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Abstract: Human activity recognition (HAR) works have mostly focused on the activities of adults.
However, HAR is typically beneficial to the safety and wellness of newborn or infants because they
have difficulties in verbal communication. The activities of infants are different from those of adults
in terms of its types and intensity. Hence, it is necessary to study the behavior of infants separately.
We study newborn and infant activity recognition by analyzing accelerometer data from the sensors
attached to body. We aim to classify four types of activities: sleeping, moving in agony, moving in
normal condition, and movement by external force. For this work, we collected 11 h videos and
corresponding sensor data from 10 infant subjects. For recognition, we propose an end-to-end deep
model using autoencoder and k-means clustering, which is trained in an unsupervised way. From a
set of performance tests, our model can achieve 0.96 in balanced accuracy and F-1 score of 0.95.
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1. Introduction

Human activity recognition (HAR), which makes use of movement sensors such as accelerometer
and gyroscope has been studied for a long time [1]. Recent breakthroughs of deep learning have
contributed to significant success in HAR. Most research subjects of HAR have been adults. We believe
that infants who have difficulties in verbal communication can benefit by applying HAR to monitoring
their activities for their safety and wellness.

For instance, the risk of sudden infant death can be reduced by monitoring a newborn’s sleeping
posture using a 3-axis acceleration sensor [2]. A CO2 sensor is used to monitor the newborn’s breathing
for abnormalities [3]. A triaxial accelerometer was used to detect abnormal wave motion of a bathtub
and give a warning to guardians to prevent the infant drowning in the bathtub [4]. A sensory baby
vest was proposed to measure the pulse oximetry and detect the motion and the prone position of
infants with fully integrated sensors [5]. A gaze tracker [6] for behavioral analysis was proposed
to monitor gaze and head movements in infants to evaluate head–eye coordination. A movement
sensor was used to analyze the effect of the holding behavior on the relationship between newborn
babies and parents [7]. In order to monitor the child’s play behavior, a smart jacket equipped with
multiple movement sensors was also proposed [8]. In such monitoring, wearable sensor systems are
preferred because they are unobtrusive and non-invasive. In addition, wearable systems utilize wireless
communication systems for data collection, which is convenient in the healthcare of infants [9,10].

Our work focuses on newborn and infant activity recognition by analyzing accelerometer signals
coming from a device attached to infants. For instance, movement sensors attached to infants enable
sleep pattern analysis for health care and monitoring of external shock for safety. Since infant movement
is considerably different from that of adults in terms of type and intensity, existing methods for adults
have limitation on their application for infant cases. According to the classification guidance of
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WHO [11], newborn refers to babies who are within 28 days after birth, and infants are from 1 month
old up to 12 months. We develop a method which can classifies the activity types from the sensor
signals. We aim to tell whether subjects are asleep, how strong movements they show, and whether
there are external forces that affect them.

We use a commercial sensor device [12] shown in Figure 1. The device can be attached to clothes
by using the adhesive back. It consists of a thermometer sensor and a 3-axis accelerometer along with
a Bluetooth capability which transmits measured data. The accelerometer can measure movement
at 40 Hz, while the thermometer operates at lower 0.25 Hz because of less frequent changes in body
temperature. The device can operate continuously at least 24 h with an embedded battery.
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For most HAR works which depend on sensor signals, deep learning methods are very popular
because of its overpowering performance. As the complexity of activity classification increases,
the tendency to depend on the deep learning also enlarges. For professional medical use, it is
used to detect tremor caused by Parkinson’s disease [13] and classify complex behaviors that occur
simultaneously [14]. Additionally, since wearable systems rely on the battery, tasks that affect battery
life are classified using deep learning [15].

However, most deep learning methods accompany the burden of data labeling for preparing
ground truth dataset if they are trained in a supervised way. Typically, the labeling of accelerometer and
gyroscope signals are not easy because it is time series and usually have variable length, and in addition,
it requires extra efforts to check corresponding video footage in order to validate activity labels.

We propose an unsupervised learning based deep learning method. The method does not require
manual preparation of ground truth dataset. In our case, it becomes unnecessary to manually assign
activity types to corresponding signal data of which quantity generally amounts to several tens of
thousands. Our method consists of autoencoder and k-means clustering [16]. We train the autoencoder
with time series signals for signal reconstruction, and extract only latent representations of inputs
using the trained encoder. We then apply the clustering to those latent representations to determine a
set of discriminative clusters. Hence, the activity recognition becomes the task of identifying which
cluster the latent vector belongs to. It is like building an automatic classification pipeline without
ground truth data.

The sensor data handling and analysis of our study is typically challenging because of the
irregularity of the sensor attachment methods and areas. Firstly, the sensor attachment varies in
location. We require the sensors be placed around any areas of chest and above clothes, without giving
precise position and clothes condition. Secondly, the adhesion strength varies depending on the person
who attaches it. Such loose condition is intentional because we worry that difficult restrictions on how
to use the sensor make consumers hesitate to use it. Thus, our method should be able to consider
variances coming from sensor placement.

The contributions of our work are as follows. From ten newborn and infant subjects, 69 MB
of 3-axis accelerometer data and corresponding 4.3 GB of videos, which are 700 min long in total,
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were recorded. These types of activity data which are accompanied with real-time videos are rare.
The other contribution is the unsupervised learning based model and the automatic activity labeling by
the clustering. It helps avoid data labeling labor and automate the classification of confusing activities.
We also propose a method of pre-processing data to facilitate normalization and reconfiguration of
sensor signals by autoencoder. The preprocessed result has the characteristics of the original signal in
a modified form.

The paper is organized as follows. We review similar HAR works in Section 2. We describe
the collected data and propose the recognition method in Section 3, and discuss the performance
evaluation in Section 4. Finally, we conclude our work and discuss future works in Section 5.

2. Related Works

HAR methods are largely divided into two main categories: video-based and sensor-based
methods. Here, the sensor means the components which collects non-visual data. Thanks to rapid
evolution of sensor technology, sensor pervasiveness because of IoT, and deep learning, HAR works
are mostly sensor based. Privacy is another reason for the popularity of the sensor-based methods
compared with the video-based methods

The sensors used to collect data related to newborn healthcare and wellness are very diverse [9,10].
They are different in the aspects of sensor type, placement, structure, and objectives. If sensors are
divided by type, it can be classified into the following five: accelerometers, inertial measurement units
(IMUs), magneto-inertial, pressure sensors, and flexible sensors. There are three main reasons for
monitoring and analyzing newborn using sensors. The first reason is clinical needs. By using sensors
to detect seizure-like behavior, physicians try to preemptively detect abnormal symptoms such as
brain damage [17]. The second is to monitor the developmental stage. For example, by monitoring
the strength of the hand grip, the growth stage of the newborn was estimated [18]. By monitoring
the frequency and intensity of holding behavior between newborns and parents using a movement
sensor, the effect of these behaviors on emotional development was analyzed [7]. The third is for
safety purposes. To prevent sudden infant death syndrome, a sleep posture monitoring system was
proposed [19]. Additionally, a wearable sensor detects a fall that can lead to head injuries [20] and
there are things to alert drowning in the bathtub [4].

In addition to body movement, there have also been studies using various measurement objects.
There are eye gaze tracking to monitor the newborn’s development [6], and to detect abnormal
situations by analyzing CO2 in the breath [3]. This sensor-based monitoring system has the advantage
that it can reduce the burden of dedicated monitoring personnel, and objective evaluation can be
performed excluding subjective factors depending on the person [9,10]. Therefore, these sensor systems
have been used not only in Neonatal Intensive Care Unit (NICU) of hospitals, but also at home as
commercial products that can conveniently monitor newborn babies. These commercial devices have
been used to monitor body temperature [17,18], monitor breathing while sleeping [16,19], and monitor
heartbeat [20].

The adoption of wearable motion-sensing technology has increased for monitoring infant
movements in hospitals and at home [8]. Due to miniaturized motion sensors and communication
technology development, long-term monitoring of daily activity of infants with less disturbance
becomes more practical than ever before. The traditional methods for monitoring infant health
usually depend on the direct supervision of clinicians and parents, requiring dedicated labor resources.
Even with such overhead, sometimes it is difficult for clinicians and parents to identify the infants’
potential physiological condition [21]. On the contrary, these wearable sensor systems are capable of
conveniently and robustly monitoring infants in the NICU or at home.

The sensor-based HAR works are mostly built around deep learning based approaches as
summarized in [1]. HAR is a kind of pattern recognition problem in essence. Thus, deep learning
methods which have excellent ability in capturing complex patterns as features can offer effective
ways for HAR. Before the adoption of the deep learning, human researchers were responsible for
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determining features which can distinguish different activities. With the deep learning, such efforts
were delegated to powerful neural networks. In fact, the deep learning surpassed human ability by
being able to extract complex but effective features which would have been impossible if humans did.

The deep learning provides various models suitable for HAR tasks. The models can be divided
into five main types. These are fully connected network (FCN), convolutional neural network (CNN),
autoencoder, Recurrent neural network (RNN), and hybrid models combining the four models.
FCN was used from the early stage right after the introduction of the deep learning. However,
humans were still responsible for determining features, while FCN performed classification based on
the handcrafted features [22,23]. The FCN models sometimes failed for generalization because the
human-determined features were too shallow to be general enough for various tasks.

CNN is one of the popular models for HAR because of its flexibility. The convolution,
its representative operation, can be applied to not only for single dimension but also multiple
dimension data. For example, 1D convolution can be applied for sensor readings of one-dimensional
time series [24]. Even 2D convolution can be applied after converting one-dimension data to image-like
two-dimensional form by dividing long one-dimensional data into equidistant segments and stacking
them vertically [25]. For such conversion, domain knowledge is required to evaluate possible side
effects from the conversion.

Autoencoder has the merit of unsupervised learning and having the chance to discover
more general latent features than human-engineered ones. When the autoencoders are used,
multiple instances of the autoencoders are stacked in a vertical way [26] to increase its feature
expressiveness. RNN is strong in manipulating data which has temporal correlation. As RNN is slower
in learning and requires larger computing resources than other models [27,28], it is rarely used alone
but used as a sub-component in hybrid models. Sub-models in the hybrid models are responsible for
its specialized tasks based on its strength. For example, the combination of CNN with RNN is the
most popular [29,30], because they perform complementary roles; CNN is specialized in capturing
spatial feature, while RNN is for temporal feature.

Anomaly detection, a sub-branch of HAR, also benefit from the deep learning. For example,
if an autoencoder is trained with only normal data such as signals or images, it fails to reconstruct
abnormal inputs. Thus, larger differences between input and output of the autoencoder can be used as
indicators for anomaly. An autoencoder built with a set of LSTMs was proposed for anomaly detection
in time-series data [31]. A similar approach [32] was proposed for detecting anomaly in robot operation
by constructing variational autoencoder with LSTM. The most representative application of anomaly
detection can be found in detecting abnormal ECG signals [33,34].

Non-deep learning approach is inevitable, if training data are insufficient and the labeling cost
cannot beard. Besides such difficult situation, there are cases where algorithmic methods are efficient
enough to show performance comparable to the deep learning. For example, a heuristic method for
detecting discord in time-series data was proposed in [35]. Given an entire sequence, it selects a set of
sub-sequences which are most different from a whole set of sub-sequences.

There were semi-unsupervised approaches [36–38] for activity recognition. Stacked autoencoders
were trained in an unsupervised way to reduce noises and extract features from sensor data, but a
supervised classification scheme was involved for activity recognition [36]. The training process of
a convolutional autoencoder consists of two steps of which the first stage is unsupervised while the
second is supervised [37]. The unsupervised training of an autoencoder was carried out for an auxiliary
purpose such as noise sanitization in raw CSI data and high-level representative feature extraction [38].

The novelty of our proposed method is that its training proceeds in an end-to-end unsupervised
way. Hence, not only the tiring work of labeling but also human-caused labeling errors can be
avoided. In our case, the labeling work which checks a total of 700 min. sensor data and the
corresponding video is very hard. Additionally, the labeling job becomes easily vulnerable to errors
due to movement differences that are easy for humans to miss. Some errors can arise because of human
factors; different people make different classifications on the data, and even the same person may
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classify differently depending on the time and one’s mood. Similar to other existing works, we use the
autoencoder for the purpose of noise removal and high-level feature extraction of sensor data, but our
work differs in that the whole process of training proceeds in an unsupervised way.

3. Data Gathering and Proposed Method

This section first explains the data collection process including video recording and the data
format. Then, the proposed method for activity recognition using sensor data will be described.

3.1. Data Gathering

Data were collected while attaching a sensor device to subjects who are newborn and infants and,
at the same time, taking a video. The sensor device was attached to the clothes without skin contact.
The sensor device was certified as a medical device, but caregivers of the newborn babies preferred the
contactless attachment. The device was placed to the upper chest area. The fabric between the sensor
and the skin, the fabric over the sensor, etc. could not be forced to be identical to all subjects. The sensor
device transmits data without buffering to the acquisition computer via Bluetooth communication.

While collecting sensor data, a video is taken at the same time. This is later used as a ground truth
reference when determining whether the activity classification according to the sensor data is correct.
The captured video as shown in Figure 2 is recorded with a webcam connected to the data acquisition
computer at a speed of 30 fps in color with a resolution of 640 × 480, and it is possible to check whether
the newborn or infants are moving by sight.

Table 1. List of subject information and corresponding collected video and sensor data.

Sample Gender
Age

(Days)
Video Sensor Data

Note
Length (min.) Size (MB) Size (MB)

(a) F 360 20 341 2.05

(b) M 720 95 840 9.06

(c) M 180 10 75 1

(d) F 9 125 622 12.2

(e) F 2 95 601 9.81

(f) M 2 105 836 10.2

(g) M 16 135 923 13.6

(h) M 3 150 972 14.9

(i) M 4 85 459 8.62

(j) M 180 5 40 0.5 Same as (c)

Total 700 4453 69.83

Table 1 shows the information about the subjects and the amount of the collected videos and the
sensor data. Six out of ten subjects are newborn babies within 30 days of age. Additionally, except for
one, they are infants under the age of one. In particular, (c) and (j) are the same subject but its data
were collected at different times; thus, the actual number of different subjects is 9.

The video and sensor data are recorded as separate files, but the correspondence can be known by
having the same time stamp on the file names. In addition, it is possible to synchronize the two data
by managing the video frame index at the time the sensor data is received by the collecting computer.
In order to efficiently store and manage collected data, and to minimize the risk of loss, separate files
are created and recorded every 5 min.

The sensor data is saved as text in the format shown in Figure 3. One line corresponds to one
piece of data received from the sensor device. The transmission frequency of the device is 40 Hz,
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but considering the delay in the data processing and storage process in the collecting computer,
the actual reception frequency ranges from 36 to 40 Hz. The first field is a micro second precision time
stamp at the time the data was saved. Frame # means the video frame index at the time point. Then,
the six following numbers correspond to the gyroscope x, y, z axes and the accelerometer x, y, z axes,
respectively. Only accelerometer values are used in the study. The last field, SEQ#, is an integer that
circulates from 0 to 255, and is used as sequence data when the sensor transmits data, and is used for
detecting data loss. Note that, to our surprise, when checking the continuity of the sequence number
of the collected data in our experiments, no missing data occurred. This is presumed to be because
the experimental environment was able to limit other wireless interfering devices to avoid data loss
from interference. Nevertheless, robust and reliable imputation techniques are important enough to do
independent research. We discuss them in future works.
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Accelerometer data can have values from −1000 to 1000 for each axis. The data represent the raw
acceleration values from ICM-20600 chip [39], which contains 3-axis accelerometer and is embedded in
the wearable device that we used for the experiments. Gravitational force can be obtained by applying
an additional calculation procedure to this value. For example, Figure 4 shows the acceleration plot for
each of the X, Y, and Z axes for 30 s. The difficulty in our data analysis is that the attachment position
and direction of the sensor device may be different for each subject, and the device position and
orientation may change over time due to movement. This difference is because the sensor attachment
is affected by the newborn’s physical condition, other medical devices attached, and the skill level of
nursing personnel. Therefore, we did not deliberately have restrictions on the attachment of the sensor
device. This degree of freedom is difficult for data analysis, but has the advantage of being convenient
for users.
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Figure 4. Example plots of collected accelerometer data for 30 s; the x, y, z axes correspond to (a–c),
respectively. The x axis shows the sequence index of samples, and the y axis represents the raw
acceleration value. This value is raw data from the ICM20600 chip, which was used to measure
acceleration in the device. Gravitational force can be obtained by applying an additional calculation
procedure to this value.

3.2. Proposed Method Using Autoencoder and K-Means Clustering

The configuration and training process of the proposed model are shown in Figure 5. The model
is divided into autoencoder and k-means clustering algorithm parts. In the training process,
the autoencoder that aims to restore sensor data from the sensor data given as input is trained.
When the training is complete, only the encoder part of the autoencoder is used to obtain latent space
representation vectors of sensor data. These vectors can be viewed as low-dimensional features that
contain the characteristics of sensor data.
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K-means clustering is used to automatically classify the latent vectors. When the clustering
is applied, in order to determine the optimal number of clusters no, the intra-cluster variation is
calculated while increasing the number of clusters from 2 to n, and no is determined as the point
where the variation rapidly decreases. In addition to the advantage that autoencoder can reduce the
amount of calculation by dimension reduction, it is also helpful in improving classification performance
by k-means clustering. For instance, in our experiment when clustering is applied to the encoded
result, the silhouette score is increased by about 50% compared to the other case when applied to the
preprocessed raw data, which will be discussed in the next section.
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3.2.1. Preprocessing

The input data to the model is a segment having 160 elements, each of which is a vector of
length 3 and corresponds to x, y, z values of the acceleration sensor. Therefore, the dimension of
the segment is 160 × 3 and its duration is about 4 s long. Given a whole sequence of accelerometer
data, we create the segments by sliding window by 40 elements, which corresponds to one second
long. Therefore, two consecutive segments overlap 120 elements, which corresponds to 3 s long and
75%. No principle exists regarding segment sizes and overlap amount. It is believed that decreasing
the segment size enables faster activity detection in addition to reduced resources and energy needs,
while large windows are considered for recognition of complex activities [40]. For instance, a public
dataset of UCI for adult activity recognition [41], which is for classifying six types of behaviors such
as walking, sitting, standing, etc., provides 2.56 s segments with 50% overlap between neighboring
segments. Our segment size of 4 s is longer than that of the UCI because, rather than detecting fast
movements in adults, our case is to work with slow movements in newborns. By increasing the overlap
to 75%, we tried to reduce the occurrence of activity that could be missed at the segment border.

The segments go through a pre-processing process before it is fed into the autoencoder. The core
effect of pre-processing is to change the sensor signal, which has the form of a wave shape moving
vertically, into a monotonically increasing form. Its purpose is twofold; it reduces variances in sensor
values due to different sensor position and direction, and transforms the data into a form that the
autoencoder can reconstruct more easily. The first objective is similar to normalization commonly seen
in deep learning. For this, we subtract the average of the elements from the segment in an element-wise
way as shown in Equations (1) and (2). As a result, the input segment S is converted to Z.

S = {s0, s1, . . . ., sn−1} where si = [xi, yi, zi]
T (1)

Z =
{
zi

∣∣∣ zi = si − µ | 0 ≤ i < n
}

where µ =
∑

si
n , zi =

[
x′i , y′i , z′i

]T (2)

The second objective is motivated by our observation that the autoencoder in our case can
reconstruct monotonically-increasing sequence more easily than oscillating one. For instance, we found
that, when using the input pre-processed in the increasing form, the reconstruction errors of the
autoencoder was reduced by more than 70% compared to the case otherwise. Even if the shape of the
signal changes due to preprocessing, in order to maintain the characteristics of the motion contained in
it, we use absolute difference di’s between z_i’s as shown in Equation (3) and then calculates’s which
is cumulative sum of di’s as in Equation (4). Note that both Equations (3) and (4) are applied in an
element-wise way.

D =
{

di
∣∣∣di =

∣∣∣zi+1 − zi
∣∣∣ 0 ≤ i ≤ n− 1, dn−1 = dn−2

}
(3)

C = {ci | ci =
i∑

k=0

dk, 0 ≤ i < n } (4)

The resulting segment C is given as an input to the autoencoder, and its training continues until
the loss of mean squared error, which is in fact the difference between the reconstructed segment R and
the input segment C, is not decreasing any more. Then, the autoencoder is used to extract the latent
vectors of C, and the k-means clustering is applied to classify the vectors into groups, which completes
the model training process. All the parameters mentioned in Equation (1) to (4) are listed in Table 2.
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Table 2. The parameters used in Equations (1)–(4).

Parameter Meaning

si Original signal vector of accelerometer [x, y, z]

zi Mean-subtracted signal vector of [x, y, z]

di Absolute difference between neighboring signal vectors of [x, y, z]

ci ACumulative sum vector

3.2.2. Autoencoder

Figure 6 shows the configuration of the autoencoder and Table 3 shows the parameter sizes of
the layers. Its purpose is to sanitize noise from input and extract high-level representation, just as
conducted in existing methods. The encoder uses one-dimensional convolution considering that the
segment is a time series. This has the effect of reducing the data dimension. On the contrary, the decoder
recovers the original dimension same as the input by one-dimensional transposed convolution that
plays the opposite role of the convolution. For an input segment having a structure of 160 × 3, the latent
space representation vector becomes a vector of length 64. We also insert batch normalization, maxpool,
and ReLU activation layers between convolutional related layers.
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Table 3. The autoencoder architecture: layers and their parameter sizes.

No. Layer # of Param. No. Layer # of Param.

1 Conv1d 28 7 ReLU/MaxPool1d -

2 ReLU/MaxPool1d - 8 ConvTranspose1d 520

3 Conv1d 72 9 ReLU -

4 ReLU/MaxPool1d - 10 ConvTranspose1d 99

5 Conv1d 272 11 ReLU -

6 BatchNorm1d 32 12 Linear 10,400

The architecture of the autoencoder is the result of trial and error and tuning. In the encoding
stage, emphasis was placed on feature extraction, while the decoding stage put more emphasis on the
recovery of the sequence. For example, in the input 160 × 3, 160 means the length of the sequence;
thus, we wanted to have a decoding shape that proportionally increases the sequence length to 16, 64,
and 160.
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3.2.3. Clustering

When using the k-means clustering, it is important to select an appropriate number of clusters.
To determine this, we use the silhouette method [42]. The silhouette coefficient quantitatively determines
how data is similar to its own cluster compared to other clusters. The score is between +1 and −1,
and the larger the value, the more desirable. We calculate the silhouette coefficient of the k-means
clustering for each different number of clusters , starting from nc = 2 and increasing by 1. When the
coefficient value is high enough and the number of clusters is also large enough to represent the variety
of activities, we select nc as the optimal number of clusters no.

Figure 7 shows the process of classifying activities using the trained model and the prepared
k-means clustering. The encoder operation is performed on input data that have undergone cumulative
pre-processing. The classification is performed by determining which cluster belongs to the resulting
latent vector by using the k-means clustering.
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4. Experiments for Performance Evaluation

For the model training, only the data of subject (d) of Table 1 were used because it contains all
types of activities that we want to recognize. The data consist of 125 min of video and sensor signals.
If we randomly select training data from all the subjects, there is a high probability that activities with
low frequency, such as movement by external force, are not included in training data. Additionally,
differences between newborns and infants should not be overlooked; it is obvious that the intensity of
infant behavior will be greater than that of a newborn. However, in our experiment, the data of subject
(b) were included in the experiment even if subject (b) was much older than other subjects. Since its
data were acquired during sleep of subject (b), it seemed to be less problematic even if the difference
between infants and newborns was considered. If the data were from waking movements, then the
data should have been be excluded.

To prepare the training data, the segments of length 160 are created through slicing, and then
the pre-processing is applied as described before. Figures 8 and 9 show the examples of the original
segment data and the corresponding pre-processed results. In the case of Figure 8, it is the partial data
when the subject is sleeping. The original data plot in Figure 8a shows little change in all of x, y, and z
axes. As a result, the plot of cumulative sum of Figure 8b increase gradually. The final cumulative sum
reaches about 600. Figure 9 is when the subject moves largely while crying. Hence, it can be seen that
the variation in all axes is large as shown in Figure 9a. Additionally, the steep rise of the cumulative
plot is observed in Figure 9b, and the final cumulative sum reaches almost 6000 in the case of the z-axis,
and both x and y reach around 4000.
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The autoencoder was trained using the prepared training data. As the loss for training, the mean
squared error of the difference between the input and the autoencoder output was used. the training
lasted 1000 epochs around which point the loss no longer declined. Using the trained encoder, the latent
vectors for training data are extracted and classified by the k-means clustering. In order to determine
the number of clusters which is directly related to the number of classifiable actions, not only the
silhouette scores shown in Figure 10 but also the pre-screening observation of videos were considered.
Browsing through the recorded videos, the newborn behavior was easily divided into three types:
sleeping, awake, and being affected by external force. However, we wanted to add another classification
in order to distinguish whether the awake behavior was simply awake in a comfortable state, or whether
it was moving because of discomfort or pain. When examining the mean silhouette score, the threshold
of 0.6 is the point where four behavioral classification was feasible. Since it was difficult to classify
more than four behaviors even by watching videos, we did not consider the threshold lower than 0.6.
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In deciding with the four actions was not only the result of observing the video, but also the
necessity of this classification was explained in the referenced works. In order not to break the sleep
rhythm of the newborn, it is necessary to detect the non-sleeping state and perform newborn care
during that time [21]. As there are studies performing fall detection [20], it is important to detect
external stimuli. In addition, as there are studies to monitor drowning in bathtubs [4], it is important to
detect movements of newborns during pain and inform their caregivers. Based on the results of these
existing studies, it was decided to distinguish between sleep and non-sleep. In the case of non-sleep,
it was important to distinguish between external stimuli and self-moving. Even when moving on
their own, it was important to distinguish whether they were simply waking up and moving during
discomfort or pain.

The resulting activity classification and detailed description are summarized in Table 4. To see
what behavior each category corresponds to, we check the corresponding video clip. According to the
classification, behavior is largely divided into sleep and non-sleep. In the case of non-sleep, it is further
subdivided into an active movement that moves by waking oneself and an external force movement
that moves by the touch of caregivers. The active movement is further classified into strong and weak
according to the intensity of action. Strong movement is a state in which the subject wakes up and
writhes while crying, while the weak movement is a state in which the subject wakes up, but it shows
light movements in comfy state. The external force is caused by caring actions such as lifting a baby
during the care of a nurse or guardian.

Table 4. Activity classification.

Label 1st
Classification

2nd
Classification

Final
Classification Description

0 Sleeping Subjects are sleeping without
substantial movement.

1

Non-sleeping

Active
Movement

Strong movement Subjects are struggling with crying or
in agony.

2 Weak movement Subjects are awake and moving in
comfy state.

3 External force movement External force from nurses or
care-giver is applied to subjects.

To evaluate the performance of the model, the data of the remaining 9 subjects are used as test
data. The latent vectors for the test segments are obtained from the encoder and then classified by
the k-means clustering. The correctness of the behavior classification is evaluated by comparing with
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manually prepared ground truth data. To create a ground truth label for the segments of sensor data,
we created a separate tool. It has the function of showing a video clip along with corresponding
sensor data segment and allowing human to assign labels manually. To minimize individual labeling
differences and errors, two different people independently performed labeling on the same data.
Additionally, the results were compared to adjust different labels after consultation.

As a result, Figure 11 shows the confusion matrix for the classification evaluation. Additionally,
Table 5 shows the precision, recall and F1-score for each activity. The recognition of sleeping behavior
works bets with F1-score 0.99. The weak movement recognition shows the worst performance with
F1-score 0.93 because it is easily confused with sleeping. External force also has low performance due
to the confusion with strong movement. Overall, the mean F1-score for the four behavioral categories is
0.95, indicating that our model is robust enough for activity recognition. The balanced accuracy is 0.96,
but its performance is partly due to the fact that the total number of sleeping segment is comparatively
large and its recognition accuracy is high.
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Table 5. Performance results of model classification.

Activity Precision Recall Specificity Balanced Accuracy F1-Score

Sleeping 0.99 1 0.94 0.97 0.9966

String movement 0.96 0.94 0.99 0.97 0.9527

Weak movement 0.97 0.90 0.99 0.95 0.9349

External
force 1 0.89 1 0.95 0.9468

Avg.
(std.)

0.98
(0.018)

0.93
(0.049)

0.98
(0.027)

0.96
(0.011)

0.95
(0.026)

One of the applications of the activity recognition results is to indirectly evaluate a subject’s sleep
quality. For example, Figures 12 and 13 show the behavioral classification of subject (a) and (d) over
time. Intuitively, it can be observed that the sleeping state of subject (a) is better than that of subject (d).
In the case of subject (d), there exist various active movements and movements due to external forces
after sequence 3000. Such analysis can help wellness care by providing information about subject’s
sleep and non-sleep time. In addition, it can be used for risk prevention, for example, by sending an
alarm to care givers when subjects show strong movement for a longer time than usual.
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5. Conclusions

In this study, we proposed an unsupervised end-to-end deep model for recognizing newborn
behavior using acceleration values. We were able to automatically classify behaviors in the training
process using autoencoder and k-means clustering. For this study, we collected 700 min of sensor data
from 10 newborns and infants. Additionally, by taking video at the time of data collection, it was
possible to secure ground truth reference for checking activity classification. Through this model,
we found that the newborn’s behavior can be classified into four categories. Through the performance
evaluation, the average F1-score was 0.96 and balanced accuracy was around 0.96.

In terms of computation, the size of the proposed autoencoder model is only 96 KB. Additionally,
in K-means clustering, cluster determination itself does not have a large computational burden. It is
meaningful that the proposed method is implemented on edge hardware. However, in general,
we prefer to collect and analyze raw data in a cluster environment for the purpose of data accumulation
and elaborate analysis. Therefore, considering the high performance of general clusters, the proposed
method is sufficiently manageable.

We propose to use such activity recognition capability for evaluating the sleep quality, or
monitoring the wellness and safety of newborn. In particular, monitoring body movement might be
useful for valuing the sleep-wake rhythm of preterm infants. For instance, healthcare professionals
are able to provide medical treatment or care while infants wake up, not interfering with their sleep
pattern [43,44]. To this end, body movement can work as the key signal for professionals to start taking
care of preterm infants and managing their environment. As for future work, since monitoring of
the newborn’s condition is involved, robust and reliable imputation techniques are critical. There are
various imputation techniques ranging from statistical techniques to using deep learning in recent
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years [45]. It is necessary to analyze the characteristics of various missing data patterns and verify the
effectiveness of imputation techniques for them.
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