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Whole body plethysmography (WBP) monitors respiratory rate and depth but
conventional analysis fails to capture the diversity of waveforms. Our first purpose was
to develop a waveform cluster analysis method for quantifying dynamic changes in
respiratory waveforms. WBP data, from adult Sprague-Dawley rats, were sorted into
time domains and principle component analysis was used for hierarchical clustering.
The clustering method effectively sorted waveforms into categories including sniffing,
tidal breaths of varying duration, and augmented breaths (sighs). We next used this
clustering method to quantify breathing after opioid (fentanyl) overdose and treatment
with ampakine CX1942, an allosteric modulator of AMPA receptors. Fentanyl caused
the expected decrease in breathing, but our cluster analysis revealed changes in
the temporal appearance of inspiratory efforts. Ampakine CX1942 treatment shifted
respiratory waveforms toward baseline values. We conclude that this method allows for
rapid assessment of breathing patterns across extended data recordings. Expanding
analyses to include larger portions of recorded WBP data may provide insight on how
breathing is affected by disease or therapy.

Keywords: whole body plethysmography, cluster, waveform, opioid, ampakine

INTRODUCTION

Whole body plethysmography (WBP) chambers enable collection of waveform data corresponding
to breathing as well as related behaviors such as sighing or sniffing. The WBP method is an
important tool in biomedical research, and is used extensively in preclinical studies of breathing
on unrestrained and non-anesthetized animals (van den Hoogen and Colpaert, 1986; Bavis et al.,
2011; Nicaise et al., 2013; Hill et al., 2020). In most WBP recording conditions, mammals do
not breathe with the metronomic patterns that typify breathing under anesthesia or in vitro.
Rather, the respiratory-related waveforms recorded using WBP in awake animals are dynamically
changing. Further additional factors such as posture (Freedman, 1979), airway resistance (Lofgren
et al., 2006), thoracic cavity stiffness, vagal feedback (Sammon and Bruce, 1991; Del Negro et al.,
2002), temperature, humidity, and body movement can affect respiratory airflow measured with
a WBP. Due to variability in WBP waveforms, large portions of the recording periods are usually
omitted from WBP waveform analysis in favor of arbitrarily defined periods of baseline or “stable
breathing.” Analysis of these periods are usually limited to assessment of inspiratory tidal volume
(VT) and respiratory rate.
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The first purpose of the current study was to develop a
principle component based algorithm for rapid quantification
of WBP waveforms across extended periods of data recording.
Our rationale was that the assessment of respiratory rate and
VT from specific segments of a data record does not extract all
relevant information from a prolonged recording of breathing.
Variations in the temporal appearance of respiratory waveforms
not detectable with standard analyses of rate and VT could
prove valuable when assessing respiratory control, particularly in
disease models. Several studies have suggested that reduction in
the variance of respiratory output (i.e., fewer degrees of freedom
in the respiratory system) can be a predictor of underlying
pathology and poor patient outcomes (Wysocki et al., 2006;
Papaioannou et al., 2010). The ability to produce a wide range
of respiratory-related behaviors is a signature of a healthy
respiratory neuromuscular system (Bruce, 1996; Papaioannou
et al., 2011). Another important consideration is that detailed
analysis of WBP recordings in their entirety (e.g., minutes to
hours) will remove potential bias that results from arbitrary
selection of small segments of recorded data. To enable rapid
evaluation of the temporal aspect of WBP-derived respiratory
waveforms we created an analysis algorithm using MATLAB.
Waveforms were first separated into four time domains then
clustered based on inner squared Euclidean distance, the number
of clusters was determined by adapting Youden’s index (Youden,
1950), to determine the point where less information is explained
with the addition of more clusters (Thorndike, 1953). Thus, each
waveform was assigned to a cluster, which allowed us to track
when and how often breaths in these clusters occurred.

The second purpose of our study was to use the new WBP
waveform analyses algorithm to evaluate breathing in adult
rats after opioid overdose and treatment with a rescue drug
known to stimulate breathing. Hypoventilation following opioid
overdose is a major medical problem and results in a high
number fatalities each year in the United States (Seth et al.,
2018) and around the world (Csete et al., 2016; Bedene et al.,
2020; Bird and Robertson, 2020; van Amsterdam et al., 2020).
Accordingly, preclinical studies of the mechanisms of opioid-
induced respiratory depression are receiving increased attention,
and WBP is a frequently used tool in this research (Yassen
et al., 2008; Chevillard et al., 2009; Ren et al., 2009; Baby et al.,
2018). Accordingly, methods which provide high throughput
analyses of WBP waveforms after opioid overdose could be of
widespread utility.

To reverse opioid-induced respiratory depression, we used
an ampakine (Lynch, 2006; Arai and Kessler, 2007) that can
augment α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor mediated neurotransmission. Glutamate-
mediated neurotransmission, acting via AMPA receptors, is
a primary driver of brainstem respiratory rhythm generation
and makes a substantial contribution to excitation of spinal
respiratory motor neurons (Chitravanshi and Sapru, 1996; Rana
et al., 2019a,b). Ampakines are class of drugs that alter AMPA
receptor channel kinetics (Lynch, 2006; Arai and Kessler, 2007),
and can generally be classified as type I (“high impact”) and
type II [“low impact”; reviewed in Arai and Kessler (2007)].
The drugs first described in the laboratories of Lynch and

Rogers (Palmer et al., 1997) are considered high impact based
on the observed effect on AMPA channel kinetics. Low impact
ampakines retain the ability to act as positive allosteric AMPA
receptor modulators, but the receptor kinetics have a shorter
decay time constant (Arai and Kessler, 2007). Prior work shows
that a low impact ampakine with relatively low water solubility,
CX717, can effectively stimulate breathing after opioid-induced
respiratory depression induced in rats (Ren et al., 2009) and
humans (Oertel et al., 2010). A recent study tested a water soluble
ampakine, CX1942, and found that it could stimulate breathing
in goats following an opioid overdose (Haw et al., 2016). Here
we tested the hypothesis that following opioid overdose in rats,
CX1942 could restore temporal breathing patterns, in a dose-
dependent fashion, toward baseline values. The newly developed
analyses algorithm afforded the opportunity to explore the
impact of CX1942 on WBP waveforms beyond the evaluation of
rate and amplitude that used in prior studies (Lu et al., 2006; Ren
et al., 2009; Joshi et al., 2019).

MATERIALS AND METHODS

Experimental Data Collection
Experiments conformed to the ARRIVE guidelines and the
regulations set forth by the Institutional Animal Care and Use
Committee at the University of Florida, which approved all
procedures. Animals were housed on a 12/12 light dark cycle,
lights on at 7 am. Male Sprague Dawley rats (n = 32; 371 ± 20 g)
were briefly sedated by exposure to 2.5% isoflurane in O2, and
up to two tail vein catheters were placed as dictated by the
experimental protocol. The catheters consisted of PE-10 tubing
connected to a Terumo Surflo injection plug. Catheters were
preloaded so that the dead space was filled with the necessary
drug (e.g., ampakine CX1942, fentanyl). Following tail catheter
placement, rats were returned to their cages and placed in an
E-collar and continuously monitored to ensure they did not
chew or scratch the catheter tubing. After 1 h, rectal temperature
(38.4 ± 0.6◦C) was measured and rats were placed in the
plethysmography chambers (Buxco PLY 4213 chamber, with
TRD5700 transducer amplified with a Max2275 strain gauge
amplifier). The plethysmography recordings were conducted
between 9 am and 3 pm. Sleep wake state was not assessed during
this study. The tail vein catheters were funneled through a hole in
the plethysmograph chamber that was then sealed. Thus, drugs
could be infused continuously while breathing was monitored.
Plethysmography data were recorded under normoxic conditions
(21% O2, balance N2) using a Buxco FinePointe system sampled
at 500 samples per second. The rats were not restrained during
these procedures and were free to move within the chamber.
Following an extended period of baseline breathing, fentanyl
was administered intravenously until tidal volume (VT) was
reduced to 50% of baseline values. Once tidal volume was reduced
to 50% of baseline values, either ampakine CX1942 or saline
vehicle (sham) were injected intravenously. Each experimental
group consisted of eight rats that received an infusion of either
saline or ampakine CX1942 at one of three doses: 3, 10, or
30 mg/kg. Fentanyl is a potent respiratory suppressant and the
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dose was titrated to suppress tidal volume to 50% of baseline
values. The fentanyl dose required to decrease VT by 50%
ranged from 60 to 240 mcg/kg (109 ± 51 mcg/kg). Fentanyl
dosing began at 60 mcg/kg, with the exception of two rats in
the intravenous 10 mg/kg ampakine CX1942 group that started
with 30 mcg/kg fentanyl. In those two cases, 30 mcg/kg was
insufficient to suppress ventilation and the dose was increased
to 60 mcg/kg after 12 min. The fentanyl dose was increased
to 120 mcg/kg (cumulative dose) in 20 rats (n = 2 in saline,
n = 8 in 3 mg/kg, n = 3 in the 10 mg/kg, n = 7 in the
30 mg/kg group). Further, three rats (one in each group except
the 10 mg/kg ampakine CX1942 group) required a 240 mcg/kg
cumulative dose to achieve a 50% reduction in ventilation.
Rectal temperature measured at the end of the experiment was
38.0 ± 0.9◦C which represented an average drop of 0.4◦C.
The small reduction in body temperature observed here was
anticipated as opioids are known to cause a sedative effect and
reduce body temperature (Geller et al., 1983). Ampakine CX1942
treatment did not impact body temperature and thus the drop
was similar across all groups as evaluated using two-way repeated
measures analyses of variance (ANOVA): treatment (saline, 3, 10,
and 30 mg/kg CX1942; p = 0.244); time (pre/post; p = 0.009);
treatment × time interaction (p = 0.573). The equations used
for calculating tidal volume in whole body plethysmography
incorporate body temperature to correct for these changes
(Drorbaugh and Fenn, 1955).

Data Analysis and Waveform Processing
MATLAB code was written to detect distinct waveforms as
discussed throughout the “Results” section. Detailed signal
processing information is included here. The MATLAB code is
freely available upon request. The flow waveforms (Figure 1A)
were processed with a 2nd order butterworth 15 Hz lowpass
filter and then downsampled to 90 samples per second. Within
the continuous data record, individual waveforms were first
identified via a threshold crossing method. Specifically, a
threshold value of 0.3 ml/s (Figure 1B, blue line) was used to
avoid detecting noise fluctuations around zero, evidenced in the
inset of Figure 1B. Inspiratory epochs were then shifted to the
preceding zero-crossing (Figure 1B, pink dots) to mark the true
beginning of inspiration. To be certain that the onset of the
inspiratory effort was captured, the breath detection window
was shifted back 20% of the calculated breath length (max of
100 ms, Figure 1C). A matrix consisting of all waveforms, from
all animals was then compiled (Supplementary Figure 1A).
Waveforms were then grouped into four time domains (0–0.2,
0.2–0.5, 0.5–1.2, and 1.2–4 s, Figure 1D and Supplementary
Figure 1B). Assignment to a particular time domain was
based duration of the waveform, defined as the period from
the onset of inspiration to the subsequent inspiration. The
four time domains encompassed respiratory-related behaviors
including sniffing, tidal breathing, and augmented breaths.
The characteristics of augmented breaths (also referred to
as sighs) has previously been discussed in detail (Cherniack
et al., 1981; Golder et al., 2005). Short duration waveforms
were classified as sniffing when the total cycle duration was
below 0.2 s in duration. This is in line with previous work
showing that sniffing to sample odors occurs at cycle durations

between 100 and 250 ms (Kepecs et al., 2007; Wesson et al.,
2009). The length of each waveform varied slightly within
each time domains, and to enable the subsequent principle
component analysis (PCA) it was necessary to “pad” zeros to
the end of each waveform to ensure that the same number
of samples were used. Within each time domain a matrix
consisting of the flow rate at each sample for all waveforms
was compiled and then analyzed using the PCA function in
MATLAB (Supplementary Figure 1C). PCA is a well-established
mathematical procedure that reduces data set dimensionality;
details of the underlying mathematics are well established
(Krzanowski, 2000; Jolliffe, 2002; Jackson, 2003; Seber, 2004). In
brief, PCA analysis produces an Eigenvector for each column
within the dataset and a value for how much variance is explained
by each Eigenvector. We calculated how many Eigenvectors were
required to explain more than 90% of the variance in the data.
This was done by cumulatively summing the variance explained
by each Eigenvector starting with the first and continuing until
the variance explained was greater than 90%. A hierarchical
cluster tree was then constructed from these Eigenvectors. This
MATLAB linkage function utilizes a “bottom-up” approach in
which each waveform is initially assigned to its own independent
cluster. In turn, that cluster is then associated with the next
waveform that is determined to be most similar by determining
the shortest pairwise distance between each waveform. The
method allows the cluster tree (Figure 1E) to be segmented into
nodes with values that range from a low of 1 and up to the number
of waveforms in the sample.

There was no a priori way of determining the number of
nodes within each time domain, we set the number of clusters
within each of the four time domains using the principle
of Youden’s index for receiver operating characteristic (ROC)
analysis (Thorndike, 1953). If the distance between clusters is
plotted relative to number of clusters in the space, an “elbow” is
often apparent in the data plot. This occurs because the average
cluster distances decrease as more clusters are added to the space,
and is taken to indicate that correct number of clusters in the
space has been identified (Thorndike, 1953; Noto et al., 2018). In
our dataset we identified 4, 4, 7, and 6 clusters, respectively, to the
0–2, 0.2–0.5, 0.5–1.2, and 1.2–4 s time domains. To establish the
final cluster assignments of each waveform, we used the MATLAB
dendrogram function (Espinoza et al., 2012). The dendrogram
function illustrates the relationship between each set of clusters
as shown in Figure 1E, the height in the cluster tree represents
the distance between each cluster. This procedure also creates
a plot to show the similarity of waveforms both within and
between clusters. The dendrogram function also assigns a node
(cluster) number to each row of the corresponding input; this
was used as the final cluster number. Each waveform in the
original matrix, consisting of all identified waveforms from all
animals, was then assigned a cluster number (Supplementary
Figure 1D). This allowed us to annotate flow traces, generate
raster plots, and calculate the prevalence of each cluster number
across experimental timeline and between groups.

Respiratory rate and VT was calculated over the final 5 min of
each period. The respiratory rate was determined by counting the
number of breaths detected within the 5 min period and dividing
by the duration in minutes, note; in one animal the rescue period
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FIGURE 1 | Method for breath detection and respiratory waveform clustering. (A) Example plethysmography flow trace. (B) Inspiratory efforts were detected with a
threshold of 0.1 ml/s to avoid accidental noise detections, the starting point of each breath was then set to the previous zero-crossing and ended at the start of the
next breath. (C) Breath detection windows were shifted back in time 20% of the breath length (max of 100 ms) to capture the entire inspiratory effort. Two windows
are shown at their original position (dashed box) and final position (solid line). Positive values indicate inspiratory activity. Breaths were separated into four time
domains to allow for cluster sorting; these time domains correspond to distinct respiratory behaviors. (D) Example waveforms from several animals for each of the
four time domains (sniffing, short tidal, long tidal, and very long breaths). (E) Cluster methodology. Long duration (1.2–4 s) breaths are used as an example to
illustrate clustering method. The relationship between cluster number and variance is plotted to show how we determined the number of clusters within each time
domain. A 30 cluster hierarchical linkage tree with the six cluster cut-off is shown to illustrate the variance between the clusters (height of line connecting the six
clusters), and variance within clusters (height of lines in color coded subtree). Every breath with the prolonged breath duration is plotted in principle component (PC)
space the amount of variance explained by the eigenvector is noted in the 3D PC space in the axis labels, the colors of the breath scatter points matches their
assigned cluster. (F) Average waveforms for the 21 clusters, the average waveform length is equal to the mean + 1 standard deviation (SD) of the lengths of all
waveforms within that cluster.
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was less than 5 min. The breath snippets, which consist of flow
waveforms were integrated to covert the flow into volume. An
average VT was then calculated for the 5 min period. Minute
ventilation was calculated as the product of the respiratory rate
and tidal volumes.

All statistical tests were performed in MATLAB 2019a, and the
specific test is noted in the results and/or figure legends. Data
from all 32 animals was pooled for in comparisons that assessed
the impact of fentanyl compared to baseline as the rescue drug
had not been administered, in figures showing the impact of the
rescue drug data is stratified by treatment group. Data in text and
figures are presented as mean and standard deviation.

RESULTS

Principle Component Analysis Allows for
Rapid Classification of Respiratory
Waveforms
Figure 1A shows an example of airflow traces recorded using
WBP. Note the highly varied waveforms, which include tidal
breathing, sniffing, and an augmented breath (i.e., a sigh) (Li
et al., 2016). Example waveforms from several animals and
multiple time points illustrate the variability within each time
domain (Figure 1D). These time domains encompassed sniffing
(0–0.2 s), short (0.2–0.5 s), and long (0.5–1.2 s) tidal breaths
and extended waveforms (1.2–4 s) which typically included
a prolonged expiratory duration (TE). The total number of
waveforms sampled across the four time domains was 127,602,
67,584, 125,232, and 12,727, respectively.

The hierarchical linkage tree and PCA space within the
1.2–4 s time domain shows six distinct clusters (Figures 1Eii,Eiii).
Similarly, there were determined to be four clusters in the
0–0.2 s time domain, four clusters in the 0.2–0.5 s time domain,
seven clusters in the 0.5–1.2 s time domain. The average of
all the waveforms within each cluster are plotted in Figure 1F.
Importantly, there were no waveforms within a cluster that were
observed only in an individual animal, rather clusters generalized
across all animals. This confirms that the clustering paradigm was
not simply attributing breaths from an animal to its own cluster.

Each of the waveform shapes shown in Figure 1F
were empirically determined to be different based on the
aforementioned analysis, but some clusters likely represent
subtle variants of the same overt behavior. For example, clusters
1–3 in the shortest time domain represent slight variations
on presumed sniffing-related waveform; however, cluster 4
is distinct and may represent artifactual threshold crossings.
Clusters in the middle two time domains (0.2–0.5 and 0.5–1.2 s)
consisted of variations on the typical inspiratory tidal breath. In
particular certain clusters (e.g., 12 and 13) have a brief period of
negative flow prior to inspiration which is absent in other clusters
(e.g., 10 and 15). Figure 1C shows the impact of implementing
the sliding window for purposes of better capturing the entire
respiratory waveform. The dashed line in Figure 1C indicates the
initially detected threshold crossing. The second breath in the
example (highlighted by the blue box) illustrates how a period

of negative flow (downward deflection) was captured when the
evaluation window was slid back. Within the clusters of the
longest duration waveforms (i.e., 1.2–4 s), the classic augmented
breath was evident from the two-phase inspiration followed by
apnea seen in cluster 19 (Figure 1F). This time domain also
contained what appear to be eupneic tidal breaths followed by
spontaneous apneas (e.g., clusters 20 and 21).

Fentanyl Infusion Alters Respiratory
Behaviors and Cluster Prevalence
To assess the impact of opioids on the temporal appearance
of WBP waveforms we recorded breathing during baseline
conditions and following fentanyl infusion via the tail vein in
unanesthetized rats (Figure 2). Overall, 333,145 breaths were
processed across 32 rats from >50 h of WBP recordings, which
encompassed the entire experimental timeline.

Each breath was assigned to one of the twenty-one clusters
identified in Figure 1 (see section “Data Analysis and Waveform
Processing” for details). Clustering the waveforms allowed for
automated annotation of the airflow trace throughout the
experiment. This is indicated by the classification of waveforms
as “sniffing,” “tidal breaths,” etc., in Figure 3A. The prevalence
of each cluster was then evaluated within sequential windows
consisting of 20 consecutive waveforms. The time period for each
window was annotated if the majority (>51%) of waveforms met
one of the inclusion criteria defined subsequently. To determine
which tidal breaths were common during quiet or “eupneic”
breathing, we calculated the prevalence of the tidal clusters
(clusters 5–15) (i.e., durations of 0.2–1.2 s), during the baseline
recording period across all animals. The clusters that occurred
above average are shown in Supplementary Figure 2. Clusters
4, 6, 11, 12, and 14 were most commonly observed and were
therefore marked as “common tidal breaths.” Any 20-breath
window with a majority of breaths occurring from clusters 7, 8,
9, 10, 13, or 15 were marked as “uncommon tidal breaths.” If
the majority of breaths within any 20-breath window did not fit
these criteria (i.e., contained a mix of different behaviors), that
time period was not annotated.

Figure 3 illustrates how assigning the breath waveforms to
clusters allows flow traces to be annotated based on commonality
in breath patterning, rather than simple metrics like VT and
rate. To evaluate the impact of fentanyl, tidal breaths were
assessed in two categories; those that were common during the
baseline period, and those that were uncommon at baseline.
The incidence of the common tidal breaths was considerably
lower during the fentanyl period (p < 0.0001, Figure 3B) and
the prevalence of the uncommon tidal breaths increased during
the fentanyl period (p < 0.0001, Figure 3C). The prevalence of
short duration waveforms, presumably representative of sniffing
activity (clusters 1–3) was also reduced following fentanyl
injection (Figure 3D).

Augmented breaths (belonging to cluster 19) are annotated
with an asterisk in the example traces shown in Figure 3A. The
shape (Figure 3E) and prevalence (Figure 3F) of these augmented
breaths were compared during the baseline and fentanyl periods.
Fentanyl injection had no impact on the temporal appearance
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FIGURE 2 | Experimental protocol and example plethysmography traces during baseline and fentanyl periods. (A) Experimental timeline, rats were lightly
anesthetized with isoflurane to place an i.v. port in the tail vein, then rats were placed in whole body flow through plethysmography chamber (21% O2 balance N2),
after a 32 ± 7 min (mean ± SD) baseline period fentanyl was infused until minute ventilation dropped to 50% of baseline levels. A rescue dose (3, 10, or 30 mg/kg) of
ampakine CX1942 or control (saline) was then injected. (B) Example flow traces showing the baseline and fentanyl period from three rats. Under baseline conditions,
the varied nature of rat respiration produced waveforms indicative of switching between multiple behaviors (e.g., quiet breathing and sniffing). However, injection of
fentanyl caused respiratory waveforms to exhibit less variation and decrease in amplitude. (C) Expanded traces from panel (B).

of the augmented breath waveform, however, the prevalence
of augmented breaths was considerably reduced (p < 0.0002
Figure 3F). The other waveform clusters within the 1.2–4 s
time domain all contained prolonged periods of no airflow (i.e.,
spontaneous apneas). The prevalence of these waveforms was
increased after fentanyl injection (p < 0.0002), but the average
breath length (TTOT) did not change (p > 0.14, Figure 3G).

Impact of Ampakine CX1942 on
Breathing After Opioid Overdose
Breathing was initially assessed using the traditional analyses
of inspiratory VT and respiratory rate (Figure 4). This
approach confirmed that there was no difference between
the four experimental groups at baseline (Supplementary
Table 1). Fentanyl infusion caused the expected reduction of the
respiratory rate (Ren et al., 2009) and none of the CX1942 doses
corrected this (Figure 4A). Fentanyl also caused a reduction
in VT. Figure 4B shows that all three of the CX1942 doses
produced a tendency for greater VT after opioid overdose, and
in the high dose group (30 mg/kg), VT values were restored

to the pre-fentanyl baseline. The overall minute ventilation was
depressed by fentanyl, but was not restored to baseline values by
any of the three CX1942 doses (Figure 4C).

We next examined the breathing patterns in greater detail
using the cluster methods outlined in Figure 1. Raster plots
were created to illustrate the breath by breath patterning across
the entire experimental paradigm for all animals as shown in
Figure 5A. The coloring of the raster plots corresponds to the
waveform colors that are shown Figure 1F. Prior to fentanyl
injection, during the baseline recording period, considerable
variability in the breathing patterns can be observed. Thus, all rats
showed baseline breathing waveforms corresponding to multiple
clusters, and frequently transitioned between breaths belonging
to different clusters. After infusion of fentanyl, however, there
was a rapid transition, in all rats, to breaths which fell primarily
into cluster 15 (Figures 2C, 5A, green). Reliance on this pattern
continued throughout the entire recording session in seven of
nine control animals that received the saline (i.e., sham) injection
after fentanyl-induced hypoventilation. In contrast, when rats
were treated with ampakine CX1942 the breathing pattern was
no longer dominated by cluster 15. This can be appreciated by
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FIGURE 3 | Clustering allows for behavioral annotation and quantification. (A) Example plethysmography traces from the baseline and fentanyl periods of the same
animal. 20-breath bins are annotated to indicate sniffing (blue), common tidal breathing (green), uncommon tidal breathing (red), and augmented breaths (*cluster
19). Epochs were only marked if the majority of breaths met the inclusion criteria (the majority of waveforms belonging to a specific set of clusters, see text). (B,C)
Percentage of breaths belonging to clusters 5–15 that represent breaths that have lengths associated with tidal breathing. (B) Breaths that had waveforms common
at BL (clusters 5, 6, 11, 12, and 14) decreased following fentanyl infusion and (C) breaths with waveforms uncommon at baseline increased during fentanyl infusion.
(D) Percentage of breaths belonging to clusters 1–3 (sniffing behavior) during the baseline and fentanyl periods. (E) Pile plot of all breaths classified as belonging to
cluster 19 during baseline and fentanyl infusion. (F) Percentage of breaths during baseline (BL) and fentanyl infusion (F) which were classified as cluster 19. Cluster
19 breaths were completely absent during the last 3rd of the fentanyl infusion period (i.e., by the time the rat’s minute ventilation dropped to 50% of baseline there
were no augmented breaths). (G) Prevalence, and duration (TTOT) of breaths with prolonged expiratory duration (TE), but not the characteristic shape of an
augmented breath; during the baseline (BL) and fentanyl (F) periods. n = 32 animals (all animals in study pooled together). All comparisons were made using a paired
sample two-tailed t-test.

the abrupt shift from green raster lines to pink, purple, and
light blue as shown in Figure 5A. This happened across all
three doses tested.

Figures 5B–D provides a summary of how the waveform
clusters changed after fentanyl and then ampakine CX1942
treatment. Fentanyl infusion very clearly reduces the variance
observed during baseline, with only four clusters occurring more

than 5% of the time. Clusters 4, 10, and 15, in particular,
dominate the breathing after fentanyl (Figure 5C). Saline
administration had little impact on the prevalence of these
clusters as shown in Figure 5D (left panel). Following ampakine
CX1942 treatment, the occurrence of clusters 4 and 10 are
reduced in a dose-dependent manner. In addition, the occurrence
of clusters 14 and 20 are increased. Thus, ampakine CX1942

Frontiers in Physiology | www.frontiersin.org 7 August 2021 | Volume 12 | Article 690265

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-690265 August 16, 2021 Time: 13:55 # 8

Sunshine and Fuller Automated Classification of WBP Waveforms

FIGURE 4 | Traditional ventilation metrics. (A) Respiratory rate (RR), (B) Tidal
volume (VT), and (C) Minute ventilation (VE) expressed as a percentage of
baseline. Two-way ANOVA. Post hoc comparisons (Tukey–Kramer) are shown
(*p < 0.05) if the interaction p < 0.05; further only the comparisons within a
time point across groups, or within a group but across time points are shown.
n = 8 animals/treatment group; 32 animals stratified by treatment condition.

dramatically altered breathing after opioid overdose, but not
always in a manner that could be detected with the analyses
shown in Figure 4.

Since the high CX1942 dose (30 mg/kg) caused an increase
in VT, we next assessed which clusters were most impacted
by CX1942 in this group. Within the 30 mg/kg dose, six
clusters were identified which had a >5% change in prevalence
between the fentanyl and the CX1942 rescue periods. There
were three clusters with reduced prevalence (clusters 4, 10, and
15), and three clusters (clusters 8, 14, and 20) with increased
prevalence. Figure 6A demonstrates that clusters 4, 10, and
15 were nearly absent during baseline in both the sham and
high dose CX1942 groups (<5% of breaths). Fentanyl infusion
increased the prevalence of these clusters in both groups,
indicating that breaths with these waveforms are phenotypical
of opioid-induced respiratory depression. During the CX1942
rescue period, the animals in the control group maintained a

prevalence of 18.2 ± 10.3% for cluster 15, while the animals in
the ampakine CX1942 group only had a prevalence of 4.5 ± 2.5%
(Figure 6B). For cluster 14, the prevalence during baseline was
7.6 ± 5.9% and 10 ± 8.9% for control and high dose groups,
respectively, and these values were reduced to 4.6 ± 2.6% and
2.3 ± 2.9% during fentanyl injection. During the CX1942 rescue
period, the prevalence of cluster 14 was further reduced in the
saline treated group, but increased to 17.1 ± 6.3% in the high
dose CX1942 group. Ampakine CX1942 injection also led the
presence of a waveform cluster (cluster 20), which was rarely
present at earlier time points (Figure 5D). Overall, ampakine
CX1942 appears to restore aspects of normal ventilation (e.g.,
increased presence of cluster 14 and reduction of cluster 15).
One interesting result in regards to ampakine CX1942 dose is
that the low and mid-doses reduced the prevalence of cluster
15, whereas the high dose brought the prevalence of cluster 15
toward baseline.

The prevalence of six clusters identified to be impacted by
high-dose ampakine CX1942 did not differ between the low
(3 mg/kg) and mid-dose (10 mg/kg) groups at any time point
(Supplementary Figure 3). However, both doses of ampakine
CX1942 reduced the prevalence of cluster 15, 22–24% during
fentanyl to 11–14% during rescue. There was an effect of time
in five of the six clusters, with fentanyl increasing the cluster
prevalence for clusters 4, 10, and 15 which were the clusters
whose prevalence was reduced by high-dose ampakine CX1942
(Supplementary Figure 3). There was only a modest effect within
the three clusters reduce by high-dose ampakine CX1942 with
both the low and mid-dose increasing the prevalence of cluster
20 which was nearly absent in the time periods without ampakine
CX1942 (Supplementary Figure 3).

DISCUSSION

Whole body plethysmography is a widely used method for
monitoring respiratory rate and depth in preclinical studies of
neuromuscular disease and/or respiratory motor control. Here
we report waveform cluster analysis method that embraces the
variability of WBP data and provides for evaluation of temporal
changes in respiratory waveforms. The method effectively sorted
WBP waveforms into categories including sniffing, tidal breaths
of varying duration, and augmented breaths. By evaluating the
entirety of a data record, versus picking an arbitrary period,
the method enables assessment of how breathing is happening
throughout an experimental paradigm. The waveform cluster
analysis method also detected variations in the appearance of
respiratory waveforms after opioid overdose and therapeutic
intervention that were not evident from analyses of rate and/or
amplitude measures.

The WBP Method and Associated
Respiratory Waveforms
The WBP method gained traction in respiratory research after the
seminal report from Drorbaugh and Fenn (1955), and has been
comprehensively reviewed previously (Enhorning et al., 1998;
Mortola and Frappell, 1998). The waveforms that are recorded
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FIGURE 5 | Cluster prevalence throughout experimental protocol stratified by rescue condition. (A) Peri-event raster plot, aligned to the rescue injection. Each line in
the raster plot represents a single animal in each experimental condition. Rasters mark the beginning of inspiration for each breath; raster colors match cluster colors
from Figure 1. The beginning of the fentanyl infusion is marked with an asterisk (*). Two animals excluded from plot due to prolonged fentanyl infusion period. The
proportion of each cluster during the (B) baseline (n = 32, all animals in study pooled together), (C) fentanyl (n = 32, all animals in study pooled together), (D) rescue
periods (n = 8 animals/treatment group). The average waveform and cluster number is plotted next to the pie segment if the cluster prevalence was greater than 5%.

during WBP have limited value in regards to understanding
lung mechanics, but can provide insight into the control of
breathing and can provide reasonable estimates of respiratory
volumes (Bates and Irvin, 2003). The pressure signal recorded

during WBP results from a combination of: (1) gas compression
and rarefaction, and (2) heating and humidification (Lundblad
et al., 2002). The WBP signal is also impacted by upper and
lower airway resistance as well as the rate of pressure changes.
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FIGURE 6 | Prevalence of respiratory waveform clusters that were strongly affected by ampakine CX1942 injection. Comparison of the prevalence of clusters that
were either (A) reduced (n = 8/treatment group) or (B) increased (n = 8/treatment group) by ampakine CX1942; between the control (saline) and high dose
(30 mg/kg) ampakine groups. These six clusters were identified within the high dose (30 mg/kg) ampakine group as being affected by ampakine (see text). All
comparisons were 2-way ANOVAs with Tukey–Kramer post hoc tests to control for multiple comparisons (*p < 0.05) were run if the interaction p < 0.05; if there was
a significant (p < 0.05) main effect of time (BL, Fent, Rescue), a ‡ or a # indicates a significant (p < 0.05) pairwise comparison between baseline (BL) or fentanyl
(Fent), respectively.

The aforementioned variables contribute to the variability of
the recorded WBP signal. Further, factors such as body weight
and temperature (Mortola and Frappell, 1998) can affect the
recorded waveforms, and these variables need to be considered
when comparing the waveform patterns. The central thesis of
the current work is that the diversity of respiratory waveforms
recorded during WBP creates a need, and an opportunity, for
comprehensive evaluation of the all of the recorded signals.

The difference between body temperature and chamber
temperature may be a confounding factor in the present study.
Prior work establishes that the amplitude of the WBP signal
decreases as body temperature approaches chamber temperature
(Malan, 1973; Mortola and Frappell, 1998). In our experiments
we observed a slight drop in body temperature (−0.4◦C) over
the entire recording period that was similar in all animals.
The effect that these small changes in body temperature will
have on the shape of waveforms is unknown, and could impact
the interpretation of the effects of fentanyl and ampakines.
However, the temperature drop was similar in all of the
experimental groups, and we suggest it is unlikely playing a
significant role in the between group comparisons during the
ampakine rescue period.

Analyses Approaches to Respiratory
Waveforms
The physiology literature has a rich history of respiratory
waveform evaluation. Review of early work shows kymograph

recordings of thoracic pressures and/or movements used to
measure the rate and estimate the depth of breathing (Porter,
1895). Caughey (1943) expanded this slightly, concluding that
analysis of breathing patterns, and not exclusively rate and
volume, could help understand pathophysiology. However, most
evaluations of respiratory waveforms, even over recent decades,
have continued to focus on amplitude/volume and rate since
these parameters provide a fundamental description of how
breathing is occurring. Exceptions include WBP waveforms that
have been processed to detect apneic events (Matrot et al.,
2005) or breath to breath variability (Ermer et al., 2020). For
example, breathing waveforms in humans with opioid overdose
were analyzed with Poincaré plots, and a machine learning
algorithm (Ermer et al., 2020). The authors concluded that
the algorithm could identify “ataxic” breathing patterns as well
as human experts. Tobin et al. (1988) were among the first
to evaluate variability of respiratory waveforms in humans.
They evaluated the coefficient of variation, and concluded that
tidal volume shows greater breath-to-breath variability than
rate in the spontaneously breathing human (Tobin et al.,
1988). Work summarized in a review by Benchetrit (2000)
suggests that humans may have unique breathing patterns
that persist over time and assessment of these patterns could
be used to identify individuals (Proctor and Hardy, 1949).
This interesting possibility was not directly addressed in our
experiments. However, in our data there were different patterns
over time and between animals. This is evidenced in the
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raster plots, which show how the animals produced respiratory
waveforms associated with different clusters throughout the
experimental protocol. Specifically, during baseline breathing
most animals would switch between periods that consisted
largely of waveforms associated with clusters 1–3, 5, and
6, and then periods dominated by clusters 11, 12, and 14.
However, the exact pattern (e.g., duration utilizing a set of
cluster, or clusters utilized during transitions) varied between
animals. These breath to breath or cluster to cluster variations
produced patterns over time utilizing waveforms from the
same set of 21 clusters. Further, signal processing techniques
and cluster analyses have also been used identify respiratory
impairments that are not captured by reduction in VT (Garde
et al., 2007, 2011, 2017; Aydore et al., 2009). For example,
Garde et al. (2017) used characteristics of the respiratory flow
cycle to detect periodic breathing in congestive heart failure
(CHF) patients. A sliding 30 s window was used to create a
template of a representative respiratory cycle. Parameters such
as inspiratory and expiratory duration and waveform slopes were
then determined from the template. This work demonstrated that
analysis of the respiratory flow cycle “morphology” could provide
clinically relevant information about CHF patients (Garde et al.,
2017). The current study builds upon the foundation of prior
work with evaluation of respiratory waveforms, in particular
aforementioned work by Garde et al. (2011). Perhaps the most
novel aspect of the current work is that we used the entirety of the
recorded data set to build respiratory waveform templates. When
applied across multiple experiments, this produced a sample
of more than 300,000 respiratory waveforms for evaluation
using principle component analyses. Further, we were able to
visualize and categorize an entire data set (e.g., raster plots
in Figure 5). This enables automated annotation of breath
types and comprehensive evaluation of breathing across time.
This approach to evaluation of plethysmography data does not
use pre-selected components of the respiratory waveform or
selective identification of arbitrary “baseline” periods. Further,
the method was able to identify waveforms that may be artifacts
(e.g., clusters 4 and 17). Within the current data set, we had
no method to definitively confirm if these waveforms were
related to breathing, or were truly an artifact. However, the
low amplitude and short duration indicates that they may be
artifact. On the other hand, the prevalence of cluster 4 increased
during the fentanyl administration when the animals were less
mobile and semi-sedated. While we could not confirm the
source of these particular waveforms, the salient point is that
the analysis method is sensitive enough to stratify the data and
could allow for removing of artifacts from data records to enable
more accurate calculations of tidal volume, rate, and minute
ventilation. Importantly, our method of assessing respiratory
waveforms can be adapted to produce a specific number of
clusters depending on the question of interest (i.e., the number
of clusters can be expanded such that a particular behavior
known to exist within a disease model is evident in the cluster
waveform averages). In fact there is not a consensus on how to
identify the number of clusters within a dataset, the number of
clusters will vary based on field of study and research question
(Thorndike, 1953).

One potential limitation of applying the waveform cluster
analysis method across data sets is the sensitivity to the amplitude
of the respiratory waveforms. Specifically, the amplitude can
drive assignment of waveforms to different clusters. While this
is appropriate within a given data set, it could cause problems
when comparing different data sets. However, if WBP recording
chambers are appropriately calibrated, clustering should be
accurate across datasets from different systems or laboratories.
Further, laboratories can maintain a training set of waveforms
from prior experiments, this training set can be used to fit
new data within a framework of established clusters in order to
compare newly collected data to older experiments.

Opioids and Ampakine Rescue
Opioids act on mu-opioid receptors throughout the brainstem
in areas that control respiration (Mansour et al., 1994; Pattinson,
2008). It is well established that activation of mu-opioid receptors
can lead to severe respiratory depression (Downes et al., 1967;
Dahan et al., 2010), and this is the leading cause of death in
the ongoing opioid public health crisis (Dahan et al., 2010;
Bedene et al., 2020; Bird and Robertson, 2020). Additionally, mu-
opioid receptor mRNA is present throughout the spinal cord,
primarily in the dorsal horns (Mansour et al., 1994; Peckys
and Landwehrmeyer, 1999; Schnell and Wessendorf, 2008), and
has been observed in the spinal ventral horn (Peckys and
Landwehrmeyer, 1999) and spinal motor neurons (Mansour
et al., 1994). These could provide additional sites of action to
suppress respiration, but it is unknown if spinal respiratory
neurons express mu-opioid receptors.

Here we used the new waveform cluster analysis method to
explore the impact of ampakine CX1942 on breathing after opioid
induced respiratory depression. Ampakines are class of drugs
that alter AMPA receptor channel kinetics (Lynch, 2006; Arai
and Kessler, 2007) and can act as respiratory stimulants as well
as enhancing expression of respiratory neuroplasticity (Wollman
et al., 2020). The low impact ampakine CX717 can attenuate
opioid induced respiratory depression in rodents (Ren et al.,
2009) as well as humans (Oertel et al., 2010). However, CX717
has relatively limited solubility and requires a solvent such as
2-hydroxypropyl-β-cyclodextrin (HPCD) to go into solution. In
contrast, ampakine CX1942 is soluble in water, which makes
it a more attractive candidate for potential clinical use. Prior
work showed that CX1942 (20 mg/kg) can effectively prevent
hypoxemia in opioid (etorphine, 0.1 mg/kg) overdosed goats
(Haw et al., 2016). Evaluation of the data in that study shows
that CX1942 treatment was associated with a relatively large
increase in VT [baseline value: 0.28 ± 0.07 (SD) L, 15 min
post-treatment: 0.57 ± 0.16 L] with relatively little impact on
respiratory rate (Haw et al., 2016). Our data are consistent with
the finding, since CX1942 at the highest dose (30 mg/kg) resulted
in an increase in the volume of inspiratory efforts (Figure 4 and
Supplementary Table 1). This finding raises interesting questions
about the mechanism of action of CX1942. Prior researchers
using ampakine CX717 suggested that its primary mechanism of
action, in regards to reversing opioid overdose, was on respiratory
rhythm generating neurons/networks (Ren et al., 2009, 2013;
Oertel et al., 2010). The lack of impact on respiratory rate coupled
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with increased VT, however, suggests a different mechanism of
action. One possibility is an impact on phrenic motor neurons,
which robustly express AMPA receptors (Rana et al., 2019b).

Lastly, we observed that the new waveform cluster analysis
method enabled detection of changes in the WBP data that were
not seen with the traditional analyses approach. Fentanyl infusion
caused rats to adopt breathing using primary three waveform
types: a short, low amplitude effort (cluster 4), and two variants
of low amplitude breathing of “normal” duration (clusters
10 and 14). Thus, we conclude that these breathing patterns
are phenotypical of opioid-induced respiratory depression in
the rat. Whereas saline administration (i.e., sham treatment)
had no impact on the prevalence of these three clusters,
treatment with CX1942 reduced the occurrence of clusters 4
and 10 in a dose-dependent manner. Further, CX1942 caused an
increase in two specific clusters in the 0.5–1.2 s duration range.
Interpreting the underlying physiology will require more in depth
assessment such as respiratory muscle EMG and measures of
airway resistance, etc. Nevertheless, these observations provide a
framework for developing hypothesis driven questions about how
overdose and or ampakine treatment alter the manner in which
breathing is occurring.

CONCLUSION

The principle component based method of respiratory waveform
cluster analysis provides rapid assessment of respiratory
signals and tracks common breath types across animals and
experimental conditions. The analysis is able to detect changes
in respiratory flow patterns associated with opioid (fentanyl)
induced respiratory depression and ampakine CX1942 rescue.
Since most, if not all, current researchers have access to sufficient
computing power to conduct higher level analyses of WBP
signals, and this approach using a widely available coding
platform (MATLAB), could find widespread applicability. In
summary, the method enables rapid assessment of breathing
patterns; we suggest that this approach may prove useful in future
studies of how breathing is affected in progressive neuromuscular
diseases and/or during therapeutic interventions.
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