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Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with high incidences of
p53 mutations. AZD1775 (adavosertib, previously MK-1775) is a small molecule WEE1
inhibitor that abrogates the G2M checkpoint and can potentially synergize with DNA
damaging therapies commonly used in PDAC treatment. The purpose of this study was to
identify combination partners for AZD1775, including standard chemotherapy or targeted
agents, in PDAC preclinical models. Low powered preliminary screens demonstrated that
two of the four PDX models responded better to the combinations of AZD1775 with
irinotecan or capecitabine than to either single agent. Following the screens, two full
powered PDAC PDX models of differing p53 status were tested with the combinations of
AZD1775 and irinotecan or capecitabine. The combinations of AZD1775 and SN38 or 5-
FU were also tested on PDAC cell lines. Cellular proliferation was measured using an
IncuCyte Live Cell Imager and apoptosis was measured using a Caspase-Glo 3/7 assay.
Flow cytometry was conducted to measure alterations in cell cycle distribution. Western
blot analysis was used to determine the effects of the drug combinations on downstream
effectors. In PDX models with mutated p53 status, there was significant tumor growth
inhibition from the combination of AZD1775 with irinotecan or capecitabine (P ≤ 0.03),
while PDX models with wild type p53 did not show anti-tumor synergy from the same
combinations (P ≥ 0.08). The combination of AZD1775 with SN38 or 5-FU significantly
decreased proliferation in all PDAC cell lines, and enhanced apoptosis in multiple cell lines.
Cell cycle distribution was disrupted from the combination of AZD1775 with SN38 or 5-FU
which was recorded as G2M arrest and decreased G1 phase. AZD1775 inhibited
phospho-CDC2 and increased the expression of gH2AX that was either maintained or
enhanced after combination with SN38 or 5-FU. The combination of AZD1775 with
irinotecan/SN38 or capecitabine/5-FU showed anti-tumor effects in vivo and in vitro in
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PDAC models. These results support further investigation for these combination
strategies to enhance outcomes for PDAC patients.
Keywords: pancreatic ductal adenocarcinoma, WEE1, DNA damage, 5-Fluorouracil (5-FU), irinotecan
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the fourth
leading cause of cancer death in men and women, with
approximately 35% of patients presenting with locally
advanced disease at diagnosis (1). Despite advances in
surgical techniques, radiation, and chemotherapy, the 5-year
survival rate is one of the lowest at just 10% (2). Current
therapeutic options for advanced disease include fluorouracil,
leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) or
gemcitabine plus nab-paclitaxel, however these therapies are
limited by a generally short duration of response and
cumulative toxicities (3, 4). Activation of the DNA damage
response (DDR) pathway in cancer cells with chemotherapy
can lead to treatment resistance (5). Targeting the cell cycle
checkpoint has potential to decrease the activation of the DDR
and to sensitize PDAC cells to chemotherapy or targeted agents
for improved patient outcomes.

PDAC tumors frequently have mutated p53 which commonly
results in a defective G1 checkpoint, thus forcing cancer cells to
rely primarily on the G2M checkpoint to repair DNA damage
before mitosis (6–8). Previous studies have reported that the
highly selective, small molecule WEE1 inhibitor AZD1775
(adavosertib, previously MK-1775) can abrogate the G2M
checkpoint, thereby forcing damaged DNA through mitosis (6,
9). WEE1 kinase regulates the G2M checkpoint by
phosphorylating CDC2 in response to DNA damage (6, 10).
Inhibition of WEE1 prevents the arrest of damaged DNA, which
enhances CDC2 activity and drives cells in S phase to
prematurely enter mitosis before repair (10). AZD1775 has
also been shown to enhance sensitization to chemotherapy and
antimetabolites in cancer cells with wild type p53, which
indicates the beneficial effects of this compound are not
dependent on dysfunctional p53 (11). Phase 1 clinical data has
shown AZD1775 is clinically viable and can safely be combined
with chemotherapies in advanced solid tumors (12).

It is plausible that AZD1775 may synergize with other DNA
damaging agents utilized for PDAC treatment. The
topoisomerase inhibitor irinotecan is a standard of care agent
that has been shown to be effective for the treatment of several
cancers including PDAC (13, 14). The combination of irinotecan
with AZD1775 has shown synergy when tested in colorectal
cancer cell lines and in other solid refractory tumors (15, 16).
Capecitabine is an oral pyrimidine antimetabolite that passes
intact through the intestinal wall and is locally converted to 5-
fluorouracil (5-FU) in tumor tissue where the cytotoxic effects
are activated (17). Previous studies have demonstrated
capecitabine is effective for the treatment of pancreatic cancer,
and the combination of AZD1775 with capecitabine has shown
synergy in other tumor types (18, 19). Targeting WEE1 in
2

combination with DNA damaging agent offers a promising
therapeutic option for PDAC.

The purpose of this study was to use an unbiased in vivo
screening and validation approach to identify efficacious
combination partners for AZD1775 in preclinical models of
PDAC using active chemotherapy agents and targeted drugs
available through the National Cancer Institute’s Cancer
Therapy Evaluation Program (CTEP). The results from this
study suggest that AZD1775 may have clinical applications in
PDAC when combined with irinotecan or capecitabine.
METHODS

PDAC Patient-Derived Xenografts
All animal work was performed with approval by the University
of Colorado Anschutz Medical Campus IACUC. Patient-
derived tumor samples were collected from consenting PDAC
patients at the University of Colorado Cancer Center with
approval by the Colorado Multiple Institutional Review
Board. These samples were used to generate patient-derived
xenograft (PDX) models as described previously (20). Female
athymic nude mice (aged 4-8 weeks) were purchased from
Envigo (Indianapolis, IN) and implanted subcutaneously on the
hind flanks with tumors sized approximately 3 mm3. Mice were
randomized into treatment groups and treatments were
initiated when the average tumor volume reached between
100-300 mm3. In the initial PDAC drug screen, mice (n = 3/
group) were treated with AZD1775, navitoclax, irinotecan,
romidepsin, olaparib, AZD8186, gemcitabine, and the
combination of these agents with AZD1775. Percent tumor
growth inhibition (TGI) values were calculated using the end of
study mean tumor volumes (MTV) of the vehicle and treatment
groups with following equation: (1 – (MTVvehicle/MTVtreated) ×
100). Drugs with TGI values greater in the combination than
both single agents in at least two PDX models were selected for
further in vivo validation. The mutational profiles of PDX
models were assessed using the ArcherDX FusionPlex Solid
Tumor panel, and mutations are indicated in the figure
legend’s superscript.

Two PDAC PDX models (n = 10 mice/group) were expanded
per drug combination. Treatments included AZD1775 (50 mg/
kg, PO, QD, in 0.5% hydroxypropylcellulose), irinotecan (15 mg/
kg, IP, QW), capecitabine (60 mg/kg, PO, twice weekly, in corn
oil), navitoclax (100 mg/kg, PO, thrice weekly, in 10% ethanol,
30% PEG400, 60% Phosal 50PG), and the combination of
AZD1775 with these agents. Mice were monitored daily for
signs of toxicity, and tumor volume and weight were measured
twice weekly using digital calipers and a scale. Tumor volumes
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were calculated using the following equation: volume = (length ×
width2) × 0.52.

Cell Lines and Reagents
PDAC cell lines BxPc-3, MiaPaca-2, and Panc1 were purchased
from ATCC and routinely screened for mycoplasma. The PDAC
cell line L3.3 was a generous gift from John’s Hopkins University.
All cells were cultured in DMEM (Corning) supplemented with
10% FBS (Atlas Biologicals), 1% penicillin-streptomycin, and 1%
MEM nonessential amino acids (Corning). All PDAC cells tested
were p53 mutants. Cells were maintained at 37˚C in an
atmosphere containing 5% CO2. AZD1775 was provided by
AstraZeneca or purchased from MolPool (Hong Kong)
depending on availability during the study. Irinotecan was
purchased from the University of Colorado Hospital
Pharmacy. The active metabolite of irinotecan, SN38, was
purchased from Sigma for in vitro analyses. Capecitabine and
navitoclax were purchased from Active Biochem. The active
metabolite of capecitabine, 5-fluoruracil (5-FU), was purchased
from the University of Colorado Hospital Pharmacy for in
vitro analyses.

Cell Proliferation and Apoptosis
The anti-proliferative and apoptotic effects of AZD1775, SN38,
and 5-FU were evaluated on PDAC cell lines. AZD1775
concentrations were selected based on a proliferative CellTiter-
Glo assay (Promega) and previously reported data by others (21).
Cells were seeded at optimal density in 96-well white walled
plates, allowed to adhere for 24 hours, and then treated with
AZD1775 (125 nM and 250 nM), SN38 (10 nM), 5-FU (2.5 µM),
and the combination of AZD1775 with these agents.
Proliferation was measured every 2-4 hours for 72 hours in an
IncuCyte ZOOM live cell imager (Essen Biosciences). Percent
confluence was analyzed using the IncuCyte ZOOM 2018A
software. Synergy was calculated from the 72 hour
proliferation averages using the Bliss Additivity model as
previously described (22). Apoptosis was assessed using the
Caspase Glo 3/7 assay (Promega) as per manufactures
instructions. For apoptosis, PDAC cells were seeded in 96-well
white walled plates and treated for 24 and 48 hours as described
above with AZD1775, SN38, and 5-FU. Luminescence was
measured using a Synergy H1 microplate reader (Biotek) for
CellTiter-Glo and Caspase 3/7.

Cell Cycle Analysis
Alterations in cell cycle distribution were measured with flow
cytometry. PDAC cell lines were seeded at optimal density in 6-
well plates and treated with AZD1775, SN38, and 5-FU as
described above for 24 and 48 hours. The cells were then
washed in PBS, suspended in Krishan’s stain, and incubated at
4°C for 24 hours. Cells were analyzed for cell cycle and ploidy
using flow cytometry by the University of Colorado Cancer
Center Flow Cytometry Core Facility.

Immunoblotting
The effects of AZD1775, SN38, and 5-FU on downstream
effectors were measured by immunoblotting. PDAC cell lines
Frontiers in Oncology | www.frontiersin.org 3
were seeded at optimal density in 6-well plates and treated with
AZD1775, SN38, and 5-FU as described above. After 24 and 48
hours of drug exposure, cells were rinsed with PBS, lysed with ice
cold RIPA buffer containing protease and phosphatase
inhibitors, and scraped on ice. The cell lysates were collected,
sonicated, and centrifuged at 4˚C, 12,000 × g for 10 minutes.
Protein concentrations were measured using the Pierce BCA
Protein Assay kit (Thermo Fisher, Rockford, IL). Protein lysates
were boiled in Laemmli sample buffer, run on 4% to 12% Bis-Tris
precast gels (Thermo Fisher, Rockford, IL), and transferred to
nitrocellulose membranes using the Pierce G2 FastBlotter
(Thermo Fisher, Rockford, IL). The membranes were blocked
for 1 hour at room temperature and probed with primary
antibodies with rocking at 4˚C overnight. Primary antibodies
CDC2, phospho-CDC2, gH2AX, phospho-histone H3, and a-
tubulin were purchased from Cell Signaling Technology
(Danvers, MA) and were diluted per company instructions.
After incubating overnight, the membranes were washed three
times for 5 minutes with TBS/Tween20 before probing with anti-
rabbit and/or mouse DyLight IgG secondary antibodies
purchased from Cell Signaling Technology (Danvers, MA,
diluted 1:15,000). The blots were imaged using the Odyssey
Infrared Imaging System (Licor, Lincoln, NE).

Statistical Analysis
Results from the proliferation, apoptosis, and cell cycle
experiments were analyzed for statistical significance using
GraphPad Prism 8.1 (San Diego, CA) using an unpaired t-test.
In vivo models were analyzed with an unpaired t-test with
Welch’s correction. Differences were determined to be
statistically significant with P-values ≤ 0.05.
RESULTS

In Vivo Effects of AZD1775 Combinations
in PDAC PDX Models
Four PDAC PDX models were utilized for the initial low-
powered, unbiased in vivo screen to evaluate the efficacy of
AZD1775 alone and in combination with navitoclax,
irinotecan, romidepsin, olaparib, AZD8186, and gemcitabine.
Gemcitabine enhanced the anti-tumor effects of AZD1775 in
three of the four models as shown by increased TGI values in the
combination. However, this combination was not selected for
further validation by our group because of the previously
published data by others and the number of ongoing clinical
trials (1, 9, 23–25). In at least two of the four PDAC PDX models
tested, the combination of AZD1775 with irinotecan or
navitoclax increased the TGI values, therefore these drug
combinations were selected for further validation in full
powered p53 mutant (MT) and wild type (WT) PDX models
(Figure 1). A similar screen from our lab group in triple negative
breast cancer models reported increased TGI values from the
combination of AZD1775 and capecitabine in two models,
therefore this combination was also selected for further
validation in full powered PDAC models (21).
March 2021 | Volume 11 | Article 642328
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In the subsequent PDX experiments, the combination of
irinotecan and AZD1775 significantly inhibited tumor growth
relative to single agent AZD1775 in Panc303 (p53MT, P = 0.02)
(Figure 2A). No significant differences were observed in Panc193
(p53WT, P ≥ 0.96) from the combination of irinotecan and
AZD1775 (Figure 2B). The combination of capecitabine and
AZD1775 significantly inhibited tumor growth relative to
capecitabine in Panc320 (p53MT, P = 0.03) and trended to
decrease tumor growth in Panc193 (p53WT, P = 0.08) (Figures
2C, D). Although the initial screen showed the combination of
navitoclax and AZD1775 inhibited tumor activity, this
combination did not result in a significant reduction of tumor
growth in Panc320 or Panc308 (p53MT, P ≥ 0.15) (Figures 2E, F).
Additionally, the navitoclax combination was not well tolerated,
and caused poor body condition and thrombocytopenia in mice
which was observed as petechiae. Due to this adverse reaction, we
Frontiers in Oncology | www.frontiersin.org 4
did not pursue the combination of navitoclax and AZD1775 for
further in vitro validation.

Anti-Proliferative Effects of AZD1775
Combinations on PDAC Cell Lines
To better understand the combination effects witnessed in vivo,
we utilized several in vitro experiments to elucidate potential
mechanisms of action. The anti-proliferative effects of AZD1775,
SN38, and 5-FU alone and in combination with AZD1775 were
assessed on PDAC cells using the IncuCyte Zoom over a 72 hour
period. The combination of AZD1775 (250 nM) and SN38 or 5-
FU significantly decreased (P ≤ 0.005) proliferation in all PDAC
cell lines relative to either single agent (Figures 3A, B). This
trend was also observed with the combination of a lower dose of
AZD1775 (125 nM), where the combination with SN38 or 5-FU
significantly decreased (P ≤ 0.05) proliferation in all PDAC cell
A C

B D

FIGURE 1 | Effect of AZD1775 alone or in combination with chemotherapy or targeted agents in pancreatic ductal adenocarcinoma (PDAC) PDX models. Percent
tumor growth inhibition (TGI) values were calculated for each model (n = 3 mice/group). AZD1775, 50 mg/kg (PO, QD); navitoclax, 100 mg/kg (PO, QWx3);
irinotecan, 15 mg/kg (IP, QW); romidepsin, 1.34 mg/kg (IP, QW); olaparib, 50 mg/kg (PO, QD); AZD8186, 25 mg/kg (IP, QD); gemcitabine, 40 mg/kg (IP, QW).
(A) Panc127, (B) Panc268 (p53MT, KRASMT), (C) Panc129 (p53MT, KRAS MT), (D) Panc269 (p53MT, KRASMT, CDKN2AMT).
March 2021 | Volume 11 | Article 642328
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lines (Supplemental Figure 1). Bliss additivity calculations
showed varying synergy from the combinations of AZD1775 at
both concentrations with SN38 or 5-FU. The effects of AZD1775
with SN38 or 5-FU combinations demonstrated synergy in
Panc1 and were moderately synergistic in BxPc3 and L3.3. The
combination was additive in the MiaPaca-2 cell line.
(Supplemental Table 1).

Apoptotic Effects of AZD1775
Combinations on PDAC Cell Lines
To determine the effects of AZD1775 on initiation of apoptosis,
PDAC cells were exposed to AZD1775, SN38, and 5-FU at the
previously described drug concentrations for 24 and 48 hours.
Following drug exposure, the plated cells were analyzed for
induction of apoptosis with a Caspase 3/7 Glo assay. The
combination of AZD1775 (250 nM) with SN38 significantly
increased (P ≤ 0.01) apoptosis in MiaPaca-2 at both time
points measured (Figure 4A). There were no significant
differences in apoptosis in BxPc3, L3.3, or Panc1 from the
combination of SN38 and AZD1775 (250 nM) (Figure 4A).
The combination of 5-FU and AZD1775 did not significantly
impact apoptosis in any PDAC cell line after 48 hours
(Figure 4B).

The combination of AZD1775 (125 nM) with SN38 increased
apoptosis Panc1 after 24 hours and in MiaPaca-2 at both time
points (P ≤ 0.03) (Supplemental Figure 2A). There were no
significant differences in apoptosis in any PDAC cell line from
Frontiers in Oncology | www.frontiersin.org 5
the combination of AZD1775 (125 nM) with 5-FU
(Supplemental Figure 2B).

Effects of AZD1775 on Cell Cycle Arrest
To determine if the combination of AZD1775 with conventional
chemotherapy altered cell cycle dynamics, flow cytometry was
performed on PDAC cell lines treated for 24 and 48 hours with
AZD1775 (250 nM), SN38 (Figure 5A), and 5-FU (Figure 5B). The
combinations of AZD1775 (125 nM) with SN38 (Supplemental
Figure 3A) and 5-FU (Supplemental Figure 3B) were also
analyzed. Single agent AZD1775 did not significantly alter cell
cycle distribution in PDAC cells at either timepoint, with the
exception of BxPc3. In BxPc3, AZD1775 (125 nM and 250 nM)
decreased G2M phase (P < 0.02) after 24 hours, and after 48 hours
decreased G1 phase (P < 0.003) and increased S phase (P < 0.04).
The combinations of AZD1775 (125 nM and 250 nM) with SN38
decreased G1 phase (P < 0.02) and increased G2M phase (P < 0.03)
relative to single agent AZD1775 in PDAC cell lines at both
timepoints. These alterations in G1 phase distribution could have
been driven by single agent SN38, which decreased G1 phase (P <
0.03) in L3.3 and MiaPaca-2 at both timepoints. Single agent SN38
also increased S phase (P < 0.03) arrest in L3.3 and MiaPaca-2 after
24 hours, though this increase was not recorded after 48 hours drug
exposure in any of the PDAC cell lines. The combinations of
AZD1775 (125 nM and 250 nM) with 5-FU decreased G1 phase
(P < 0.003) and increased S phase (P < 0.02) arrest in L3.3 and
Panc1 after 48 hours. The alterations in Panc1 cell cycle could be
A

B

C

D

E

F

FIGURE 2 | Effect of AZD1775 alone or in combination with irinotecan, capecitabine, or navitoclax in PDAC PDX models of varying p53 status (n = 10 mice/group).
(A) Panc303 (p53MT, KRASMT), (B, D) Panc193, (C, E) Panc320 (p53MT, KRASMT, SMAD4MT, CDKN2AMT), (F) Panc308 (p53MT, KRASMT, SMAD4MT). Statistical
significance between the single agent and combination is indicated next to the single agent (* = p < 0.05).
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A

B

FIGURE 4 | Apoptotic effects of AZD1775 (250 nM) and (A) SN38 or (B) 5-FU in PDAC cell lines. Cells were treated with AZD1775 and SN38 or 5-FU for 24 and
48 hours, and apoptosis was measured using a Caspase Glo 3/7 assay with data normalized to the No Drug control. Data were analyzed with a t-test to compare
single agents to the combination (* = p ≤ 0.05, ** = p ≤ 0.01).
A

B

FIGURE 5 | Cell cycle analysis of AZD1775 (250 nM) and (A) SN38 or (B) 5-FU in PDAC cell lines. Cells were treated with AZD1775 and SN38 or 5-FU for 24 and
48 hours, then cell cycle arrest was assessed using Krishan’s stain followed by flow cytometry. Data were analyzed with a t-test to compare single agents to the
combination (* = p ≤ 0.05, & = p ≤ 0.01, $ = p ≤ 0.001, # = p ≤ 0.0001).
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driven by the significantly increased S phase (P = 0.01) arrest from
single agent 5-FU after 48 hours. Single agent 5-FU also decreased
G1 phase (P < 0.004) at both timepoints and increased S phase (P =
0.002) after 24 hours in L3.3.

Assessment of AZD1775 Targets and
Downstream Effectors by Immunoblotting
in PDAC Cell Lines
To determine the effects of AZD1775 and the other therapies on
downstream effectors of inhibited WEE1, immunoblotting was
performed after 24 and 48 hours of drug exposure. AZD1775
alone increased downstream effectors of DNA synthesis, while the
combination of AZD1775 with either SN38 (Figure 6A) or 5-FU
(Figure 6B) increased expression of DNA damage response
markers. AZD1775 alone decreased expression of phospho-
CDC2, a marker of mitotic delay, at both time points for BxPc3,
MiaPaca-2, and Panc1, and after 48 hours in L3.3. While phospho-
CDC2 expression increased after 24 and 48 hours exposure to SN38
or 5-FU, the addition of AZD1775 in combination treatments
decreased phospho-CDC2. Additionally, gH2AX expression, a
marker of DNA damage, increased in response to SN38 and the
combination of SN38 and AZD1775 after 24 hours in L3.3,
MiaPaca-2, and Panc1, and after 48 hours in all PDAC cell lines.
This was not the case for 5-FU, where increases in gH2AX
expression were driven by increasing doses of AZD1775. Overall,
phospho-histone H3 expression, a marker of mitosis, decreased in
PDAC cells after exposure to SN38 for 24 hours, though this was
Frontiers in Oncology | www.frontiersin.org 8
not observed after 48 hours exposure. Similarly, there was a decrease
in phospho-histone H3 expression in response to 5-FU after 24
hours in L3.3 and Panc1, and after 48 hours in BxPc3, L3.3, and
MiaPaca-2. The combinations of SN38 with AZD1775 and 5-FU
with AZD1775 resulted in decreased phospho-histone H3
expression at both time points in L3.3.
DISCUSSION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
lethal cancers in the United States, with a 5-year survival rate of
only 10% (2). It has been suggested that cancer types with high
occurrences of p53 mutations, such as PDAC where
approximately 60% of patients have mutant p53, may
experience increased sensitivity to WEE1 targeted drugs as a
result of their functionally inactive G1/S checkpoints (https://
www.cbioportal.org/). WEE1 is a key regulator of cell cycle
progression at the G2M checkpoint and controls entry into
mitosis. AZD1775, a potent WEE1 inhibitor, abrogates WEE1
by phosphorylating and inactivating CDC2 which can force cells
to enter mitosis with unrepaired DNA damage (7). In this study,
we first examined the combination of the WEE1 inhibitor
AZD1775 with several targeted CTEP compounds and
approved PDAC chemotherapies in a low powered in vivo
screen. From the initial screening models, we observed
AZD1775 synergized with irinotecan and navitoclax. A similar
A

B

FIGURE 6 | Effects of AZD1775 and (A) SN38 or (B) 5-FU on downstream effectors of DNA damage and cell cycle in PDAC cell lines. Cells were treated AZD1775
and SN38 or 5-FU for 24 and 48 hours then total protein was extracted. Expression of CDC2, p-CDC2, gH2AX, and PHH3 was measured with immunoblotting.
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screen from our lab in triple negative breast cancer (TNBC)
models showed synergy with the combination of AZD1775 and
capecitabine (21). Considering the similar high incidence of
mutant p53 in both PDAC and TNBC, we decided to test the
combination of AZD1775 with irinotecan, capecitabine, and
navitoclax in p53 mutant and wild type PDAC full powered
cohorts. Following in vivo validation, navitoclax did not
significantly alter tumor development and was not well
tolerated, therefore only irinotecan and capecitabine analogues
were tested for synergy with AZD1775 in PDAC cell lines.

Our results demonstrate that the combination of AZD1775
with irinotecan and capecitabine can enhance anti-tumor effects
in PDAC PDX models and in PDAC cell lines. The combination
of AZD1775 with SN38 or 5-FU significantly decreased
proliferation in all PDAC cell lines and increased apoptosis in
multiple cell lines. Lal et al. reported AZD1775 increased
apoptosis and abrogated the G2M cell cycle checkpoint in
PDAC cell lines (26). In the current study, the combination of
AZD1775 with SN38 increased G2M arrest in PDAC cells,
indicating accumulation of damaged DNA before forced entry
into mitosis as a result of WEE1 inhibition treatment. The effect
is especially notable in MiaPaca-2, where the combination of
AZD1775 and SN38 increased G2M arrest and apoptosis at both
measured timepoints, and increased phospho-histone H3
expression after 24 hours. Previous studies have demonstrated
that an increase in phospho-histone H3 correlates with increased
late stage in the apoptotic processes, and it suggests changes in
chromosome condensation could have increased apoptosis in
MiaPaca-2 (27, 28). Additionally, pre-clinical studies in colon
cancer cells showed the combination of AZD1775 and 5-FU to
decrease G1 and increase G2M phase (15). This is similar to what
we observed in several of the PDAC models tested. Single agent
AZD1775 inhibited the primary substrate of WEE1, phospho-
CDC2, and increased expression of gH2AX that was either
maintained or enhanced after combination treatments,
demonstrating activation of the DNA damage response
pathway. These data are consistent with previous literature,
where the combination of AZD1775 and 5-FU or gemcitabine
caused similar alterations in phospho-CDC2 and gH2AX
expression in colorectal and pancreatic cancer cells (29, 30).

Although the trend of improved responses from the
combination of a WEE1 inhibitor with DNA damaging
treatments is apparent, the mechanism for this interaction is
still unclear. Studies in colon and pancreatic cancer cell lines
have reported that AZD1775 can decrease cell viability
independent of combinations with DNA damaging agents (15,
16, 26). In contrast, in the present study PDAC cells were not
significantly impacted by AZD1775 alone. It is possible that
using a higher concentration of the WEE1 inhibitor could elicit a
single agent response, although our results are supported by
others who have reported single agent AZD1775 did not have an
anti-proliferative effect even at a concentration of 300 nM (29).
Recent publications have also debated the reliability of using p53
status as an indicator of PDAC sensitivity to these combinations.
Hirai et al. demonstrated the combination of AZD1775 with
DNA damaging antimetabolites and topoisomerase inhibitors
Frontiers in Oncology | www.frontiersin.org 9
could selectively potentiate antitumor activity in p53 mutant
colorectal cancer cells (29). These results have been supported by
research in several other cancer types, although other studies
have reported both p53 mutant and p53 wild type cells respond
to AZD1775 (10, 11, 23). In our in vivo cohorts, the combination
of AZD1775 with irinotecan or capecitabine had anti-tumor
effects on the p53 mutant models while no significant differences
were noted for the p53 wild type models. These results are
consistent with published reports of synergy in the combination
of AZD1775 with capecitabine or irinotecan in solid tumors (18,
19, 31). Interestingly, there were no significant differences in
tumor development from the combination of AZD1775 and
navitoclax, though both PDX models tested were mutant p53. In
diffuse large B-cell lymphoma, the combination of AZD1775 and
navitoclax has been shown to induce cell death with up to a 10
fold decrease in cell viability recorded in vitro, however the
authors acknowledged the limitations of this combination as the
anti-apoptotic protein inhibitors have significant side effects and
are poorly tolerated (32).

Clinical trials to evaluate the impact of AZD1775 alone or in
combination with other standard of care therapies have shown
promising results in PDAC and other cancer types. In a recent
dose escalation study, PDAC patients treated with AZD1775 in
combination with gemcitabine had a favorable overall survival
result of 22 months compared to those receiving gemcitabine
alone (24). In the study, Cuneo et al. also suggested the addition
of AZD1775 may have enhanced the control over the primary
tumor development. Patients in the study experienced a similar
side effect profile to those from a trial by Do et al., where patients
with solid refractory tumors had manageable hematologic and
GI toxicities after treatment with single agent AZD1775 (33).
AZD1775 has also been shown to be tolerable when combined
with irinotecan in pediatric solid refractory tumors (31). In a
recent phase II study, the addition of AZD1775 to carboplatin
enhanced median progression free survival in patients with p53
mutant ovarian cancer (34). Consistently, biopsy and blood
samples collected in these studies have reported decreased
phospho-CDC2 activity and increased gH2AX activity after
AZD1775 combination therapy.

Some researchers have suggested that inhibiting multiple
targets along with WEE1 pathway could overcome the
limitations observed from single agent AZD1775. The results
from this experiment suggest the combination of AZD1775 with
irinotecan and capecitabine may improve outcomes and could be
promising combination partners for PDAC patients. Though p53
status may act as a predictive biomarker for certain treatment
strategies, more reliable markers are necessary to treat future
PDAC patients.
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Supplementary Figure 1 | Anti-proliferative effects of AZD1775 (125 nM) and (A)
SN38 or (B) 5-FU in PDAC cell lines. PDAC cells were treated with AZD1775 and
SN38 or 5-FU, and proliferation was measured over a 72 hour period using the
IncuCyte Zoom with data normalized to hour 0. Data were analyzed with a t-test to
compare single agents to the combination (* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤

0.001, **** = p ≤ 0.0001). Statistical significance between the single agent and
combination is indicated next to the single agent.

Supplementary Figure 2 | Apoptotic effects of AZD1775 (125 nM) and (A) SN38
or (B) 5-FU in PDAC cell lines. Cells were treated with AZD1775 and SN38 or 5-FU
for 24 and 48 hours, and apoptosis was measured using a Caspase Glo 3/7 assay
with data normalized to the No Drug control. Data were analyzed with a t-test to
compare single agents to the combination (* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤

0.001).

Supplementary Figure 3 | Cell cycle analysis of AZD1775 (125 nM) and (A)
SN38 or (B) 5-FU in PDAC cell lines. Cells were treated with AZD1775 and SN38 or
5-FU for 24 and 48 hours, then cell cycle arrest was assessed using Krishan’s stain
followed by flow cytometry. Data were analyzed with a t-test to compare single
agents to the combination (* = p ≤ 0.05, & = p ≤ 0.01, $ = p ≤ 0.001, # = p ≤ 0.0001).

Supplementary Table 1 | The synergistic effects of AZD1775 (125 nM, 250 nM)
and SN38 or 5-FU in PDAC cell lines. Bliss additivity was calculated using the 72
hour proliferation data averages. Values greater than 1 indicate synergy between
the two agents tested.
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