
MINI REVIEW
published: 10 March 2015

doi: 10.3389/fpsyt.2015.00034

Edited by:
Sebastian Walther,

University Hospital of Psychiatry,
Switzerland

Reviewed by:
Bernhard J. Mitterauer,

Volitronics-Institute for Basic
Research Psychopathology and Brain

Philosophy, Austria
Jessica A. Turner,

Georgia State University, USA
Sebastian Walther,

University Hospital of Psychiatry,
Switzerland

*Correspondence:
Benny Liberg,

Department of Psychiatry, Melbourne
Neuropsychiatry Centre, Alan Gilbert
Building, Level 3, 161 Barry Street,

Carlton South, Melbourne,
VIC 3053, Australia

benny.liberg@gmail.com

Specialty section:
This article was submitted to

Schizophrenia, a section of the journal
Frontiers in Psychiatry

Received: 19 December 2014
Accepted: 19 February 2015
Published: 10 March 2015

Citation:
Liberg B and Rahm C (2015) The

functional anatomy of psychomotor
disturbances in major
depressive disorder.

Front. Psychiatry 6:34.
doi: 10.3389/fpsyt.2015.00034

The functional anatomy of
psychomotor disturbances in major
depressive disorder
Benny Liberg 1,2* and Christoffer Rahm 1,3

1 Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, VIC,
Australia, 2 Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology
(CLINTEC), Karolinska Institutet, Stockholm, Sweden, 3 Unit of Metabolism, Department of Medicine Huddinge, Karolinska
Institutet, Stockholm, Sweden

Psychomotor disturbances (PMD) are a classic feature of depressive disorder that
provides rich clinical information. The aim our narrative review was to characterize the
functional anatomy of PMD by summarizing findings from neuroimaging studies. We
found evidence across several neuroimaging modalities that suggest involvement of
fronto-striatal neurocircuitry, and monoaminergic pathways and metabolism. We suggest
that PMD in major depressive disorder emerge from an alteration of limbic signals, which
influence emotion, volition, higher-order cognitive functions, and movement.

Keywords: psychomotor performance, major depressive disorder, neuroimaging, frontal lobe, basal ganglia,
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Introduction

Psychomotor signs are a classic feature of major depressive disorder that already attracted attention
over a century ago (1). Emil Kraepelin gave a vivid and still valid description of psychomotor
disturbances (PMD) in his chapter on general symptomatology in Lehrbuch des Psychiatrie, 1907:
“The psychomotor retardation, which is the most important disturbance in the depressed states of
manic-depressive insanity, is probably due to a [. . .] increase in resistance [. . .] In spite of every
apparent exertion, the patients cannot utter a word or at best answer only in monosyllables, and are
unable to eat, stand up, or dress. As a rule they clearly recognize the enormous pressure lying upon
them, which they are unable to overcome” (2).

Psychomotor disturbances in depressive disorder can be broadly classified in to four subgroups
of symptoms and signs based on three available clinical rating scales designed to characterize
them [CORE, motor agitation and retardation scale (MARS), Widlöcher scale] (3–5): retardation,
agitation, non-interactiveness, and mental slowing (Table 1). The symptoms and signs of PMD
therefore entail a wide range of brain functions including motor performance, executive function,
volition, and drive. These provide rich clinical information (i.e., diagnostic subgroup, prognosis,
treatment) (6, 7).

No previous review has focused specifically on neuroimaging findings related to PMD in major
depressive disorder. The aim of this narrative review is to characterize the functional anatomy of
PMD in major depressive disorder by summarizing findings from human neuroimaging studies that
probe structure, function, neurochemistry, and connectivity.

Structural Neuroimaging

Structural aberrations in white matter are the most prominent structural neuroimaging findings
associated with PMD in depressive disorder.
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TABLE 1 | Psychomotor signs in major depressive disorder.

Subgroup of
psychomotor
disturbances

Example

Retardation Slowed movements (motor slowness), facial immobility
(lack of facial expressivity, downcast gaze, reduced voice
volume, slurring of speech), body immobility (immobility of
trunk/proximal limbs), postural slumping (postural
collapse), delay in motor activity, delay in responding
verbally (delayed speech onset), slowing of speech rate
(monotone speech), abnormal gait

Agitation Frightened apprehension (static facial expression,
abnormal staring, increased blinking, erratic eye
movement), facial agitation (movement/tension in mouth),
motor agitation (increased axial truncal movement),
stereotyped movements (tension in fingers and hands,
hand movement, foot/lower leg movement), verbal
stereotypy

Non-interactiveness Response to social cues, emotional responsiveness,
inattentiveness, poverty of associations, spontaneous
speech, length of verbal responses

Mental slowing Language and verbal flow, variety of themes
spontaneously approached, richness of associations,
subjective experience of ruminations, fatigability,
perception of flow of time, memory, concentration, interest
in habitual activities

White-matter alterations (hyperintensities, WHI; and white-
matter fiber integrity), are one of the most reproduced findings in
mood disorders. White-matter hyperintensities (WHIs) are radi-
ological hyperintense regions of whitematter with elusive etiology
inMRI images. They are primarily associatedwith late-life depres-
sion, but are also more common in major depressive disorder in
younger age groups. The extent of WHIs correlates with illness
severity, poor treatment response, and decreased psychomotor
speed on several neuropsychological tests (8). White-matter tis-
sue broadly comprises glial cells with myelin surrounding axons.
Currently, the general understanding is that the WHIs alterations
observed in depression arise from small vessel disease that lead
to disruption of white-matter pathways (9). However, other dis-
ease mechanisms involving white-matter tissue may also lead
to disruptions of specific neurocircuits and lead to psychiatric
symptoms such as PMD (10).

White-matter fiber integrity can be assessed with diffusion-
weighted imaging. One study by Walther et al. (11) who specif-
ically addressed psychomotor functioning in depressive disorder
used diffusion-weighted magnetic resonance imaging and actig-
raphy – an objective measure of the general activity level in
an individual. It showed that lower activity levels correlate with
measures of differential myelinization in the frontal lobe and
posterior cingulate region, and that there is a negative correla-
tion between the same measures in the white matter beneath
the primary motor cortex and in the parahippocampal region.
The authors conclude that changes in psychomotor function in
depressive disorder may be linked to changes in white matter in
motor regions. Bracht et al. used diffusion-weighted imaging to
investigate white-matter microstructure in relation to PMD. They
found a positive association between decreased physical motor

activity and alterations in paralimbic and motor midline regions
not only involved in volitional movement but also involvement of
ascending mesocortical dopamine pathways in clinical states with
prominent PMD (12, 13).

To this date, few studies have investigated the relation between
gray matter volume and PMD in major depressive disorder. Cur-
rent findings involve volume reductions in several pre-executive
parts of the motor system. One volumetric study showed that
thinning of the right presupplementary motor cortex (pre-SMA)
is associated with impaired performance on a motor learning
test (14). The pre-SMA is a part of the mesial premotor cor-
tex that advances signals from the prefrontal regions, engaged
in higher-order cognitive functions. In studies measuring sub-
cortical volumes and regional shape alterations, no significant
associations could be found between performance on a psy-
chomotor task (trail making test variations) and the volumes
of striatum, pallidum, and thalamus in depressed subjects (15,
16). Another study found that reduced caudate nucleus vol-
umes predicts decreased psychomotor speed in depressed subjects
>50 years old (17).

Only one study, using CT, has assessed cerebrospinal fluid
space size. This study found that the size of the third ventricle was
associated with clinical ratings of psychomotor retardation (18).

Functional Neuroimaging

Blood–oxygen-level-dependent (BOLD) functional magnetic res-
onance imaging (fMRI) is currently the most prevalent method
for studying neural activation patterns during experimental tasks
in patients with depressive disorder. A few research teams have
specifically addressed PMD using fMRI and experimental motor
tasks, clinical ratings of psychomotor disturbance, ormotor physi-
ologymetrics (i.e., actigraphy, reaction time). Two types of studies
have been employed – task and non-task based studies. Naismith
et al. (19) used a motor sequence task (button press response) to
study motor learning, and found increased activation of lateral
prefrontal cortex, superior temporal regions, and the cerebellum.
Caligiuri et al. (20, 21) studied motor execution using a man-
ual reaction time task, and found increased activation during
movement in the primary motor cortex, alongside motor asym-
metry. Five other studies investigated motor speed using different
finger-tapping variations (22–27), and suggest an increased acti-
vation in both motor and paralimbic regions, and with altered
fronto-striatal coupling among patients. One non-task, resting-
state study, by Yao et al. (28) corroborates the hyperactivation of
paralimbic regions in patients.

Electroencephalography

Electroencephalography (EEG) is used to study power amplitude
of particular frequency spectrums, hemisphere asymmetry, and
chronometric features of cortical neural activation. PMD have
been associated with greater variability and increased amplitudes
in the delta (<4Hz) and theta (4–7Hz) spectrum, but not with
hemisphere asymmetry (29). The post-imperative negative vari-
ation is a metric related to frontal lobe function, and has been
associated with psychomotor slowing in a choice reaction task
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(30). Another frontal metric (P300) has also been correlated pos-
itively correlated with PMD (31). Interestingly, this study also
showed that only clinical ratings more focused on PMD than
the Hamilton depression ratings scale (HDRS) predicted P300
latency. In a group of patients receiving electroconvulsive treat-
ment, clinical ratings of PMD were positively correlated with
frequency decreases during initial improvement, whereas the
reverse relationship was found during the later partial remis-
sion phase (32). One study by Nieber et al. (33) showed a
positive correlation between decreased frequencies in particular
regions of the theta and alpha (7–13Hz) spectrum and over-
all retardation, with motor retardation, in particular. In that
study, increased frequency in particular regions of in the alpha
and beta spectrum was negatively correlated with PMD. Error-
related negativity and positive-negativity are metrics associated
with anterior and posterior cingulate cortex function, respec-
tively (34, 35). These metrics have been associated with a slowing
of psychomotor performance in subjects during action moni-
toring, but only positive-negativity differentiated patients and
controls (36).

Molecular Neuroimaging

Single-photon emission tomography (SPECT), positron emis-
sion tomography (PET), and arterial spin labeling (ASL) are
the three molecular neuroimaging methods that have been used
to study PMD. These three methods measure regional cere-
bral blood flow, glucose metabolism, oxygen consumption, or
synaptic transmission factors. Walther et al. (37) used ASL and
actigraphy to measure the correlation between regional cerebral
blood flow and general motor activity outside of the scanner
environment in depressed subjects. The study showed a posi-
tive correlation between physical activity and blood perfusion
in the right orbitofrontal cortex, and a negative correlation with
left supplementary motor area perfusion. The available evidence
from PET and SPECT studies also suggests that PMD in depres-
sion are associated with decreased DLPFC metabolism (38–40),
increased ACC metabolism (41–43), and a lower dopaminergic
tone and altered metabolism in striatal regions (41, 42, 44–47).
However, a SPECT study by Graff-Guerrero et al. (48) failed to
reproduce these associations between clinical rating of PMD and
cerebral blood flow. One longitudinal study also suggests that
improvement of psychomotor slowing is associatedwith increased
activation in the dorsal ACC (49).

Transcranial Ultrasound

Hypo- or hyperechogenicity measured by transcranial sonogra-
phy in vivo reflect changes in tissue impedance, likely due to
alterations of microarchitecture such as shifts in cell density,
changes in interstitial matrix composition, or alterations of fiber
tract integrity (50, 51). Those transcranial ultrasound studies that
have investigated PMD in major depression have focused on
the serotonergic raphe nuclei and the dopaminergic substantia
nigrae. A significantly reduced echogenicity of the mesencephalic
midline raphe nuclei has been reported in depressed subjects (52).
Hypoechogenicity of the raphe nuclei can be found in 50–70% of

unipolar depressed subjects compared to 10% in healthy subjects
(53). Hypoechogenicity of the raphe nuclei of the brain stem is
associated with better treatment response to serotonin reuptake
inhibitors (54) and with symptom severity in suicidal ideation
(55).One study could not find any association between echogenic-
ity of the raphe nuclei and PMD (51), another found a positive
correlation with the degree of psychomotor retardation (56),
and a third a negative correlation with psychomotor retardation
(54). Hoeppner et al. showed that substantia nigra echogenic size
correlates with motor asymmetry and reduced verbal fluency in
unipolar depression. In that study, the association was stronger in
patients≥50 years, and in patients with reduced brain stem raphe
nuclei hypogenicity (57).

Conclusion

In this review, we summarize the literature on the functional
neuroanatomy of PMD in major depressive disorder (Table 2).
Despite the clinical importance of PMD, we found relatively few
studies. Indeed, the motor system has been relatively neglected
in brain imaging studies of psychiatric disorders in general (58).
We conclude that structural alterations that correlate with PMD
have been found in gray- and white-matter regions within several
nodes of cortico-subcortical circuits. Findings in functional neu-
roimaging studies show involvement of the same neurocircuitry
nodes (along with their white-matter connections) as in structural
neuroimaging studies, and further that limbic influences on the
motor system may be important in the emergence of PMD. EEG
studies suggest that frequency variations across many spectra,
and an involvement of the frontal cortex, anterior, and posterior
cingulate cortex, are associated with PMD. The molecular neu-
roimaging correlates of PMD resemble the functional anatomy
of major depression described with functional and structural
methods, but in addition also implicate disrupted monoamine
transmission in PMD. The few available studies that use tran-
scranial ultrasound primarily show an association between PMD
and echogenic features of the substantia nigra, which then corrob-
orates molecular neuroimaging findings of disrupted dopamine
transmission.

Structural and functional neuroimaging studies suggest that
PMD involve alterations in large-scale cortico-striato-thalamo-
cortical neurocircuits, and in particular fronto-striatal subdi-
visions. Findings from transcranial ultrasound, and molecular
neuroimaging studies, suggest a putative underlying factor for
these alterations in the form of disrupted influence of ascending
dopamine tracts that emanate from deeper midbrain nuclei. This
notion also fits with the broader picture of a depressive disorder
with psychomotor disturbances, which also include alterations in
cognitive function, drive, and emotional expression – phenomena
that alsomap onto ascendingmonoamine tracts with targets in the
frontal lobe. Taken together, the broad picture suggests that PMD
inmajor depressive disorder emerges fromaltered limbic signals at
the interface of emotion, volition, higher-order cognitive function,
and movement.

Our review shows that PMD is an emerging field of research
that has kept growing since over 20 years. However, the currently
available studies also preclude firmer evidence when evaluated
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TABLE 2 | Neuroimaging findings and their correlation to psychomotor disturbances.

Study N Diagnosis Method Measure Finding

Structural CT
and MRI

Hickie et al. (8) 39 MDD MRI (WMH) Mean decision time ↑ White-matter hyperintensities

Walther et al. (11) 21 MDD DTI (FA) Actigraphy ↓ White-matter in motor regions

Bracht et al. (12) 21/21 MDD DTI (FA) Actigraphy ↓ White-matter in ACC and midline motor
regions connected with PFC

Bracht et al. (13) 22/21 MDD DTI (FA) Clinical features of
PMD

↓ White-matter in medial forebrain bundle

Exner et al. (14) 9 MDD MRI (ROI) Serial reaction time
task

↓ pre-SMA volume

Liberg et al. (15) 27 BPD MRI (ROI,
shape)

Trail Making Tests,
reaction Time

No significant findings in the striatum,
pallidum, and the thalamus

Liberg et al. (16) 20 BPD MRI (ROI,
shape)

Trail Making Tests No significant findings in the striatum,
pallidum, and the thalamus

Naismith et al. (17) 47 MDD MRI (ROI) Trail Making Test A ↓ Right caudate volume

Schlegel et al. (18) 44 MDD CT, ventricle size Bech–Rafaelsen
Melancholia Scale

↑ Lateral ventricle size

fMRI Naismith et al. (19) 19/20 MDD Task-based
fMRI

Motor sequencing task ↑ Middle frontal gyrus, superior temporal
gyrus, and cerebellum

Caligiuri et al. (20) 24/13 BPD Task-based
fMRI

Manual reaction time
task

↑ Right primary motor cortex in patients

Caligiuri et al. (21) 18/13 BPD Task-based
fMRI

Manual reaction time
task

↑ Left primary motor area in patients. Motor
asymmetry in patients with a failure to
suppress right hemisphere activation during
movement

Marchand et al. (22) 10 BPD Task-based
fMRI

Finger-tapping ↑ Right anterior cingulate cortex and medial
frontal gyrus (euthymia>depression)

Liberg et al. (24) 9/12 BPD Task-based
fMRI

Finger-tapping No significant findings

Liberg et al. (25) 9/12 BPD Task-based
fMRI

Finger-tapping,
Motor imagery, CORE,
AS-18

↓ Primary motor cortex, lateral ventral
premotor cortex in relation to clinical ratings. ↑
Medial posterior parietal cortex during motor
imagery. ↑ Fronto-parietal regions, and insular
cortex, during motor execution

Liberg et al. (26) 13/13 MDD Task-based
fMRI

Finger-tapping ↓ Fronto-striatal coupling between cingulate
motor area and putamen. ↑ Left cingulate
motor area. ↑ Functional coupling and clinical
ratings

Marchand et al. (27) 14/15 BPD Task-based
fMRI

Finger-tapping ↑ Left pre- and post-central gyrus, bilateral
cingulate, right striatum, and left striatum, in
patients

Yao et al. (28) 22/22 MDD Resting-state
fMRI

HDRS ↑ Regional homogeneity in right posterior
cingulate cortex and right insula

EEG Nyström et al. (29) 25 MDD EEG power
spectrum
analysis

Comprehensive
Psychopatho-logical
Rating Scale

↑ Delta-, theta-amplitude, and variability

Thier et al. (30) 11/11 MDD ERP Serial choice reaction
task

↑ Post-imperative negative variation

Schlegel et al. (31) 36 MDD ERP Bech–Rafaelsen
Melancholia Scale

↑ P300 latency

Silfverskiöld et al.
(32)

21 MDD Global EEG
frequency

Rating Scale for
Affective Symptoms

↓ Acute effects
↑ Non-acute effects

Nieber et al. (33) 63 MDD EEG power
spectrum
analysis

Bech–Rafaelsen
Melancholia Scale

↑ Slow activity
↓ Fast activity

Schrijvers et al. (36) 26 MDD ERP, Eriksen
Flanker’s Task

Salpêtrière Retardation
Rating Scale

↑ Error-related negativity potentials

(Continued)
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TABLE 2 | Continued

Study N Diagnosis Method Measure Finding

Molecular
neuroimaging

Walther et al. (37) 20/19 MDD ASL Wrist actigraphy ↑ Right orbitofrontal cortex,
↓ left SMA

Bench et al. (38) 40 MDD PET HDRS ↓ rCBF in left DLPFC, left parietal cortex

Dolan et al. (39) 40 MDD PET HDRS ↓ rCBF in left DLPFC
Videbech et al. (40) 42 MDD PET HDRS ↓ rCBF in DLPFC and OFC

Milak et al. (41) 298 MDD FDG-PET HDRS ↑ Metabolism in the cingulate gyrus, thalamus,
and basal ganglia

Dunn et al. (42) 58 MDD FDG-PET Beck’s Depression
Inventory

↓ Metabolism in right insula, claustrum,
anteroventral caudate/putamen, and temporal
cortex.

↑ Metabolism in ACC

Mayberg et al. (43) 13 MDD 99mTc-SPECT Finger-tapping ↑ rCBF in paralimbic cortex (frontal and
temporal) and prefrontal

Meyer et al. (44) 9/21 MDD RTI-32-PET Finger-tapping ↓ Dopamine transporter binding potential in
striatum

Meyer et al. (45) 21 MDD Raclopride PET Finger-tapping ↑ Dopamine D2 receptor binding potential in
the putamen

Ebert et al. (46) 20 MDD IBZM-SPECT – ↑ Striatal IBZM-BP

Perico et al. (47) 15 MDD 99mTc-SPECT HDRS ↑ Left premotor cortex and right anterior
medial orbitofrontal cortex metabolism

Graff-Guerrero et al.
(48)

14 MDD 99mTc-SPECT HDRS No significant correlation between retardation
and CBF

Brody et al. (49) 39 MDD FDG-PET HDRS Improvement in psychomotor symptoms is
associated with metabolism in dorsal ACC

Transcranial
sonography

Berg et al. (51) 31 PD with MDD Ncl raphe Columbia University
Rating Scale

No significant correlation

Walter et al. (53) 55 MDD Ncl raphe,
substantia nigra

Unified Parkinson’s
Disease Rating Scale
(Motor part)

↓ Raphe echogenicity,
↑ Substantia nigra echogenecity

Walter et al. (54) 52 MDD Ncl raphe Motor Retardation and
Agitation Scale

↑ Raphe echogenecity

Becker et al. (56) 30 PD with MDD Ncl raphe Columbia University
Rating Scale

↓ Raphe echogenecity

Höppner et al. (57) 45 MDD Substantia nigra Finger-tapping (motor
asymmetry), verbal
fluency

↑ Substantia nigra echogenic size

ACC, anterior cingulate cortex; AS-18, affektiv skattningsskala 18 (59); ASL, arterial spin labeling; BP, binding potential; BPD, bipolar disorder depression; CT, computed tomography; DTI,
diffusion tensor imaging; DLPFC, dorsolateral prefrontal cortex; EEG, electroencephalography; ERP, event-related potentials; FA, fractional anisotropy; FDG-PET, fluorodeoxyglucose
positron emission tomography; fMRI, functional magnetic resonance imaging; HDRS, Hamilton Depression Rating Scale; IBZM, iodobenzamide single-photon emission computed
tomography; MDD, major depressive disorder; MRI, magnetic resonance imaging; OFC, orbitofrontal cortex; PD, Parkinson’s disease; PET, positron emission tomography; ROI, region of
interest; rCBF, regional cerebral blood flow; RTI-32, (1R-2-exo-3-exo)-8-methyl-3-(4-methylphenyl)-8-azabicyclo[3.2.1]octane-2-carboxylate; SMA, supplementary motor area; SPECT,
single-photon emission computed tomography; 99mTc, Technetium-99.

in the context of general research methodology. Most studies
are cross-sectional, have <25 participants, and have not been
reproduced. Furthermore, a wide variety of clinical psychomotor
measures have been used. Thus, information about the anatomical
specificity of PMD from future studies could be improved by the
use of objective measurements of motor performance (i.e., finger-
tapping, actigraphy) when investigating the different dimensions
of PMD delineated by current clinical measurements (i.e., CORE,
MARS), and using rating scales that probe PMD specifically.
Further studies would also benefit from longitudinal experimen-
tal designs that disentangle the effects of brain changes on the

functional components of PMD, and assess differences across
neuropsychiatric disorders.
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