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A network of cellular interactions that involve blood leukocytes and platelets maintains 
vessel homeostasis. It plays a critical role in the response to invading microbes by recruit-
ing intravascular immunity and through the generation of neutrophil extracellular traps 
(NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote 
chemoattractants by crossing the endothelial barrier and reaching sites of infection. 
Once the network operating under physiological conditions is disrupted, the reciprocal 
activation of cells in the blood and the vessel walls determines the vascular remodeling 
via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/
mural cell interaction is an early critical event in the natural history of systemic inflamma-
tion. Despite intense efforts, the signals that initiate and sustain the immune-mediated 
vessel injury, or those that enforce the often-prolonged phases of clinical quiescence 
in patients with vasculitis, have only been partially elucidated. Here, we discuss recent 
evidence that implicates the prototypic damage-associated molecular pattern/alarmin, 
the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular 
inflammation associated with systemic sclerosis. HMGB1 could represent a player in the 
pathogenesis of rheumatic diseases and an attractive target for molecular interventions.
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NeUTROPHiLS, PLATeLeTS, AND vASCULAR iNFLAMMATiON

Neutrophils are terminal cells with a relatively short half-life in the circulation. They are effective as 
a first barrier toward various invading noxae. To carry out this function, neutrophils cross the vessel 
wall and migrate to the inflamed/injured tissues. This step requires the recognition of P-selectin on 
the activated endothelium and the asymmetric polarization of the leukocyte β2 integrins that gener-
ates the unidirectional movement associated with the infiltration of the surrounding perivascular 
tissues. These events influence the immune function of transmigrating leukocytes, thus contributing 
to the overall outcome of the inflammatory response: effective resolution versus persistence of vascu-
lar inflammation, healing of the injured vessel wall versus active remodeling, intimal hyperplasia, or 
aneurism formation. Conversely, transmigrating neutrophils both damage and activate endothelial 
cells, enforcing a self-sustaining positive feedback loop that contributes for example in patients with 
systemic small-vessel vasculitis or with systemic sclerosis (SSc) to vascular remodeling and inflam-
mation (1–4).
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FiGURe 1 | (A) Resting neutrophils. (B) P-selectin recognizes PSGL1 
promoting the generation of ROS, the activation of Mac-1 on neutrophils, the 
release of pentraxin 3 from the neutrophil-specific (secondary) granules, the 
release of myeloperoxidase from the neutrophil azurophilc (primary) granules 
and the surface expression, and the novo synthesis of tissue factor in 
neutrophils.
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At sites of infection, neutrophils dispose of invading micro-
organisms. This action depends partially on the engulfment 
into a phagosome upon reorganization of the actin-based 
cytoskeleton and on the activation of the NADPH oxidase 
system with generation of reactive oxygen species (ROS) (5, 6). 
The oxygen species combined with the granules microbicidal 
moieties released into the phagolysosome limits the pathogen 
viability (6–8). Non-phagocytic neutrophils’ microbicide 
mechanisms have also been described, which involve the release 
of decondensed chromatin threads in the extracellular space. 
This phenomenon is referred to as neutrophil extracellular 
traps (NETs) generation (8–11). Neutrophils preferentially 
generate NETs when they fail to engulf the pathogen because 
they are immobilized, tightly adherent to a substrate, or near 
to apoptosis (8, 12–15). Primary granules fuse with the nuclear 
membrane, causing the formation of myeloperoxidase–DNA 
and elastase–DNA complexes (14), while the physicochemi-
cal properties of the chromatin change dramatically upon the 
citrullination of histones by the peptidylarginine deiminase 
4 (PAD4) enzyme (16, 17). Both granule redistribution and 
PAD4-mediated histone citrullination are required for NET 
generation. During experimental sepsis, NETs play a role in 
bacterial trapping ensnaring circulating bacteria and restricting 
their dissemination to distant organs (18).

Neutrophils and platelets colocalize at sites of vascular injury, 
hemorrhage, and thrombosis. In these conditions, various inflam-
matory and thrombogenic signals are integrated, resulting in the 
productive interaction between platelets and leukocytes, yielding 
the formation of aggregates (15, 19, 20). Neutrophils/platelets 
heterotypic aggregates depend on platelet P-selectin, are endowed 
with inflammatory and thrombogenic actions, and represent a 
shared feature of acute cardiovascular diseases and of systemic 
inflammatory, neoplastic, and autoimmune diseases (21).

Upon platelet adhesion to damaged vessel walls, P-selectin 
expressed on their surface facilitates the leukocyte recruitment 
at the site of vascular injury. Signals activated downstream the 
recognition of platelet P-selectin promote the generation of ROS 
(5, 22), the activation of β2 integrins (2, 7, 15, 23, 24), the release 
of pentraxin 3 from the neutrophil specific (secondary) gran-
ules (25), the release of myeloperoxidase from the azurophilic  
(primary) granules (6, 25, 26), and the de novo synthesis and the 
surface expression of leukocyte tissue factor (1, 2, 21) (Figure 1).

Additionally, activated platelets release soluble inflammatory 
signals, including IL-1β, PDGF, and the prototypic endogenous 
immune adjuvant, the high mobility group box 1 (HMGB1) 
protein (5, 27, 28). Finally, the inflammatory action of platelets is 
amplified and sustained by the release of bioactive microparticles 
(5, 20, 27, 29, 30). Microparticles comprise small vesicles (usu-
ally ranging from 0.05 to 1  μm) shed from activated or dying 
cells as a consequence of the disruption of the pathway actively 
maintaining the asymmetry between the phospholipid layers of 
the plasma membrane. Most microparticles in the blood derive 
from platelets (30). Platelet-derived microparticles participate in 
blood coagulation and actively contribute to the inflammatory 
action of platelets (30). The array of signals expressed, generated, 
or released by platelets upon activation acts mostly locally influ-
encing the microenvironment. However, these signals possibly 

influence the leukocyte function in the circulation, in particular 
in patients with systemic vasculopathy (2, 31).

Of importance, the dangerous connection between neutro-
phils and platelets can have different outcomes depending on 
the context. These outcomes include the phagocytic removal of 
platelets in physiological conditions (6). Upon inflammatory 
conditions, adherent neutrophils recognizing activated platelets 
are committed to NET generation (12, 20, 32).

NeTs CONTRiBUTe TO PROPAGATe 
vASCULAR iNJURY AND AUTOiMMUNiTY

Neutrophil extracellular traps generation comprises a physiologi-
cal response of living neutrophils to various stimuli present in a 
specific environmental context (11, 12, 20, 33) or a form of cell 
death that is morphologically distinct from apoptosis (34, 35). 
The mechanisms regulating the type of NET formation seem to 
depend on the triggering stimuli and on the context of stimula-
tion. They comprise (i) the production of ROS and the induction 
of autophagy, (ii) the fusion of primary granules with nuclear 
membrane, (iii) the interaction of elastase and MPO with the 
DNA, (iv) the citrullination of histones, the chromatin deconden-
sation, and, finally, (v) the nuclear envelope and, eventually, the 
cell membrane integrity disruption (10, 34, 36) (Figures 2 and 3).

The ensuing prolonged exposure of neutrophil microbicidal 
proteins as well as of citrullinated histones in the extracellular 
environment could initiate autoimmunity (4, 10, 37, 38). NETs 
are cleared via a mechanism involving DNAses and the first 
component of the classical pathway of complement activation, 
C1q. As a consequence, the endocytotic/phagocytotic func-
tion of scavenger macrophages limits NETs inflammatory and 
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FiGURe 3 | Neutrophil extracellular traps are characterized by 
decondensed latices of DNA with citrullinated histones decorated 
with neutrophil granules proteins, such as myeloperoxidase. Originally 
published by Maugeri et al. (20).

FiGURe 2 | HMGB1 released or expressed by activated platelets 
recognizes RAGe expressed on neutrophils. (A) Resting neutrophils 
express non activated Mac-1 and RAGE on their surface. (B)  HMGB1 
expreesed by activated platelets induces neutrophils to initiale autophagy, 
promotes the redistribution of neutrophil granules, induces the transactivation 
of Mac-1 and elicits the NETs formation.
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potentially vessel-injuring properties (39, 40). Moreover, persis-
tence of NETs in the tissue might prompt fibrosis via induction 
of myofibroblasts (41).

In contrast, defective clearance of NETs and activation of the 
alternative pathway of complement activation might be associated 

with persisting tissue damage and to autoimmunity (10, 42–46). 
Accumulation in the plasma of byproducts of NET generation/
catabolism (such as complexes of DNA-MPO or soluble DNA 
with citrullinated histones), higher capacity of in  vitro NETs 
generation, and an impaired capacity of NETs degradation were 
observed in patients with systemic lupus erythematosus (SLE), 
small vessel vasculitis, rheumatoid arthritis, and psoriasis (47), 
while the association of biologically active moieties, such as tissue 
factor, TNFα and IL-1β, with NETs might influence their action 
in the microenvironment (48, 49).

The formation of NETs in vivo seems to be directly associated 
with SLE. Accordingly with this hypothesis, in an animal model 
of lupus, the effective inhibition of PAD4 results both in a reduc-
tion of NET formation and in altered circulating autoantibody 
profiles, restored complement levels, and reduced glomerular IgG 
deposition (37, 38, 50).

eNDOGeNOUS MeCHANiSMS 
MAiNTAiNiNG vASCULAR 
iNFLAMMATiON: A ROLe FOR HMGB1

High mobility group box 1 has been named after its ability to 
quickly migrate in polyacrylamide and triton–urea gels, a feature 
that depends on a high-content of charged amino acid residues. 
HMGB1 is located on the 13q12 human chromosome. The gene 
comprises six exons that encode for a 215-amino acid poly-
peptide, with an apparent molecular mass of 25  kDa. HMGB1 
proteins from mammals are nearly identical, indicating that each 
residue is under selective pressure. In general, the cell type and 
state of activation influence levels and localization, and more dif-
ferentiated cells display a lower protein content. HMGB1 consists 
of a long acidic carboxyterminal region (the “acidic tail”) and of 
two positively charged domains, referred to as “box A” and “box 
B,” that bind to DNA and contain nucleus localization signals. 
HMGB1 is mostly located in the nucleus of most living cells 
where it bends DNA, thus facilitating the assembly of proteins, 
including transcription factors, on their targets. HMGB1 moves 
constantly from the nucleus to the cytoplasm (51, 52). In response 
to stress, senescence, or inflammatory signals, HMGB1 is hypera-
cetylated at two sites in nuclear localization, and this isoform 
accumulates in the cytoplasm (53). HMGB1 in the cytoplasm 
promotes autophagy, by which cells recycle internal constituents 
so as to generate ATP and promote survival under conditions of 
environmental stress (51).

The interaction with the chromatin in living cells is transient, 
and HMGB1 plays relevant biological functions in the cytosol, 
where it behaves as a potent inductor of autophagy (54). Cell 
death via an unscheduled accidental pathway, which associates 
with the disruption of membrane compartmentalization, results 
in the redistribution of the molecule at extracellular sites, where 
HMGB1 behaves as a potent inflammatory signal (51, 55). Most 
activated cells also mobilize HMGB1. Monocytes, macrophages, 
and immature myeloid and plasmacytoid dendritic cells (DCs) 
secrete HMGB1 in response to primary inflammatory signals. 
Anucleated platelets also contain and upon activation release 
substantial amount of HMGB1, either as a soluble moiety or 
associated with microparticles (5, 20, 27, 28). HMGB1 released 
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or expressed by activated platelets commits neutrophils to 
autophagy (20), promotes the redistribution of neutrophil gran-
ules (5), induces the Mac-1 transactivation (5), and elicits the 
NETs formation (20, 56, 57) (Figure 2).

Posttranslational modifications, such acetylation, phospho-
rylation, methylation, and oxidation/reduction (58–61), and 
the interaction with other bioactive molecules, including LPS 
or chemokines (62, 63), CXCL12 in particular (64, 65), all influ-
ence the function of extracellular HMGB1 (5, 58, 66). The redox 
status of the three cysteine residues of the molecule (C23, C45, 
and C106) apparently dictates the sequential events of leukocyte 
recruitment, activation, and resolution of inflammation (59). The 
characteristics of HMGB1 biology, including its association with 
various events important in the natural history of vasculitis, such 
as necrosis, granuloma formation, and leukocytes survival and 
activation, as well as its ability to regulate inflammation and tissue 
repair and remodeling, make the protein a candidate player in 
this family of diseases.

Acute vascular inflammation has a well-characterized 
homeostatic role. Defects in the program result in self-sustaining 
vascular inflammatory diseases, referred to as vasculitis. Indeed, 
an unrelenting inflammatory process mostly restricted to the ves-
sel wall characterizes large vessel vasculitis [Takayasu arteritis, 
giant-cell arteritis (GCA)] (3, 67). The productive interaction 
between activated adventitial DCs and T cells is an early and 
crucial event. The local production of T cells cytokines eventu-
ally results in IFNγ-mediated activation of macrophages and in 
the formation of giant cells at the intima-media junction. Giant 
cells and activated macrophages produce growth factors (such as 
vascular endothelial growth factor and platelet-derived growth 
factors), which sustain intimal hyperplasia and contribute to 
subsequent end organ ischemia (68). Circulating blood cells are 
also activated and might contribute to the clinical picture. For 
example, thrombocytosis is frequent in GCA patients (69, 70), 
and aspirin protects patients from cranial ischemic complications 
(1, 71–74). Aspirin-resistant events are, however, quite frequent, 
and platelet count does not identify patients at higher risk of 
severe ischemic events (74–76).

Blood cells of GCA patients express tissue factor, a key molecule 
in thrombin formation downstream activation of Factor VII, and 
display a greater fraction of platelets expressing P-selectin, which 
is associated with a procoagulant state (1, 77). Specific clinical 
features or the extent of biomarkers of systemic inflammation, 
which, however, may fail to reveal the extent of ongoing smolder-
ing vascular inflammation (78), do not apparently influence these 
features (3). Despite extensive investigations, markers reflecting 
not exclusively inflammation but the extent of the process taking 
place in the affected vessels have proved elusive, with the possible 
exception of the soluble pattern recognition receptor PTX3, which 
is produced in peripheral tissues in response to signals of injury 
by innate immune cells, such as DCs and macrophages (79, 80).

Dendritic cells and macrophages are a critical source of 
HMGB1, which shapes their functional polarization and migra-
tory properties (81–85). While PTX3 plasmatic levels seem to be 
associated with the entity of the disease (79, 86, 87), concentrations 
of HMGB1 in the blood are not an effective biomarker of large 
vessel vasculitis (88). Indeed, patients with Takayasu’s arteritis 

and GCA present similar serum HMGB1 levels compared with 
healthy controls and seem unrelated to disease activity (88).

However, it should be considered that several posttransla-
tion modifications influence the bioactivity of the molecule.  
Specifically environmental conditions, such as the redox status, 
influence HMGB1 inflammatory action, causing the shift from a 
moiety that mostly causes leukocyte recruitment or to a signal that 
elicits the secretion of inflammatory cytokines (53), see above.  
As such, the total concentrations of the molecule in the blood 
might not reflect the actual fraction of the bioactive molecule (5, 
53, 59). When potent inflammatory molecules are released in the 
environment, inhibitors are often physiologically generated, like it 
occurs for the primary inflammatory cytokines, TNFα and IL-1β. 
The identification of putative HMGB1 inhibitors requires further 
study. The development of analytical techniques to discriminate 
among the various forms of HMGB1 might allow to dissect the 
actual HMGB1 involvement in the various facets of vascular 
inflammation: effective repair of injured vessels, angiogenesis, 
persistent inflammation with extensive remodeling, aneurysm 
formation, development of atherosclerotic lesions, complications 
associated with their disruption, etc. (89).

Leukocytoclasia (i.e., the presence of of uncleared leukocyte 
debris within and around the vessel wall), small-vessel thrombo-
sis, necrosis, and hemorrhage in target organs (mainly the skin, 
the kidneys, and the airways) are hallmarks of small-vessel vas-
culitis. Immune complexes play a major role in eliciting vascular 
inflammation during some small-vessel vasculitis (IgA vasculitis 
or cryoglobulinemia, for example), and immunoglobulin and 
complement deposition at the site of vascular injury accompanies 
in these patients’ leukocytoclasia. In contrast, a “pauci-immune” 
inflammation, without local immunoglobulin or complement 
deposition, characterizes vasculitis syndromes associated with 
antineutrophil cytoplasmic antibodies (ANCA-associated vas-
culitis). Elevated levels of plasmatic HMGB1 have been found 
in patients with small-vessel vasculitis, including IgA vasculitis, 
Kawasaki’s disease, and ANCA-associated vasculitis (90–93). 
The concentration of plasmatic HMGB1 is elevated in the active 
phase of systemic vasculitis, and the concentration of HMGB1 
is higher in patients with granulomatosis with polyangiitis 
with a predominantly granulomatous disease (94). In contrast, 
conventional markers of inflammation or the validated disease 
activity score, BVAS, fail to discriminate between the two groups 
of patients (94). The result well fits the preferential expression of 
the HMGB1 in the granulomatous tissue (94) and suggests that 
systemic levels might actually reflect local in  situ production. 
HMGB1 levels are also been described to be higher in patients 
with active renal involvement, a threatening manifestation of the 
disease (90). Levels of HMGB1 are still elevated in patients with 
a quiescent nephritis, possibly indicating a persistent low-grade 
inflammation that persists in the subclinical phases of the disease 
(90). Urinary levels of HMGB1 represent a robust biomarker 
of active glomerulonephritis in patients with ANCA-associated 
vasculitis (42, 95). Actually, urinary HMGB1 might represent a 
more solid biomarker of kidney involvement in ANCA-associated 
vasculitis than serum HMGB1 (96).

The preferential involvement of HMGB1 in ANCA-associated 
vasculitis might be related to its ability to regulate the activation 
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FiGURe 4 | Peripheral granules distribution characterized neutrophils of patients with SSc. (A) The expression of MPO (green) in the blood neutrophils of 
patients with SSc and of matched controls has been analyzed by confocal microscopy before and after permeabilization of the plasma membrane, to allow the 
access of the mAb. MPO intracellular expression is substantially lower in SSc patients and appears to cluster at the plasma membrane of intact, non permeabilized 
neutrophils. (B,C) Representative images by electron microscopy of neutrophils from a healthy control, untreated or treated with HMGB1 (B) or of untreated 
neutrophils from four SSc patients (C) showing the extensive remodeling of intracellular granules, most of which acquire a pericellular distribution, characterizes SSc 
neutrophils and healthy neutrophils treated with HMGB1. Images originally published by Maugeri et al. (5).

5

Maugeri et al. Neutrophils and Platelets in Rheumatic Diseases

Frontiers in Immunology | www.frontiersin.org May 2016 | Volume 7 | Article 182

state and function of neutrophils, which are the key cells in the 
pathogenesis of these diseases. Of interest, HMGB1 could con-
tribute as inflammatory priming of neutrophils in circulation, 
inducing translocation of ANCA antigens at cell membrane, 
providing the substrate of antigen–antibody interactions (97).

The recognition of extracellular HMGB1 dramatically influ-
ences several characteristics of neutrophils, a key population 
in ANCA-associated small-vessel vasculitis. It induces a swift 
redistribution of intracellular vesicles, an event that might be 
associated with the ability to activate neutrophil autophagy (5) 
through the putative HMGB1 receptor, the receptor for advanced 
glycation endproducts (RAGE) (Figures 2 and 4).

The redistribution of the granule in response to primary 
inflammatory stimuli allows the exposure of ANCA antigens 
(namely, myeloperoxidase and proteinase 3) on the neutrophil 
plasma membrane, where they become accessible for interaction 
with the ANCA autoantibodies because of a preferential location 
at lipid rafts that also contain β2 integrins, signalling molecules, 
cross-linked Fcgamma receptors, and NADPH oxidase. ANCA, 
in turn, amplify the activation of the neutrophil, which is trans-
migrating, favouring a vigorous and untimely response, with 

oxidative burst and premature degranulation (97, 98). HMGB1 
might, thus, act on neutrophils favouring the exposure of ANCA 
antigens and facilitating the further neutrophil activation caused 
by the antigen recognition by ANCAs. Of importance, HMGB1 
has been recently shown to potentiate the NETs formation 
induced in the presence of ANCAs (99).

HMGB1 AND DiABeTiC vASCULOPATHY

High mobility group box 1 elevation appears as a relatively shared 
feature in patients with an inflammatory vascular involvement. 
This applies not only to other primary vasculitides (91, 100, 101) 
but also to other systemic diseases characterized by extensive 
inflammatory vessel involvement (102). Diabetes mellitus repre-
sents a privileged scenario for the study of the role in vascular 
inflammation of HMGB1 and of the RAGE receptor. The systemic 
HMGB1 concentration is consistently elevated in diabetic patients 
and in animal models of the disease (103, 104). HMGB1 might 
contribute to the accelerated atherosclerosis, which is a hallmark 
of diabetes mellitus (105–107). Hyperglycemia is an effective 
stimulus leading the release of HMGB1, which in turn might play 
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a role in the failure of tolerance in diabetes mellitus type 1 (108, 
109) and in the early rejection of transplanted islets (110, 111). 
Furthermore, glycated albumin is recognized by RAGE inducing 
the neutrophil activation and release of NETs (20).

HMGB1 AND SYSTeMiC SCLeROSiS

Systemic sclerosis is an immune-mediated multisystem disease, 
characterized by a diffuse obliterative microvasculopathy and by 
fibrosis of the skin and of visceral organs. The abnormal genera-
tion of ROS observed in patients with SSc contributes fostering 
autoimmunity, fibrosis, and vascular inflammation. Recently, 
the presence of an increased concentration of platelet-derived 
microparticles (PDμP) bearing HMGB1, P-selectin expressing 
platelets (5, 27), the redistribution of the content of primary 
granules, and the transactivation of β2 integrins leukocytes was 
observed in blood cells of SSc patients (Figure  4). P-selectin 
(purified or expressed on activated platelets) induces the ROS 
generation by neutrophils, which in turn cause the oxidation of 
the HMGB1 expressed by PDμP. Oxidation amplifies the ability 
of HMGB1-expressing PDμP to activate neutrophils, favoring 
the redistribution of molecules present in the neutrophil primary 
granules to the plasma membrane and the transactivation of β2 
integrins. Leukocyte activation caused by oxidized extracellular 
HMGB1 abates in the presence of inhibitors of HMGB1 or of cata-
lase, which catalyzes the dismutation of hydrogen peroxide into 
water and molecular oxygen. Neutrophils from healthy donors 
challenged with HMGB1-expressing PDμP purified from SSc 
patients, but not those purified from control subjects, reproduce 
the phenotype of neutrophils of SSc patients, whereas HMGB1 
inhibitors reverse the effects of microparticles (5, 27). These 
results suggest that HMGB1 might represent a crucial signal in the 
cross talk between platelets and leukocytes in SSs, thus sustaining 
microvascular inflammation. Its ability to promote epithelial and 
endothelial to mesechimal transition might further link vascular 
inflammation to the other prominent feature of SSc, fibrosis (112).

HMGB1: A PLAYeR iN ANGiOGeNeSiS 
AND THROMBOSiS

Platelet-derived HMGB1 appears as a crucial signal in the cross 
talk between platelets and leukocytes with potent and specific 
effects in the regulation of the ability of neutrophils to generate 
NETs and to activate the autophagic flux (20).

Neutrophil extracellular traps have a well-characterized role in 
thrombosis, and HMGB1 appears as a player in coronary thrombi 
formation in patients with acute myocardial infarction (20). A pri-
mary role of platelet-derived HMGB1 in thrombosis induction has 
been confirmed in an elegant genetic model relying on transgenic 
mice in which the molecule has been specifically ablated (56).

Mechanical or immune-mediated injury of vessels and 
ischemia/reperfusion cause HMGB1 release (113–117). HMGB1 
blockade substantially improves the clinical outcome in several 
such models, indicating that HMGB1 broadcasts news of ongo-
ing tissue injury and is involved in the ensuing inflammatory 
response. HMGB1 acts on virtually all cell populations involved 
in vascular inflammation. It is produced by injured endothelial 

cells and attracts endothelial cell precursors, which favor neovas-
cularization. HMGB1 overexpression activates a pro-angiogenic 
program in endothelial cells, mediated via the increased activity 
of matrix metalloproteinases, of intregrin receptors, and the 
activation of the NF-κB pathway (118).

Thus, HMGB1 might represent a crucial event to switch the 
homeostatic inflammatory response to acute vessel injury to self-
sustaining vasculitis (3). DCs play a critical role in the establish-
ment of small vessel vasculitis (85, 119–121) and in the vessel wall 
inflammation, which characterize large vessel vasculitis (122, 123). 
HMGB1 prompts its own autocrine/paracrine release, enforcing 
a vicious circle, which is further amplified by other cytokines 
known to elicit HMGB1 release, including IL-1β and TNF-α (55, 
82, 83). Finally, the ability of HMGB1 to prompt angiogenesis [see 
above and Ref. (124)] and to attract vessel-associated stem cells 
(125) might contribute to intimal hyperplasia/neo-angiogenesis, 
typical of vessel remodeling during large artery vasculitis.

The events that are implicated in this amplificatory loop 
associated are not completely characterized. For example, pericel-
lular myeloperoxidase distribution could directly implement the 
HMGB1/RAGE pathway (5), since the myeloperoxidase system 
of human neutrophils generates N″-(carboxymethyl) lysine, a 
highly reactive advanced glycated end product and RAGE–ligand, 
at sites of inflammation (126).

Thrombosis is a common and often underestimated compli-
cation of ANCA-associated vasculitis (127, 128). Thrombosis 
occurs as a clinically apparent event and can often in active 
lesions biopsies be identified at the microscopic levels (129). A 
study comparing platelet and neutrophil activation of patients 
with acute coronary syndromes and autoimmune diseases dem-
onstrated that the average of neutrophil myeloperoxidase content 
in patients with ANCA-associated vasculitis is similar to the one 
observed in patients with no segment T elevation myocardial 
infarction or unstable angina, while the fraction of neutrophil 
expressing the activated isoform of Mac-1 and platelets express-
ing P-selectin is similar to all acute coronary syndromes studied 
(26). Enhanced concentrations in the blood of markers of platelet 
activation, soluble P-selectin, and CD154 directly correlate with 
disease activity in large cohort of patients with granulomatosis 
with polyangiitis (130) [see also Ref. (26)]. P-selectin and CD154 
are both involved in the physical interaction and mutual activation 
of platelets and neutrophils. Their increased turnover in patients 
with ANCA-associated vasculitis might reflect the link between 
vascular damage and thrombosis (3). Disrupted endothelial lay-
ers recruit and activate platelets, with ensuing activation of the 
coagulation system cascade. Moreover, platelet P-selectin expres-
sion compensates for the lack of endothelial P-selectin, making 
neutrophil rolling and extravasation possible [discussed in Ref. 
(7, 131)]. Neutrophil activation implies the release of protease, 
which contribute to platelet P-selectin and CD154 cleavage, 
whose circulating levels consequently increase.

High mobility group box 1 acts as a prototypic agonist for a 
variety of innate receptors, including RAGE, TLR2, TLR4, TLR9, 
TREM1, and Mac-1. Via these receptors, HMGB1 in pathological 
conditions perturbs vessel integrity and contributes to maintain 
the vicious cycle by which the inflamed endothelium increases the 
adhesion and the transmigration of leukocytes, and leukocytes, in 
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TABLe 1 | Comparison of some features of vascular inflammation in 
sepsis and ANCA-associated small-vessel systemic vasculitis.

Sepsis vasculitis

Platelet count Frequently low Normal

Neutrophil count High Normal

Platelet activation Yes Yes

Neutrophil activation Yes Yes

Apoptotic neutrophils in 
circulation

Yes No

Endothelial activation Yes Yes

Plasma thrombomodulin 
level

Low Normal or high

HMGB1 High High

NETs High Not documented in all 
types of vasculitis
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turn, sustain the activation of endothelial cells, eventually leading 
to cell death and to the activation of programs that might sustain 
further vessel injury and thrombosis, such as the generation of 
NETs (132–134).

eNDOTHeLiAL ReSPONSe TO HMGB1

Endothelial cells express are exquisitely sensitive to extracel-
lular HMGB1. They express an array of HMGB1 receptors, 
which comprises RAGE, TLR2, TLR4, TREM1, proteoglycans, 
and thrombomodulin. The outcome of HMGB1 recognition 
by endothelial cells dramatically differs depending on which 
receptors are activated in the various conditions (135). A net 
activatory effects apparently ensues TLR2 or TLR4 activation, 
as assessed by the upregulation of adhesion molecules, by the 
production of cytokines, by the increased vascular permeability, 
by the activation of the coagulation system, resulting in certain 
conditions in microvascular thrombosis. HMGB1 not only per se 
activates endothelial cells (136, 137) but also behaves as a general 
adaptor of the ability of the endothelia to response to various 
sterile noxious signals. For example, uric acid recruits a com-
plex series of events, including the enhanced expression of the 
HMGB1-mRNA, the acetylation of HMGB1, its translocation to 
the cytoplasm, and eventual release. In turn, HMGB1 recogni-
tion activates a positive feedback loop causing further HMGB1 
expression and release (117).

The outcome of HMGB1 recognition by endothelial cells 
is finely regulated: this is expected, given the abundance of 
the molecule and the relatively easy access to the extracellular 
environment in case of cell activation or death. This might imply 
the recruitment of pathways that protect the host against the 
inflammatory action of endogenous components, in particular 
the CD24–Siglec pathway (138, 139) or the thrombomodulin-
dependent pathway. Thrombomodulin is an evolutionary 
conserved glycosylated type I transmembrane protein with 
multiple functional domains, which is expressed by endothelial 
cells, endowed with anticoagulant actions. The thrombomudu-
lin/thrombin complex activates protein C and in the presence 
of protein S interferes with factors VIIIa and Va and quenches 
thrombin generation (140). Thrombomulin ensures vessel 
homeostasis under stress and a rapid and localized inflammatory 
response to injury. Indeed, besides thrombin, thrombomodulin 
interacts via independent domains with various other molecules, 
including fibrinolysis inhibitors, complement components, and 
HMGB1. The interaction of HMGB1 with the lectin-like domain 
of thrombomodulin attenuates inflammation. This might be 
due to interactions with intermediary proteins that quench the 
endothelial cell activation (140, 141). Moreover, the binding to 
the lectin-like domain of thrombomodulin might limit HMGB1 
binding to RAGE, thus impairing NF-κB activation (141). 
Thrombomodulin also enhances thrombin-mediated proteolytic 
degradation of HMGB1, reducing its pro-inflammatory activity 
(142). Since HMGB1 has been linked to the pathogenesis and/or 
progression of a large range of clinical disorders characterized by 
endothelial dysfunction, including sepsis and autoimmune dis-
eases, the identification of thrombomodulin as a natural inhibitor 
of HMGB1 is of clinical importance (140, 142, 143) (Table 1).

During acute phases of vessel inflammation, thrombomod-
ulin expression on the endothelial surface decreases because 
of at least two mechanisms: (i) internalization by endocytosis 
(144) or (ii) cleavage by enzymes like neutrophil elastase 
or cathepsin G (145, 146). Indeed, high levels of plasma 
thrombomodulin charaterize patients with systemic vascu-
litis [e.g., see Ref. (147–149)]. Whether the soluble cleaved 
thrombomodulin maintains the ability to bind to HMGB1 and 
whether the complex retains biological activities remain to be  
established.

Several other mechanisms possibly contribute to quench 
the inflammatory and thrombogenic actions of HMGB1 in the 
blood. For example, the vagus nerve is a part of a reflex that 
prevents or neutralizes excessive inflammation in response to 
tissue injury and infection. Sepsis is a prototypical condition 
in which an early unrestrained production of cytokines initi-
ates a systemic response involving chemokines, amines, and 
activation of the complement and of the coagulatory systems 
eventually leading to disrupted vascular integrity, hypotension, 
and shock. HMGB1 is a recognized player in the late phases of 
sepsis. Pioneering studies have shown that stimulation of the 
vagus nerve or administration of cholinergic agents or selective 
agonists of the alpha7 nicotinic acetylcholine receptor abate 
HMGB1 systemic levels and improve animal survival in endo-
toxaemia or upon cecal ligation and puncture, a standardized 
model of septic peritonitis. Activation of the alpha7 nicotinic 
acetylcholine receptors represents a key event in the anti-
inflammatory reflex, since it could be responsible for NF-κB 
nuclear translocation inhibition and thus for the restoration 
of homeostasis via suppression of pro-inflammatory cytokines 
generation and release (150, 151).

Of importance, this homeostatic system is activated even 
in sterile conditions, limiting the tissue damaging actions 
of NF-κB activation and HMGB1 expression in response to 
heart or hepatic ischemia–reperfusion injury (152, 153). The 
involvement of this pathway in systemic vasculitis has not been 
studied extensively so far. However, the accumulating evidence 
on the role that HMGB1 plays in persisting vascular inflam-
mation (see above) and the possibility to pharmacologically 
exploit its anti-inflammatory actions (154) suggest that these 
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studies might underpin the development of novel and effective 
therapeutic strategies.

CONCLUDiNG ReMARKS

High mobility group box 1 is the best characterized alarmin, and its 
recognition plays a role that is more and more appreciated in sev-
eral apparently unrelated conditions, in which inflammation does 
not abate with the original noxa but per se causes  self-sustaining 
cell and tissue damage. Many factors contribute to make systemic 
vasculitis a particularly attractive scenario to dissect the complex 
biology of HMGB1. These include the characteristics of the 
 pathogenesis of vasculitis, which stem from a deregulated interac-
tion between leukocytes, endothelial cells, and vessel wall cells, 
and the increasing understanding of the mechanisms that physi-
ologically regulate the homeostatic response of vessels to injury. 
Increasing knowledge of the immunobiology of HMGB1 will form a  
foundation for novel targeted immune strategies aimed at specifi-
cally targeting the early events in the natural history of vasculitis.
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