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Abstract: In order to study the influences of amino silane coupling agents with different grafting
densities on the surface of nano silica on the thermomechanical properties of cross-linked epoxy
resin, the molecular dynamics method was used to establish an amorphous model and calculate
the mechanical properties, glass transition temperature, mean square displacement, hydrogen bond,
binding energy, and radial distribution function of the composite models in this paper. The results
are as follows: with the increase of the grafting density of an amino silane coupling agent on
the surface of nano silica particles, the mechanical properties and glass transition temperature of
epoxy resin showed a trend of increasing first and then decreasing. When the grafting ratio was
9%, the mechanical properties and glass transition temperature of the epoxy resin were the largest,
and the glass transition temperature was increased by 41 K. At the same time, it was found that the
higher the grafting ratio, the lower the chain movement ability, but the higher the binding energy.
Besides, the binding energy between the nanoparticles of the grafted silane coupling agent and epoxy
resin was negatively correlated with the temperature. By analyzing the hydrogen bond and radial
distribution function, the results showed that the improvement of the grafted silane coupling agent
on the surface of the nanoparticle to the thermomechanical properties of the epoxy resin was related
to the OH···O and NH···O hydrogen bonds. The analysis results indicated that the proper grafting
density should be selected based on the established model size, selected nanoparticle diameter, and
epoxy resin materials in order to better improve the thermomechanical properties of the epoxy resin.

Keywords: epoxy resin; silane coupling agent; grafting density; thermomechanical property

1. Introduction

As the main materials of the basin insulator, epoxy resin is very important for the safe and stable
operation of high-voltage and ultra-high voltage equipment [1–3]. However, the solidified materials
of epoxy resin have some inherent weaknesses such as low tenacity [4], low heat conduction [5],
easy chapping, low insulation grade [3], and easy local discharge in a high-voltage field [6], which will
result in a breakdown for the power equipment [7]. As the complexity and voltage grade of the
operating environment grow, the requirements for epoxy resin become stricter. Research results
showed that the epoxy resin doped with high-performance nanomaterials can improve the thermal
performance, mechanical performance, and electric performance of epoxy resin effectively [8–13].

Nanoparticles have an excellent surface effect, small size effect, quantum size effect, macro quantum
size effect, etc. [1]. Therefore, more and more domestic and foreign researchers have studied how
to improve the performance of polymers by doping nanoparticles. However, the direct doping of
nanoparticles is prone to agglomeration. Now, the silane coupling agent is frequently used to modify
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the surface of the nanoparticles and further reduce agglomeration. The reference [14] showed that
the nanoparticles modified with an amino silane coupling agent can improve the glass transition
temperature of epoxy resin and reduce its dielectric constant. Zhikun Wang [15] et al. found that
the thermal stability of the epoxy resin can be improved and the glass transition temperature
increases by 15 K after the KH550 was grafted on the surface of the SiO2 nanoparticles. Kung-Chin
Chang [16] et al. found that the nanoparticles modified by the silane coupling agent can improve the
thermomechanical performance of the epoxy resin and reduce the absorption of water. Kumarjyoti
Roy [17] compared and studied the influences of 3-aminopropyltriethoxysilane, triethoxy(octyl)silane,
and bis[3 (triethoxysilyl)propyl]tetrasulfide silane coupling agents with different functions on the rubber.
Research results showed that the nanoparticles doped with bis[3-(triethoxysilyl)propyl]tetrasulfide
can improve the mechanical effect and enhance the rubber hydrophobic property. Most of the current
research focuses on polymers modified by nanoparticles grafting with silane coupling agents; there is
less research on the grafting density of the amino silane coupling agents on the surface of the
nanoparticles and its influences on the thermal performance of epoxy resin.

This paper studied the influences of N-(2-aminoethyl)-3-Aminopropyl trimethoxy silane coupling
agents with different grafting densities on the surface of the nano silicon dioxide particles on the
thermomechanical performance of the cross-linked epoxy resin and calculated thermomechanical
parameters such as the dynamics performance, glass transition temperature, mean square displacement,
hydrogen bond number, binding energy, and radial distribution function to select the optimal
grafting density.

2. Materials and Methods

Bisphenol A epoxy resin (DGEBA) and 1,3 benzenediamine (BD) were selected respectively as the
monomer and curing agent molecule of epoxy resin in this paper, and an epoxy resin composite model
was established by Materials Studio (MS) software [18]. The C atom and N atom in the reaction between
the epoxy resin monomer and curing agent molecule are respectively marked as R1 and R2. When the
close-contact distance between R1 and R2 meets the preset distance, a cross-linked reaction will react to
form a C–N cross-linked bond. For the schematic diagram of the cross-linked reaction, refer to Figure 1.
Firstly, a 50× 50× 50 Å3 box in the Forcite module was established, and then DGEBA and BD molecules
by a 2:1 ratio were placed into the box. Next, geometric optimization and molecule dynamics running
were performed in order to make the established model reach the balance conformation, and finally,
the cross-linked reaction was completed by using Perl language. COMPASS was selected as the force
field for calculations in all dynamic simulations; Nose and Berendsen were used for temperature
control and pressure control, respectively [18].
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According to the literature [18], the N-(2-aminoethyl)-3-Aminopropyl trimethoxy silane coupling
agent was selected to study the influences of the N-(2-aminoethyl)-3-Aminopropyl trimethoxy silane
coupling agent with different grafting densities on the surface of the nano silicon dioxide particle on
the thermomechanical performance of cross-linked epoxy resin in the paper. The diameter of the nano
silicon dioxide particles is 6.6 Å [19]. Before the silane coupling agent is grafted on the surface of nano
silica, it shall be firstly hydrogenated, which means that the oxygen atom is bonded with the H atom
and the silicon atom is boned with the oxhydryl on the surface of nano SiO2 to meet saturated status.
The silane coupling agent will hydrolyze to form an Si–O–Si bond on the surface of the nanoparticles [20].
Etienne [21] et al. found that the bond between the silane coupling agent and nanoparticle includes
single-tooth status, double-tooth status, and three-tooth status by the experiments. The single-tooth
status was selected in the paper. The schematic diagram of silane coupling agent grafted on the surface
of nano silicon dioxide was shown in Figure 2. The pure epoxy resin, epoxy resin/SiO2, and epoxy
resin doped with four grafting densities on the surface of the nanoparticles, which are represented as
pure, 0, 3%, 6%, 9%, and 12% were established, respectively (0: the model with 0 graft silane coupling
agent strips on SiO2; 3%: the model with 3 graft silane coupling agent strips on SiO2; 6%: the model
with 6 graft silane coupling agent strips on SiO2; 9%: the model with 9 graft silane coupling agent
strips on SiO2; 12%: the model with 12 graft silane coupling agent strips on SiO2).
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3. Results and Discussions

3.1. Mechanical Performance

The static method [22] was used to calculate the elasticity constant in the paper, and the rigidity
matrix of the composite material was calculated after balance operation. The second derivative of
potential energy versus strain is shown as follows:
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∂ represents the stress, U represents the potential energy, “+” and “−” represent stretching and
compression, and ε represents the strain. The Lame constant can be calculated as follows:{
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The young modulus E, volume modulus K, and shear modulus G could be calculated respectively
as follows:

E =
µ(3λ+ 2µ)
λ+ µ

(3)

K = λ+
2
3
µ (4)

G = µ (5)

The young modulus, volume modulus, and shear modulus of different models were calculated,
and the influence of temperature on each mechanical property is considered in Figure 3a–c respectively.
From Figure 3, the mechanical properties will reduce when the temperature is rising. When the grafting
density is less than 9%, with the growth of grafting density, the mechanical properties of the cross-linked
epoxy resin model will increase. When the grafting density is 9%, the mechanical properties can reach
the maximum. However, when the grafting density is 12%, the mechanical properties began to reduce.
It shows grafting a silane coupling agent on the surface of the nano silicon particles can improve the
mechanical properties of the epoxy resin, because grafting a silane coupling agent on the surface of
the nanoparticles reduces agglomeration and make nano silicon particles fully react with the epoxy
resin matrix. In different models, we should choose the appropriate grafting density on the surface of
nanoparticles doped in the epoxy resin in order to obtain relatively good mechanical properties.

3.2. Glass Transition Temperature

The glass transition temperature (Tg) is an important characteristic parameter of the thermal
performance of polymers, which could be calculated by the specific volume method [23–25], linear fitting
between the free volume and temperature, or linear fitting between the energy and temperature [26,27].
The Tg values of different models were calculated within 300–650 K by using a specific volume
method in this paper, which can be seen in Figure 4. The statistical glass transition temperature and
experimental results in the references are shown in Table 1.

As shown in Figure 4, the glass transition temperature of the pure model is minimal. After the
silane coupling agent was grafted on the surface of the nanoparticle, with the growth of grafting
density, the glass transition temperature of the epoxy resin will first rise and then descend. When the
grafting density is 9%, the glass transition temperature is the largest. Its increases by 41 K compared to
the pure epoxy resin. When the grafting density is 12%, the glass transition temperature descends.
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Table 1. Glass transition temperature of different grafting models (K).

Model Simulation Value Experimental Value

pure 410 437 [28], 436 [29]
0 418 422 [28]

3% 425
6% 433
9% 451

12% 437

3.3. Mean Square Displacement

The mean square displacement (MSD) shows the atomic chain movement, mechanical performance,
and thermal stability of polymers. The bigger the MSD value, the worse the mechanical performance
and thermal stability of the polymers.

The MSD of pure, 0, 3%, 6%, 9%, and 12% model were calculated at 300 K in Figure 5. With the
growth of the grafting density, the MSD is clearly starting to decline. When the grafting density is
12%, the MSD reaches its minimal value, and when the grafting density is 0, the MSD value is at its
maximum. The research results indicated that the grafted silane coupling agent on the surface of
the nanoparticles doped into epoxy resin can effectively reduce the chain movement of epoxy resin,
make the structure of the epoxy resin more stable, and finally improve the mechanical performance
and thermal performance of the epoxy resin. The research results show that the MSD of the pure model
is lower than 3%, which is similar to outcome in the reference [12].Polymers 2020, 12, x FOR PEER REVIEW 7 of 15 
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Figure 5. Mean square displacement of different models at 300 K.

Figure 6 shows that the MSD value of the grafting density is 12% at 300 K–650 K temperature.
With the growth of the temperature, the MSD will quickly rise. Therefore, the chain movement of
the epoxy resin will be enhanced, which will lead to a decrease of the thermomechanical property.
It further proves that the temperature can affect the structure and performance of the polymers.
Figure 6 also shows that the chain movement of the epoxy resin will grow slowly with the temperature
rising when the temperature is less than 450 K. When the temperature is over 450 K, the MSD value
will quickly rise with the temperature rising. These results may be related to the glass transition
temperature of the epoxy resin. It indicates that the temperature slowly affects the chain movement
of the epoxy resin when the temperature is lower than the Tg. When the temperature is higher than
the Tg, the temperature will intensify the chain movement of the epoxy resin and further make the
thermomechanical performance of the epoxy resin reduce quickly.



Polymers 2020, 12, 1662 7 of 14

Polymers 2020, 12, x FOR PEER REVIEW 7 of 15 

 

 
Figure 5. Mean square displacement of different models at 300 K. 

Figure 6 shows that the MSD value of the grafting density is 12% at 300 K–650 K temperature. 
With the growth of the temperature, the MSD will quickly rise. Therefore, the chain movement of the 
epoxy resin will be enhanced, which will lead to a decrease of the thermomechanical property. It 
further proves that the temperature can affect the structure and performance of the polymers. Figure 
6 also shows that the chain movement of the epoxy resin will grow slowly with the temperature rising 
when the temperature is less than 450 K. When the temperature is over 450 K, the MSD value will 
quickly rise with the temperature rising. These results may be related to the glass transition 
temperature of the epoxy resin. It indicates that the temperature slowly affects the chain movement 
of the epoxy resin when the temperature is lower than the Tg. When the temperature is higher than 
the Tg, the temperature will intensify the chain movement of the epoxy resin and further make the 
thermomechanical performance of the epoxy resin reduce quickly. 

 
Figure 6. Mean square displacement of 12% at different temperatures. 

3.4. Hydrogen Bond 

The hydrogen bond is defined as the special intramolecular or intermolecular interaction. 
Reference [30] mentioned that the hydrogen bond grid among polymers will greatly affect the 
mechanical performance and aging resistance of the polymers. The hydrogen bond was defined by 
using the geometric rule [18] in the paper. The schematic diagram of the hydrogen bond is shown in 
Figure 7. The hydrogen bonds of NH···N and NH···O were mainly calculated in the paper. The 

0 50 100 150 200 250 300 350

1

2

3

 pure  0     3%
 6%    9%  12%

M
SD

 (Å
2 )

Time (ps)

0 50 100 150 200 250 300 350

0

5

10

15

20

25

30

M
SD

 (Å
2 )

Time (ps)

 300K  350K  400K
 450K  500K  550K
 600K  650 K

Figure 6. Mean square displacement of 12% at different temperatures.

3.4. Hydrogen Bond

The hydrogen bond is defined as the special intramolecular or intermolecular interaction.
Reference [30] mentioned that the hydrogen bond grid among polymers will greatly affect the
mechanical performance and aging resistance of the polymers. The hydrogen bond was defined by
using the geometric rule [18] in the paper. The schematic diagram of the hydrogen bond is shown in
Figure 7. The hydrogen bonds of NH···N and NH···O were mainly calculated in the paper. The relation
between the temperature and hydrogen bond number at grafting density values of 3%, 6%, 9% and
12% is shown in Figure 8.
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Figure 8. The number of hydrogen bonds of different grafting density models.

In Figure 8, with growth of the temperature, the number of hydrogen bonds will tend to reduce
on the whole. The higher the temperature, the less hydrogen bonds there are. It indicates that the
temperature destructs the hydrogen bond grid and further shows that polymers could not work under
high temperature in the long term. The figure shows that the whole number of hydrogen bonds
is greater than those of the models when the grafting density is 9%, and the number of hydrogen
bonds of 9% increases by 11.4% when compared to the 3% grafting density model. So, the mechanical
performance and glass transition temperature are better than those of other models when the grafting
density is 9%. It also indicates that the different grafting densities on the surface of nano silica particles
affects the epoxy resin performance due to the formed hydrogen bond between the epoxy resin
and nanocomposite.

3.5. Interaction Energy

In order to study the interface adhesion energy between the cross-linked epoxy resin and nano
silicon dioxide particle grafted with a silane coupling agent, the interaction energies of 3%, 6%, 9%,
and 12% models were calculated. The interaction energy between the cross-linked epoxy resin and the
nanocomposite could be calculated as follows:

Eint = Etotal − (Eepoxy + ENonaparticles) (6)

Etotal indicates all the potential energy of the cross-linked epoxy resin hybrid model, Eepoxy indicates
the potential energy of the epoxy resin, Enanomaterials indicates the potential energy of the grafting silane
coupling agent on the surface of nano silicon dioxide particles, Eint indicates the interaction energy
between the epoxy resin and the nano silicon dioxide particles’ grafted silane coupling agent.

The interaction energy between the cross-linked epoxy resin and nanocomposite models in 3%,
6%, 9%, and 12% models at different temperatures is shown in Figure 9. All the interaction energy
between the cross-linked epoxy resin and nanocomposites is shown in Figure 9a, and the interaction
energy between the cross-linked epoxy resin and nanocomposites in square angstrom is shown in
Figure 9b. From Figure 9, we can find that the interaction energy of the four models is increasingly
reducing with the rising of the temperature, and the interaction energy is negatively correlated with
the temperature, which meets the following equation:

y = −A + Bx (7)
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Figure 9. (a) All the interaction energy between the cross-linked epoxy resin and nanocomposite models;
(b) Interaction energy between cross-linked epoxy resin and nanocomposite models in square angstrom.

A and B are constant, respectively. The result shows that the high temperature will destruct the
interaction energy between the epoxy resin and the nano silicon dioxide particles, which is similar to
the change trend before the calculated mechanical performance and the hydrogen bond at a different
temperature. Figure 9a shows that the interaction energy will quickly grow with the growth of the
grafting density. It indicates that the grafted silane coupling agent on the surface of nano silicon
dioxide particles can significantly improve the interface adhesion energy between the epoxy resin and
nano silicon dioxide particles. The purple broken line part of Figure 9a,b shows that the interaction
energy quickly changes at 450 K temperature, which may have relations with the Tg of the polymers.
It further indicates that the calculated Tg before is reasonable.
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3.6. Radial Distribution Function

The radial distribution function (RDF) means the possibility of finding another particle at the
radius r for any other atom [31,32]. It indicates the atom order problem and can also be explained by
the ratio of the system’s regional density and mean density. The RDF could be calculated as follows:

ga−b(r) =
V
〈∑

i, j δ(r− |rAi − rBi|)
〉

NANB −NAB
4πr2dr (8)

where i and j are the ith atom and jth atom, respectively, while NAB indicates the number of common
atoms between groups A and B.

The RDF values of all the atoms in the 3%, 6%, 9% and 12% models at 300 K temperature are
shown in Figure 10. From Figure 10, we could find that the peak is 0 in the 0–0.9 Å due to the van der
waals volume exclusion effect of atoms. The peak within 0.9–1.1 Å is from the chemical bond between
hydrogen atoms and other atoms, the peak within 1.4–1.45 Å is from the C–N and C–O bonds, and the
1.75 Å peak is from the distance between the hydrogen atoms of methyl (-CH3) and methylene (-CH2-).
The peaks in other molecules could be known as follows: the peak at R = 2.16 Å is from the H–C–C
bond, and the peak at R = 2.44 Å is from the C–C–C bond [31,33]. When the RDF radial distance is
over 4 Å, no peak occurs and the radial distance approximates to 1, because the established model
system is amorphous [34].
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By calculating the RDF of all the atoms of different grafting density models, it can be found that
the RDF values of the four models are similar. Meanwhile, the RDF of the adjacent grafting densities
model is slightly different, which may relate to the grafting number of the silane coupling agents
between the adjacent grafting density models having a slight difference as well. In Figure 10, when R is
within 0.9–2.5 Å, the RDF peak is slightly higher than that of the other three grafting models when the
grafting density is 9%, while the peak is minimum when the grafting density is 3%, which is especially
obvious within 0.9–1.1 Å, where the peak is mainly from the chemical bond in the model between
the hydrogen atom and the other atom, including the hydrogen bond from the atoms. This result is
consistent with that before the number of hydrogen bonds increased.

The RDF values of the C–H atom, N–H atom, and O–H atom for 4 different grafting density
models are shown in Figures 11–13. The results show that the RDF of the C–H atom has a similar
variation trend with the RDF of all the atoms. When the grafting density is 9%, the RFD value of
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the highest peak is at its maximum. The two maximum peaks of the RDF of the N–H atom could
increase with the increasing of the grafting density; when the grafting density is 12%, it has the highest
peak. It may relate with the nitrogen atoms of the grafted silane coupling agent, which means that the
higher the grafting density, the greater the number of nitrogen atoms. It will lead to the RDF of the
N-H atom being more. However, when the grafting density is 9%, the RDF value between the O–H
atom is maximum at the peak within 0.9–1 Å, while when the grafting density is 3%, the RDF value is
at its minimum, but the RDF value at the peak within 2–2.5 Å will increase with the growth of the
grafting density.Polymers 2020, 12, x FOR PEER REVIEW 12 of 15 
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The above results show that the thermomechanical performance is relatively better when the
grafting density is 9%, which may be related to the hydrogen bond between atoms in the nano
composite model. By analyzing the RDF values of different grafting density models, the results show
that such a hydrogen bond is related to the hydrogen bond type of OH···O or NH···O.

4. Conclusions

The influences of different grafting densities of SiO2 nanoparticles on the thermomechanical
performance of the cross-linked epoxy resin were studied, and the mechanism was analyzed from the
micro aspect by molecular dynamics. The conclusions are as follows:

(1) The SiO2 nanoparticles grafted with silane coupling agents can effectively improve the
thermomechanical performance of the epoxy resin. When the grafting density is 9%,
it shows a better thermomechanical performance than the other models, and the glass transition
temperature increases by 41 K. Duo to nanoparticles grafted with silane coupling agents improving
nanoagglomeration, nanoparticles can fully react with the epoxy resin matrix to form a hydrogen
bond grid, and such hydrogen bonds are mainly from OH···O and NH···O hydrogen bonds.
However, when the grafting density of the silane coupling agents on the surface of the nanoparticles
is too high, nanoparticles cannot effectively react with the epoxy resin, which will reduce the
thermomechanical performance.

(2) With the increase of grafting density of SiO2 nanoparticles, the chain movement ability of epoxy
resin decreased, the interaction between SiO2 nanoparticles and epoxy resin was enhanced,
and the interaction energy is negatively correlated to the temperature. Based on the different
sizes of the established models, different nanoparticle diameters and epoxy resin materials are
selected, so a proper grafting density should be selected to better improve the thermomechanical
performance of epoxy resin.
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grammar modification. All authors have read and agreed to the published version of the manuscript.
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