M.; Dincarslan, G.; Hepcivici, Z.; Kaya, E.; Uyar, M. Effect of patient position on
endotracheal cuff pressure in mechanically ventilated critically ill patients. Aust. Crit. Care 2017, 30, 267–272. [CrossRef]

https://www.mdpi.com/article/10.3390/jcm10173910/s1
https://www.mdpi.com/article/10.3390/jcm10173910/s1
www.clinicaltrials.gov
www.clinicaltrials.gov
http://doi.org/10.1136/bmj.288.6422.965
http://www.ncbi.nlm.nih.gov/pubmed/6423162
http://doi.org/10.1097/QCO.0b013e328355a835
http://www.ncbi.nlm.nih.gov/pubmed/22744316
http://doi.org/10.1213/ANE.0b013e3181f2ecc7
http://www.ncbi.nlm.nih.gov/pubmed/20736432
http://doi.org/10.1097/00000542-200111000-00015
http://www.ncbi.nlm.nih.gov/pubmed/11684980
http://doi.org/10.1093/bja/81.3.398
http://doi.org/10.1213/ANE.0000000000002657
http://doi.org/10.1016/j.aucc.2016.11.006


J. Clin. Med. 2021, 10, 3910 8 of 8

8. Kako, H.; Goykhman, A.; Ramesh, A.S.; Krishna, S.G.; Tobias, J.D. Changes in intracuff pressure of a cuffed endotracheal tube
during prolonged surgical procedures. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 76–79. [CrossRef]

9. Kim, J.E.; Nam, Y.T.; Chae, Y.H. The Effect of the Body Position and CO2 Gas Insufflation on Airway Pressure and Compliance in
Normal Subjects during Laparoscopy or Pelviscopy. Korean J. Anesthesiol. 1999, 36, 802–807. [CrossRef]

10. Wu, C.Y.; Yeh, Y.C.; Wang, M.C.; Lai, C.H.; Fan, S.Z. Changes in endotracheal tube cuff pressure during laparoscopic surgery in
head-up or head-down position. BMC Anesthesiol. 2014, 14, 75. [CrossRef]

11. Aeppli, N.; Lindauer, B.; Steurer, M.P.; Weiss, M.; Dullenkopf, A. Endotracheal tube cuff pressure changes during manual cuff
pressure control manoeuvres: An in-vitro assessment. Acta Anaesthesiol. Scand. 2019, 63, 55–60. [CrossRef] [PubMed]

12. Nseir, S.; Lorente, L.; Ferrer, M.; Rouzé, A.; Gonzalez, O.; Bassi, G.L.; Duhamel, A.; Torres, A. Continuous control of tracheal
cuff pressure for VAP prevention: A collaborative meta-analysis of individual participant data. Ann. Intensive Care 2015, 5, 43.
[CrossRef] [PubMed]

13. Kim, S. Comparison of the cuff pressures of a TaperGuard endotracheal tube during ipsilateral and contralateral rotation of the
head: A randomized prospective study. Medicine 2018, 97, e12702. [CrossRef]

14. Komasawa, N.; Mihara, R.; Imagawa, K.; Hattori, K.; Minami, T. Comparison of Pressure Changes by Head and Neck Position
between High-Volume Low-Pressure and Taper-Shaped Cuffs: A Randomized Controlled Trial. BioMed Res. Int. 2015, 2015,
386080. [CrossRef]

15. Kim, H.C.; Lee, Y.H.; Kim, E.; Oh, E.A.; Jeon, Y.T.; Park, H.P. Comparison of the endotracheal tube cuff pressure between a
tapered- versus a cylindrical-shaped cuff after changing from the supine to the lateral flank position. Can. J. Anaesth. 2015, 62,
1063–1070. [CrossRef] [PubMed]

16. Tailleur, R.; Bathory, I.; Dolci, M.; Frascarolo, P.; Kern, C.; Schoettker, P. Endotracheal tube displacement during head and neck
movements. Observational clinical trial. J. Clin. Anesth. 2016, 32, 54–58. [CrossRef]

17. Kako, H.; Krishna, S.G.; Ramesh, A.S.; Merz, M.N.; Elmaraghy, C.; Grischkan, J.; Jatana, K.R.; Ruda, J.; Tobias, J.D. The relationship
between head and neck position and endotracheal tube intracuff pressure in the pediatric population. Paediatr. Anaesth. 2014, 24,
316–321. [CrossRef]

18. Jordi Ritz, E.M.; Von Ungern-Sternberg, B.S.; Keller, K.; Frei, F.J.; Erb, T.O. The impact of head position on the cuff and tube tip
position of preformed oral tracheal tubes in young children. Anaesthesia 2008, 63, 604–609. [CrossRef]

19. Hartrey, R.; Kestin, I.G. Movement of oral and nasal tracheal tubes as a result of changes in head and neck position. Anaesthesia
1995, 50, 682–687. [CrossRef]

20. Hall, C.E.; Shutt, L.E. Nasotracheal intubation for head and neck surgery. Anaesthesia 2003, 58, 249–256. [CrossRef]
21. Kako, H.; Alkhatib, O.; Krishna, S.G.; Khan, S.; Naguib, A.; Tobias, J.D. Changes in intracuff pressure of a cuffed endotracheal

tube during surgery for congenital heart disease using cardiopulmonary bypass. Paediatr. Anaesth. 2015, 25, 705–710. [CrossRef]
22. Brimacombe, J.; Keller, C.; Giampalmo, M.; Sparr, H.J.; Berry, A. Direct measurement of mucosal pressures exerted by cuff

and non-cuff portions of tracheal tubes with different cuff volumes and head and neck positions. Br. J. Anaesth. 1999, 82,
708–711. [CrossRef]

23. Yamanaka, H.; Tsukamoto, M.; Hitosugi, T.; Yokoyama, T. Changes in nasotracheal tube depth in response to head and neck
movement in children. Acta Anaesthesiol. Scand. 2018, 62, 1383–1388. [CrossRef] [PubMed]

24. Bernet, V.; Dullenkopf, A.; Cannizzaro, V.; Stutz, K.; Weiss, M. An in vitro study of the compliance of paediatric tracheal tube
cuffs and tracheal wall pressure. Anaesthesia 2006, 61, 978–983. [CrossRef]

25. Matsuki, Y.; Matsuura, N.; Ichinohe, T. Effect of Cuff Pressure Elevation on Internal Diameter of Tracheal Tube in Simulated
Trachea. Bull. Tokyo Dent. Coll. 2016, 57, 7–10. [CrossRef] [PubMed]

26. Calder, A.; Hegarty, M.; Erb, T.O.; von Ungern-Sternberg, B.S. Predictors of postoperative sore throat in intubated children.
Paediatr. Anaesth. 2012, 22, 239–243. [CrossRef]
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