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Abstract: Model-Based Diagnosis (MBD) is a well-known approach to diagnosis in medical domains.
In this approach, the behavior of a system is modeled and used to identify faulty components, i.e.,
once a symptom of abnormal behavior is observed, an inference algorithm is run on the system model
and returns possible explanations. Such explanations are referred to as diagnoses. A diagnosis is an
assumption about which set of components are faulty and have caused the abnormal behavior. In
this work, we focus on the case where multiple observations are available to the diagnoser, collected
at different times, such that some of these observations exhibit symptoms of abnormal behavior.
MBD with multiple observations is challenging because some components may fail intermittently,
i.e., behave abnormally in one observation and behave normally in another, while other components
may fail all the time (non-intermittently). Inspired by recent success in solving classical diagnosis
problems using Boolean satisfiability (SAT) solvers, we describe two SAT-based approaches to solve
this MBD with multiple observations problem. The first approach compiles the problem to a single
SAT formula, and the second approach solves each observation independently and then merges them
together. We compare these two approaches experimentally on a standard diagnosis benchmark and
analyze their pros and cons.

Keywords: model-based diagnosis; intermittent faults; multiple observations; behavior modes

1. Introduction

A diagnosis problem arises when a system does not behave as expected. The goal of
diagnosis algorithms is to find the set of faulty components that caused the unexpected
behavior of the system. The creation of intelligent medical diagnostic systems has been
one of the most profitable fields since the early days of artificial intelligence. Model-
Based Diagnosis (MBD) [1] is well-established approach for building diagnostic systems,
which have been applied to medical domains [2,3] as well as high-speed trains [4] and
other domains [5]. In MBD, a formal model of the diagnosed system is assumed to exist
specifying the expected behavior of the system. This model, along with an observation of
the system, i.e., a series of inputs to the system and the respected outputs, is then used to
deduce candidate diagnoses.

Considering only a single observation of the diagnosed system limits the effectiveness
of the diagnosis process since it may not contain sufficient information about the condition
of the system. Furthermore, in many real-life systems getting additional observations is
feasible and not costly. In these cases, one would like to collect additional observations and
take consider them in the diagnostic process, as they may provide extra information on
the current problem, and result in a more accurate diagnosis. Indeed, many real-world
systems collect multiple observations of the system behavior over time.

In this work, we study the MBD problem when multiple observations of the system,
taken in different time steps, are given. We call this the multi-observations MBD (MO-MBD)
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problem. MO-MBD poses additional challenges over the classical diagnosis problem (in
which a single observation is given). First, MO-MBD has a higher complexity, as it needs
to reason about more information. Second, a faulty component may behave normally in
some observations, thus making it more difficult to find. Such faults, which manifest only
in some observations, are called intermittent faults.

We focus on a model-based approach for solving MO-MBD, i.e., we assume that
a model of the system’s behavior is given and infer diagnoses from the model and the
observations. There are two types of models in the model-based diagnosis field: weak-fault
model (WFM) and strong-fault model (SFM). A system model is said to have a weak-fault
model if it only specifies the normal behavior of its components. By contrast, system
model with a strong-fault model contains information about the abnormal behavior of
its components. For example, a pipe in a system with weak-fault model can be either
healthy or faulty, i.e., one can learn from the model about the normal behavior of the pipe,
but there is no information about its abnormal functioning. On the other hand, a pipe in a
corresponding system with a strong-fault model may have the following behavior modes:
healthy, leaked or blocked. Given the behavior mode of a pipe in such a system and the
observed input, one can infer the output value.

Both the model types (weak or strong) and the fault types (intermittent or non-
intermittent) change the way we approach the MO-MBD problem. An algorithm that
assumes that a fault consistently appears does not apply to a system with intermittent
faults, and therefore we need to develop different solutions based on the conditions
of the problem. The first contribution of this paper is by exploring the four possible
combinations: intermittent+SFM, non-intermittent+SFM, intermittent+WFM, and non-
intermittent+WFM.

Several approaches were proposed for model-based diagnosis with multiple obser-
vations. Some proposed a conflict-directed approach [6–8], generating conflicts for each
observation and merging them together. Others proposed a hierarchical approach-based
structural abstraction and compilation to d-DNNF [9]. Lastly, a SAT-based approach was
implemented [10]. Encouraged by recent success of model-based diagnosis algorithms
for classical diagnosis that are based on compilation to Boolean satisfiability (SAT) [11,12],
we investigate in this work a SAT-based approach for MO-MBD that considers both the
intermittent non-intermittent axis as well as the SFM WFM axis.

A second contribution of the paper is by presenting two SAT-based algorithms for
solving the MO-MBD problem in the intermittent+WFM configuration: (1) one-SAT: solving
all the observations at once, or (2) divide-and-join: solving each observation separately
and combing the diagnoses in a way that is consistent with all of them. The first way
merges all the observations into one, without losing any information, and compiles the
problem into a single formula. The second, compiles each observation to its own SAT
formula and then joins the resulting diagnoses. In this paper we present these two methods
in detail for the intermittent+WFM configuration, but they could be adapted to each one of
the other configurations.

Experimental evaluation of the intermittent+WFM configuration on known bench-
marks demonstrates pros and cons of each algorithms. divide-and-join is faster for cases
with fewer abnormal behaviors, while one-SAT is more appropriate for cases in which there
are many abnormal behaving components.

The paper is structured as follows. First, background and formal definition of MBD
and MO-MBD is given, as well as related work. Then, we characterize different assumptions
about the behavior of components in a MO-MBD problem. Following, we introduce the
two SAT-based algorithms we propose and evaluate them empirically. Lastly, we conclude
and discuss future work.

2. Background and Related Work

In this section, we present the fundamentals of model-based diagnosis (MBD) and
related works.
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2.1. Model-Based Diagnosis

An MBD problem is defined by a tuple 〈SD, COMPS, OBS〉, where SD is a model of
the diagnosed system, COMPS is the set of system components, and OBS is the observed
behavior of the system (e.g., the observed inputs and outputs of the system). The system
model SD specifies for every component a set of possible assumptions about its behavior.
These assumptions are called behavior modes and SD contains at least one behavior mode
per component that specifies its normal behavior. We say that a component c has a strong-
fault model (SFM) if SD contains some information about how c behaves when it is faulty,
i.e., when its behavior mode is not the normal one. Otherwise, we say that c has a weak-
fault-model (WFM). We denote the normal behavior mode and the set of all other behavior
modes of c by ok and Fc, respectively. The behavior modes in Fc are also referred to as fault
modes. Please note that if c has a WFM then Fc contains a single-fault mode—unknown.

A solution to an MBD problem is a diagnosis. A diagnosis is a set of assumptions about
the behavior of the system components that form a plausible explanation of the observed
behavior. To define a diagnosis formally, we associated with every component c a variable
hc, referred to as the health variable, whose value is the behavior mode of c when the system
was observed. A health assignment is an assignment of behavior modes to all the health
variables. In logical terms, a health assignment is a conjunction of propositional literals of
the form hc = m where m ∈ Fc ∪ {ok}. If the health assignment in which all components
are assigned their normal behavior mode is inconsistent with SD and OBS then at least one
component must be faulty, i.e., there exists at least one component c such that hc ∈ Fc.

Definition 1 (Diagnosis). A health assignment ω is called a diagnosis if SD∧OBS∧ω is satisfiable.

The number of diagnoses can be very large. Therefore, it is common in the MBD
literature to focus on finding only the subset-minimal (SM) diagnoses or only the minimal-
cardinality (MC) diagnoses. Both notions—SM diagnoses and MC diagnoses—are explained
next. For a diagnosis ω we denote by ω− the components in ω assigned to a faulty behavior
mode. The size of ω− is referred to as the cardinality of ω, denoted by |ω|. A diagnosis is
called an SM diagnosis if there is no other diagnosis ω′ such that ω′− ⊂ ω−. A diagnosis
is called an MC diagnosis if there is no other ω′ such that |ω′| < |ω|. Many methods
to find diagnoses have been proposed, including conflict-directed [1,13,14], compilation-
based [15,16], SAT-based [11], and distributed approaches [17,18]. The General Diagnosis
Engine (GDE) [19] is a notable example of a conflict-directed MBD algorithm that has
been applied in numerous domains. GDE, and other conflict-directed MBD algorithms,
work by identifying conflicts, which are partial health assignments that are inconsistent
with SD and OBS, and then finding diagnoses by considering hitting sets of the identified
conflicts. Finding conflicts is in itself a difficult problem, and GDE solves it by using an
Assumption-based Truth Maintenance System (ATMS) [19,20]. SATbD [11] is an example
of a SAT-based MBD algorithm. SAT-based MBD algorithm work by reducing an MBD
problem to one or more Boolean satisfiability (SAT) problems, which are then solved with
an off-the-shelf SAT solver. GDE, SATbD, and the other methods mentioned above assume
that OBS consists of a single observation. Next, we present a literature review about papers
that consider multiple observations.

2.2. Related Work

De Kleer proposed two extensions to GDE to support MBD with multiple observations,
one for intermittent faults [7] and one for non-intermittent faults [6]. In the GDE exten-
sion for intermittent faults, De Kleer defined a function g(c) to represent the conditional
probability that the component c is behaving correctly although it is faulty [7]. Essentially,
if g(c) = 1 then c is persistently faulty, and if g(c) = 0 then c does not exhibits faulty
behavior. A value between 0 and 1, indicates an intermittent fault. Applying this GDE
extension is a challenge since usually g(c) is not known a priori. However, methods have
been proposed to estimate g(c) using a maximum likelihood estimation approach [21–24].
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In the GDE extension for non-intermittent faults [6], clauses are added to the ATMS to
represent the different times of observations. This enables the components to be represented
not only by their input and output, but also by the combination of their inputs and outputs
and time. Additional clauses were added to specify that (1) Time cannot be the same for
two observations, (2) Time cannot exist on its own, and (3) the same component must act
the same across all observations. These clauses ensure non-intermittency.

Ignatiev et al. [25] proposed a MaxSat approach to compute MS diagnoses in a se-
quential diagnosis setting, where multiple observations are given as input. They do not,
however, propose a method for returning MC diagnoses, and do not explicitly address the
distinctions between intermittent and non-intermittent and between SFM and WFM. As we
show in this work, these distinctions are important. Others proposed a conflict-directed
approach for sequential diagnosis [6–8], where conflicts are generated for each observation
independently, and then merged. Others proposed a hierarchical approach based on struc-
tural abstraction and a compilation to d-DNNF [9]. None of these prior works focus on
returning MC diagnoses or adopt a SAT-based approach.

Cai et al. [26] proposed to use a Bayesian network to handle diagnosis of intermit-
tent faults and to return the most probable diagnosis. Boaziat et al. [27] proposed an
MBD approach to solve MBD with intermittent faults in discrete event systems. Recently,
Zhou et al. [28] reviewed different model-based and data-driven methods to find the
most probable diagnosis in dynamic systems with intermittent faults. Gómez et al. [29]
proposed an approach for diagnosis in the presence of intermittent faults that applies
Bayesian reasoning to distinguish between different types of faults [29]. During the diag-
nosis process, faults are not only found but also classified as either intermittent or transient
faults. The diagnosis process combines then two methods: window-based diagnosis and
Bayesian reasoning.

In general, most previous work focused on intermittent faults. The contributions of
this paper include formally defining intermittent and non-intermittent faults for weak and
strong-fault models. Also, we propose diagnosis algorithms to solve the configuration of
intermittent fault in weak-fault model, focusing on how computing MC diagnoses using
variations of SAT-based MBD approach, which has been proven as efficient for diagnosis
problems [11].

Our work is related to sequential diagnosis, which is a diagnosis problem in which
observations are generated and given the diagnostic system sequentially. Most previous
work on sequential diagnosis focused on which observation to generate to reduce the
number of diagnoses [9,30–33], or to learn more about the probabilities of components to
be faulty [34]. Our work can be used by sequential diagnosis algorithm to allow them to
process faster the sequence of observations they receive.

Our work is also related to prior work on modeling intermittent and non-intermittent
faults. Breuer is one of the first to model intermittent faults, proposing a Markov model
for this purpose [35]. Based on Breuer’s model, Koren suggested a method to convert-
ing single-fault intermittent diagnosis of combinational logic to dynamic programming,
by building a nearly minimal sequential decision tree that minimizes the average number
of distinguishing tests required to locate a fault [36].

3. MBD with Multiple Observations

In this work we focus on an MBD problem with multiple observations, taken in
different time steps. Let T = {t1, . . . , tn} be the set of time points in which the system was
observed, and OBSti is the observation at time point ti. The multiple observation MBD (MO-
MBD) problem is defined by a tuple 〈SD, COMPS, T, {OBSt}t∈T〉, where SD and COMPS
are the system description and set of components as above. Following Raiman et al. [6],
every time step t ∈ T is called an observation time.

A solution to a MO-MBD is also a diagnosis, but a diagnosis in the context of MO-
MBD is an assumption about the behavior of the system components that is a plausible
explanation for all the observations. Formally, we associate with every pair of component c
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and observation time t a timed health variable hc,t. The domain of hc,t is the behavior modes of
component c and its value represents the behavior mode of c at observation time t. A timed
health assignment is an assignment of behavior modes to all the timed health variables.

Definition 2 (Diagnosis for MO-MBD). A timed health assignment ω is a diagnosis of a MO-
MBD problem iff SD∧∧t∈T OBSt ∧ω is satisfiable.

As was the case in the classical MBD problem, the number of diagnoses for a MO-
MBD problem can be very large. Therefore, a form of minimality criteria over MO-MBD
diagnoses is needed to focus the problem solver. To this end, we define the cardinality of a
MO-MBD diagnosis as the number of components that are assumed faulty in at least one
observation time. Formally, the cardinality of a diagnosis ω, denoted by

|ω| = |{c|c ∈ COMPS and ∃t ∈ T h(c, t) 6= ok}|

Our goal in this work is to find MC diagnoses for the MO-MBD problem.

4. Intermittent and Non-Intermittent Faults

Definition 2 embodies a fundamental difference between MBD and MO-MBD: in
MO-MBD a component may, in general, output different values for the same input values
in different observation times. This can be due to changes in its state between observation
times, and due to some un-modeled aspect of the environment. This is referred to as an
intermittent behavior mode. In some cases, however, it is reasonable to assume that the
component’s behavior is consistent over time, i.e., that for the same input the component
will generate the same output. This is referred to as a non-intermittent behavior mode.

Whether faults are intermittent or not is domain-dependent. As an example, software
components are notorious for their intermittent behavior, due to the computer’s multi-
tasking nature and dependence on many external aspects (e.g., network speed). By contrast,
it is reasonable to assume a non-intermittent behavior from a leaking valve in a hydraulic
system, since it is expected to always leak when flooded with fluid.

We follow Raiman et al. [6] and formally define a component with a non-intermittent
behavior as follows. Let in(c, t) and out(c, t) be the values inputted to and outputted by a
component c at observation time t.

Definition 3 (Non-Intermittent Behavior). A component c is said to have a non-intermittent
behavior mode iff there exists a function F such that

∀t ∈ T : F(in(c, t)) = out(c, t)

A component with an intermittent behavior mode is a component for which such a
function F may not exist.

4.1. Between Fault Modes and Intermittency

A component may have an intermittent (Int) or a non-intermittent (NotInt) behavior
mode, and also it may have a strong-fault model (SFM) or a weak-fault model (WFM).
The first observation of this work is that each of the resulting four combinations (Int+SFM,
NotInt+SFM, Int+WFM, and NotInt+WFM) is possible. Next, we formally define each of
these combinations.

4.1.1. Int+WFM

This is the least constrained assumption one can have on a component. There is no
constraint on the abnormal behavior of the component and the component may behave
differently in different observation times. Let φc be a function describing the healthy
behavior of component c, and let h(c, t) be a predicate that is true iff component c follows
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its healthy behavior at observation time t, i.e., h(c, t) ≡ (hc,t = ok). A component that is
Int+WFM is defined as follows:

∀t ∈ T : h(c, t)→ (out(c, t) = φc(in(c, t))) (1)

That is, we can expect the component to follow its intended behavior if it is healthy,
but if it is not healthy then we have no knowledge about how it will be behave.

4.1.2. NotInt+WFM

Although the faulty component’s behavior is not specified (Equation (1)), a Non-
Int+WFM component’s faulty behavior is constrained to be consistent along observations
(Definition 3). Thus, the formal Definition of a NonInt+WFM component is a mixture of
Definition 3 and Equation (1).

∃φF
c s.t. ∀t ∈ T :

(
h(c, t)→ (out(c, t) = φc(in(c, t)))

)
∧
(
¬h(c, t)→ (out(c, t) = φF

c (in(c, t)))
)

(2)

In words, if c is a NonInt+WFM component, then in addition to its behavior when it is
healthy, we also know that there if it faulty then there exists a fault model φF

c that defines
its behavior in all observations. Please note that while we do not know this fault model
(φF

c ), we can expect it to be consistent across observations.

4.1.3. Int+SFM

Here, we know the possible way in which the component may behave when faulty (its
fault modes). However, the component may act differently in different observation times,
i.e., switch between a healthy behavior and a faulty behavior (Here we describe a strong
form of intermittency, where a component may have different fault modes in different
observation times. One can also envision a weaker form of intermittency, in which a faulty
component is associated with a single-fault behavior mode, but can act normally in some
observations. Addressing this is variant is left for future work). Let φm

c denote the function
describing the behavior of component c when in mode m. f (c, t, m) is a predicate that is
true iff component c followed the behavior of mode m at observation time t. An Int+SFM
component is defined as follows:

∀t ∈ T :
(
h(c, t) → (out(c, t) = φc(in(c, t)))

)
∧

∧
m∈{ok}∪Fc

(
f (c, t, m) → (out(c, t) = φm

c (in(c, t)))
)

(3)

In addition, we must define that a component c at time t has exactly one behavior
mode m ∈ {ok} ∪ Fc.

The above formal definition means that if c is a Int+SFM component, then we know
that it behaves according to one of its behavior modes—healthy of faulty. It may behave
according to one fault mode in one observation and according to a different fault mode
in another.

4.1.4. NotInt+SFM

This is the most constrained behavior mode. A NonInt+SFM component must behave
consistently throughout the observations, and its faulty behavior is specified as one of the
fault modes in M: The formal definition is the same as in the Int+SFM case (Equation (3)),
but with an additional constraint to represent the non-intermittent behavior:

∀t, t′ ∈ T :
(
h(c, t) ↔ h(c, t′)

)
∧

∧
m∈{ok}∪Fc

(
f (c, t, m) ↔ f (c, t′, m)

)
(4)

In words, if c is a NonInt+SFM component, then it follows exactly one behavior mode in
all observations.

Table 1 summarizes the different configurations.
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Table 1. A summary of a component’s faulty behavior in the different configurations of WFM/SFM
and Int./NonInt.

WFM SFM

Int. Faulty behavior is unconstrained Must follow a behavior mode
but mode can differ between
observations

Non-Int. Not constrained by faulty behavior modes Must follow a single behavior mode
but must be consistent across observations across all observations

5. Finding Diagnoses

Next, we propose algorithms for solving a MO-MBD problem, focusing on the
Int+WFM configuration. As mentioned in the introduction the approaches can be ex-
tended to the other configurations. Raiman et al. [6] proposed a conflict-directed approach
for solving an MBD problem with multiple observations. They extracted conflicts from
each observation, and every minimal hitting set of all the conflicts is considered to be
a diagnosis.

Following the recent success of SAT-based solvers for the classical, single-observation,
MBD problem [11], we explore a different approach that is also based on a SAT compilation.
We first briefly describe the SAT-based approach for solving the classical MBD problem,
and then explain two ways to extend it for MO-MBD problem.

5.1. SAT-Based MBD Algorithm

A SAT solver is an algorithm that accepts as input a Boolean formula and outputs a
satisfying assignment of that formula, if such exists, or false otherwise. Compile an MBD
problem to a SAT problem, i.e., to a Boolean formula, has been done in prior work [11,37].
Briefly, clauses are defined for every component specifying that a component has exactly
one behavior mode. For every component c and behavior mode m we add clauses to specify
its behavior (φm

c ). In a WFM, we can define a single clause for a component, specifying that
if it is healthy then it will act normally. In addition, there is a clause for every observation,
specifying the values that were observed. The variables of this Boolean formula include the
health variables hc, and the values of these variables in a satisfying assignment are exactly
a diagnosis.

The process of finding MC diagnoses starts with finding the cardinality of the MC
diagnoses. This is done by adding clauses that enforce a cardinality constraint [38,39] over
the number of components assigned a faulty mode. This cardinality bound is initially set
to some upper bound of the MC and it is then iteratively decreased if the resulting formula
is satisfiable. When the formula is not satisfiable, it indicates that the previous cardinality
bound is the MC. Then, the cardinality bound is set to the found MC, and a SAT solver is
used to return all satisfying assignments, which are exactly all the MC diagnoses. For more
details on this process see Metodi et al. [11].

In this work we propose two approaches. In the first approach, One-SAT, we represent
the constraints of all the MO-MBD problems together and convert these constraints to CNF,
and then find the diagnoses by a SAT solver. In the second approach, divide-and-join, we
represent the constraint of each MO-MBD problem separately, convert these constraints to
CNF, and find the diagnoses by a SAT solver. Then we combine the solutions of the MO-MBD
problems. For the sake of clarity, the flow of each approach is depicted in Figure 1 draws
the flow of each approach. The first approach is presented in Section 5.2, and the second
approach is presented in Section 5.3.
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Convert to CNF 

SAT Solver

Satisfying assignments 

are Diagnoses

MO-MBD π1 ∧ π1:
(hA,1=ok)→(z1=1-in2,1)∧
(hA,2=ok)→(z2=1-in2,2)∧

(hB,1=ok)→(1-(z1∧ in1,1)=out1)∧
(hB,2=ok)→(1-(z2∧ in1,2)=out2)∧

…

Convert to CNF 

SAT Solver

Union form Diagnoses

MO-MBD π1:
(hA,1=ok)→(z1=1-in2,1)∧

(hB,1=ok)→(1-(z1∧ in1,1)=out1)∧
…

MO-MBD π2:
(hA,2=ok)→(z2=1-in2,2)∧

(hB,2=ok)→(1-(z2∧ in1,2)=out2)∧
…

Convert to CNF 

SAT Solver

One-SAT divide-and-join

Figure 1. A diagram of the proposed two approaches.

5.2. One Formula for Multiple Observations

The first way we propose to encode the MO-MBD problem is to construct a single
Boolean formula that encodes the knowledge from all the observations. Doing this is under
the assumption that components fail intermittently (recall that we focus on the Int+WFM)
is simple, since the observations can be encoded independently to a Boolean formula
and we can just merge them together. Please note that all the variables that represent the
internal state of the system must be duplicated, to allow them to receive different values
for different observations. A similar approach was proposed in other contexts, such as
diagnosing Linear Temporal Logic [40] and verifing diagnosability [41].

To illustrate this approach, consider the simple example depicted in Figure 2. For
i = 1, 2 and j = 1, 2, we denote by outj and ini,j the output and the ith input, respectively,
of the jth observation. Similarly, the variable z represents the output of component A, where
z1 and z2 are the values at observation times 1 and 2, respectively. The resulting Boolean
formula for Figure 2 is given in Equations (5)–(10). Equations (5)–(8) describe the normal
behavior of components A and B. Please note that since we focus on WFM, we describe
only the normal behavior of these gates. We do not describe the faulty behavior, which
could provide any output. Equation (9) describes the observations’ inputs, and Equation (10)
describes the observations’ outputs.

(hA,1 = ok)→(z1 = 1− in2,1) (5)

∧(hB,1 = ok)→(1− (z1 ∧ in1,1) = out1) (6)

∧(hA,2 = ok)→(z2 = 1− in2,2) (7)

∧(hB,2 = ok)→(1− (z2 ∧ in1,2) = out2) (8)

∧in1,1 = 1∧ in1,2 = 1∧ in2,1 = 1∧ in2,2 = 1 (9)

∧out1 = 0∧ out2 = 0 (10)

in2,1=1 A

in1,1=1

out1=0
B

z1
in1,2=1

in2,2=1

out2=0z2

Figure 2. An example of a system with two observations.
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To find MC diagnoses, we also add a set of clauses to constrain the cardinality of the
returned diagnoses. This is done by defining a health predicate Hc that is not timed (in
contrast to the time-health variable hc,t) for every component c, such that Hc is true iff c
is assumed to behave normally in all observations. Thus, each such health predicate is
associated with the following clause: Hc ↔

∧
t∈T(hc,t = ok). For the example in Figure 2

we add the following clauses for HA and HB.

HA ↔((hA,1 = ok) ∧ (hA,2 = ok)) (11)

HB ↔((hB,1 = ok) ∧ (hB,2 = ok)) (12)

The process of finding all MC diagnoses is similar to the process described earlier
for the classical MBD problem. A cardinality constraint is added to the Boolean formula
that constrains these number of health predicates that are set to false. The constraint starts
with some upper bound UB on the cardinality of the MC diagnoses, and we decrease
UB iteratively (one by one) until the resulting Boolean formula is not satisfiable. This
indicates that the previous value of UB is the minimal cardinality, and we set the cardinality
constraint to this value to find all MC diagnoses. We consider true (or ok) assignment as 1
and false as 0, and thus, the cardinality constrain will be:

|COMPS|

∑
i=A

¬Hi = UB (13)

A diagnosis includes the components have the health value ¬Hi. We then repetitively
ask the SAT solver to return a different assignment in size UB, until there are no more
possible assignments. We call the above algorithm, which compiles the MO-MBD problem
into a single Boolean formula, the one-SAT algorithm.

5.3. Joining Diagnoses of Multiple Observations

Encoding the knowledge about all observations into a single Boolean formula allows
using the full power of modern SAT solvers. However, the size of the resulting encoding
grows linearly with the number of observations. This can become a big computational
problem since the worst-case runtime complexity of SAT solvers is exponential in the size
of the encoding. Next, we propose an approach that solves each observation independently,
and then joins the resulting set of diagnoses into a single diagnosis for the given MO-
MBD problem.

Let Π = 〈SD, COMPS, T, {OBSt}t∈T〉 be a MO-MBD problem. We define
Πi = 〈SD, COMPS, OBSi〉 as the (single-observation) MBD problem that uses the same
system model and components as Π but considers only observation i. Let Ω(Π) and Ω(Πi)
denote the set of all diagnoses for the MO-MBD and MBD problems Π and Πi, respectively.
Since we focus on WFM a component in a diagnosis is either assumed to be healthy (ok)
or not. Thus, we can represent a diagnosis as the set of components that are assumed
to be faulty instead of a health assignment (which maps every component—healthy and
faulty—to its behavior mode). For convenience of notation, we do so hereinafter, and thus
every element in Ω(Π) and Ω(Πi) is simply a set of components. Slightly abusing standard
relational algebra terminology, we define the join operation between two sets of diagnoses
Ωi and Ωj, denoted Ωi ./ Ωj , as follows:

Ωi ./ Ωj = {ωi ∪ωj|ωi ∈ Ωi, ωj ∈ Ωj}

Since we assume that faults are intermittent, then

Ω(Π) = Ω(Π1) ./ Ω(Π2) ./ . . . ./ Ω(Πn) (14)
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Therefore, we can find all diagnoses for the MO-MBD problem Π by solving the set
of MBD problems Π1, . . . Πn individually, and joining the results. We call this algorithm
divide-and-join.

The worst-case runtime of current complete SAT solvers is exponential in the size of
the Boolean formula they are given. Thus, solving the n Boolean formulae that represent
the MBD problems Π1, . . . , Πn has a worst-case runtime that is exponentially smaller than
solving the single Boolean formula for Π, as the encoding for Π is n times larger than that
of Πi.

However, and even worse than the runtime of the one-SAT algorithm due to the
runtime of the join operation. Under a naive implementation, the join operation requires
running over the cross product of all the diagnoses sets Ω(Π1), . . . , Ω(Πn), thus, requiring
runtime that is exponential in the number of observations. It is not obvious, at least to
the authors, if there is a more efficient way to compute this join (notice its difference from
standard relational algebra join, which can be implemented more efficiently). Moreover,
the number of diagnoses returned by each MBD problem Πi can be exponential in the
number of components. Lastly, each activation of the SAT solver incurs some overhead,
which is incurred n times for divide-and-join while this overhead is only incurred once
for one-SAT. Indeed, as we show in the experimental results, there is no universal winner
and which algorithm is more efficient depends on various domain properties.

5.3.1. Finding Minimal Diagnoses

The divide-and-join algorithm was described above for finding all diagnoses, which,
as discussed earlier, can be prohibitively large. It turns out that using divide-and-join for
finding only SM diagnoses is straightforward: simply find all SM diagnoses for Π1, . . . , Πn
and join the results. The correctness of this approach is a direct result of the following
Lemma (proof is omitted due to space constraints).

Lemma 1. If ΩSM(Π) and ΩSM(Πi) are the set of SM diagnoses for Π and Πi, respectively, then
ΩSM(Π) = Ω(Π1)

SM ./ Ω(Π2)
SM ./ . . . ./ Ω(Πn)SM

Lemma 1 does not carry over to MC diagnoses, i.e., the join of all MC diagnoses for
Π1, . . . , Πn may not contain all MC diagnoses for Π and may contain diagnoses that are
not MC diagnoses of Π. Formally, if ΩMC(Π) and ΩMC(Πi) are the set of MC diagnoses
for Π and Πi, respectively, it may happen that:

ΩMC(Π) 6= Ω(Π1)
MC ./ Ω(Π2)

MC ./ . . . ./ Ω(Πn)
MC

As an example, consider a MO-MBD problem with two observations, such that:

ΩSM(Π1) ={{A, B}}
ΩSM(Π2) ={{E, F}, {A, B, C}}

Then ΩMC(Π1) = {{A, B}} and ΩMC(Π2) = {{E, F}}The join ΩMC(Π1) ./ ΩMC(Π2)
is the diagnosis ω = {A, B, E, F} with cardinality 4. However, the MC diagnosis for Π is
actually ω′ = {A, B, C} with cardinality 3. Therefore, divide-and-join cannot find MC
diagnoses without further adaptations. To this end, we introduce divide-and-join-MC,
a modified version of divide-and-join able to find all MC diagnoses.

5.3.2. Finding MC Diagnoses with Divide-and-Join

Next, we describe how divide-and-join can be modified to find MC diagnoses. We
call this algorithm Divide-and-Join-MC (described in Algorithm 1). To properly explain
divide-and-join-MC, we require the following terminology. Let mc and mci be the cardi-
nality of the MC diagnoses for the MBD problems Π and Πi, respectively. Also, let Ωn(Π)
and Ωn(Πi) be the set of all SM diagnoses of cardinality n or less for Π and Πi, respectively.
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A cardinality bounds vector is an n-ary vector b = 〈b1, . . . , bn〉 such that for every i in the
range [1, n] it holds that bi ≥ mci.

We say that a cardinality bounds vector b is MC-sufficient iff

ΩMC(Π) ⊆ Ωb1(Π1) ./, . . . , ./ Ωbn(Πn)

Finding an MC-sufficient cardinality bounds vector is important since it proving
that all MC diagnoses of Π have been found. Finally, for a set of diagnoses X, we de-
fine MC(X) as the cardinality of the diagnoses that has the smallest cardinality in X,
i.e., MC(X) = minω∈X |ω|.

Algorithm 1: Divide-and-Join-MC

1 b = 〈mc1, . . . mcn〉
2 ∀Πi compute Ωbi (Πi)

3 LB← max

{
|ω|

∣∣∣∣∣ ω ∈
n⋃

i=1

Ωmci (Πi)

}
4 for j=1 to COMPS do
5 Ω(Π) = Ωb1(Π1) ./ Ωb2(Π2) ./ . . . ./ Ωbn(Πn)
6 UB← min{ |ω| | ω ∈ Ω(Π)}
7 if UB==minbi or UB==LB then
8 halt

9 else
10 b = 〈(b1 + 1), . . . (bn + 1)〉
11 ∀Πi compute Ωbi (Πi)

12 Ω(Π) = Ω(Π)\{ω||ω| > UB}
13 return Ω(Π)

Divide-and-Join-MC starts by initializing a cardinality bounds vector b by the
cardinality of the MC diagnoses of the individual MBD problems, i.e., initially
b = 〈mc1, . . . , mcn〉 (line 1). In every iteration, the algorithm computes for every problem
Πi all the SM diagnoses of cardinality equal to or lower than bi, this initially done in line
2 and then again in line 11. Then, in line 7, the algorithm attempts to prove that b is an
MC-sufficient cardinality bounds vector, by inspecting whether the join of these sets of
diagnoses is the set of all MC diagnoses of Π. If the algorithm can prove that b is an
MC-sufficient cardinality bounds vector - it terminates, returning all diagnoses in the join
that have the smallest cardinality. Otherwise, the cardinality bounds vector is incremented
(adding one to all its elements), and the process continues (lines 9–10).

The key question is how to prove that a cardinality bounds vector is MC-sufficient.
For this, we provide the following simple rule: if UB is an upper bound on the MC of Π
then b = 〈UB, . . . , UB〉 is MC-sufficient. The challenge is how to find a low enough UB.
For every cardinality bounds vector b, it holds that every diagnosis ω in Ωb1(Π1) ./, . . . , ./
Ωbn(Πn) is a diagnosis of Π and thus |ω| is an upper bound on mc. Thus, every iteration of
the algorithm can provide a better UB. Concretely, the divide-and-join algorithm starts
with a cardinality bounds vector b = 〈mc1, . . . , mcn〉 and in every iteration obtains the
current UB (by computing all diagnoses for b and joining them). If UB = mini bi all MC
diagnoses have been found. Otherwise, a new iteration starts with every element in b
incremented by one.

To demonstrate the algorithm, assume a MO-MBD problem with two observations.
The MC diagnoses are:

ΩMC(Π1) ={{A}, {E}}
ΩMC(Π2) ={{B, C}, {C, D}}
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and b = 〈1, 2〉 (1 is the minimal cardinality of ΩMC(Π1) and 2 is the minimal cardinality
of ΩMC(Π2)). LB will be equal to 2 since it is the max cardinality in b. We then compute
Ω(Π) and UB which is the minimal cardinality over the diagnoses in Ω(Π).
Ω(Π) = {{A, B, C}, {E, B, C}, {A, C, D}, {E, C, D}}
UB = 3

Now, since UB 6= 1 (which is the minimal cardinality in b) and UB 6= 2 (which is LB)
we continue and add 1 to every cardinality in b, i.e., b = 〈2, 3〉. We compute the diagnoses
of each observation with this cardinality and get:

Ω2(Π1) ={{A, B}, {E, C}}
Ω3(Π2) ={{A, B, C}, {A, F, B}}

These diagnoses are added to the diagnoses of each observation that were computed
in all previous steps. That means that when we do the join process, we join the previous
diagnoses with the new.
Ω(Π) = {{A, B, C}, {E, B, C}, {A, C, D}, {E, C, D}, {A, F, B}, {A, B, C, E}, {A, F, B, E},
{A, F, B, E, C}}
UB = 3

At this point we will still not reach the condition for halting but after increasing all
the cardinalities in b and computing the new diagnoses for each observation There are
still no match so we increase the cardinality of both diagnoses again. This will result in
UB = minbi since UB never grows but minbi will be now equals to 3. Then we will compute
again all the join result and return the ones with the cardinality of 3.

For a cardinality bounds vector b, let bmin = mini bi, ./b (Π) = Ωb1(Π1) ./ . . . ./
Ωbn(Πn), and let UBb = min{|ω||ω ∈./b (Π)}.

Theorem 1. For every cardinality bounds vector b if bmin ≤ UBb then bmin is a lower bound
on mc.

Proof. Assume by negation that bmin > mc, so there exists a diagnosis ω whose cardinality
is lower than bmin. Please note that ω ∈./n

i=1 due to Equation (14), and therefore, there
exist ω1, . . . , ωn, where ωi ∈ Ω(Πi) for every i, and ω =

⋃n
i=1 ωi. Thus, the cardinality of

ω is not smaller than the cardinality of each of the constituents ωi. Therefore, for every i
it holds that ωi ∈ Ωbi (Πi), since bi ≥ bmin > |ω| ≤ |ωi|, and consequently ω ∈./b (Π),
reaching the desired contradiction.

6. Empirical Evaluation

We evaluated the one-SAT and divide-and-join-MC algorithms on Boolean circuit
systems. Specifically, we experimented on the 74181 (with 65 components) and 74283
(36 components) systems from the 74XXX [42] benchmark suite, and the c432 (160 compo-
nents) and c880 (383 components) systems from the ISCAS-85 [43] benchmarks suite.

The details (number of components and number of inputs and outputs) of the chosen
systems are given in Table 2. The systems 74XXX [42] are described in the first two rows,
and additional two systems of ISCAS-85 [43] are described in the following two rows. Al-
though these Boolean circuits are lacking some aspects of real-world challenges, they have
been used for experiments in many previous MBD papers [11,14,44–47]. However, our
approach can be applied directly in any setting where the components are described by
propositional formulae. Boolean circuits are just one straightforward example where this is
obvious and where the community has focused attention. Other examples are: (1) formulat-
ing software components as propositional formulae and apply an MBD algorithm to find
bugs [24,46–48]; (2) modeling robots in a multi-robot system and diagnose the violation of
coordination constraints among robots [49,50]; (3) modeling finite domain constraints and
diagnose inconsistent constraint sets [51,52].
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Table 2. The Benchmark suite: systems 74XXX and ISCAS-85.

Name | COMPS| in out

74181 65 14 8
74283 36 9 5

c432 160 36 7
c880 383 60 26

To the best of our knowledge, there is no standard set of observations for MO-MBD or
sequential MBD problems. Thus, we generated for each of these systems random MO-MBD
problems with 2, 4, 6, and 10 observations, as follows. First, faults are injected to 2–4
randomly selected components. Fault injection to gates in such systems is standard in
the literature [9,44]. Then, for every observation we generate random input values and
propagate them in the system. The faulty components behave abnormally—i.e., negate
the normal output—with probability pint, where pint is a parameter. pint controls the
“intermittency” of the components, where pint = 0 means faulty component always behave
normally, and pint = 1 means that the faulty component will always behave abnormally.
We experimented with a pint value of 0.3,0.5,0.7,0.85, and 1. For each configuration of
system, number of faults, number of observations, and pint, we generated 15 different
MO-MBD problems.

Each problem was solved with one-SAT and with divide-and-join, and the runtime
required to find the First MC diagnosis and the runtime required to find All MC diagnoses
were both recorded. Please note that while parts of the divide-and-join algorithm could
be parallelized, we used in all our experiments a single core to allow a fairer comparison.
Both algorithms were run on a single core and we measured the runtime of finding the first
MC diagnosis and all MC diagnoses. A timeout of 15 min was imposed. Most problem
instances were solved before reaching this timeout. Specifically, one-SAT solved 75%, 78%,
64%, and 68% of the instances of systems 74182, 74181, c432, and c880, respectively, and
divide-and-join-MC solved 75%, 78%, 68%, and 61% of the instances, for the same set of
systems. The runtime results presented below are averages over instances that were solved
by both algorithms.

Figure 3 shows runtime results in seconds (y-axis) for different systems, ordered
by increasing size, averaging over all experiment configurations. D&J is shorthand for
divide-and-join-MC. Series whose names end with “-First” and “-All” correspond to
results for finding the first MC and all MC diagnoses, respectively.
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Figure 3. Runtime as a function of the system’s size.
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The results show several interesting trends. First, the runtime of one-SAT becomes sig-
nificantly larger than that of divide-and-join in larger systems, highlighting the benefit of
using divide-and-join for the harder problems. Second, the time gap between finding the
first diagnosis and all diagnoses is significant in one-SAT but less so in divide-and-join.
This is because one-SAT first searches for a single MC diagnosis and then asks the SAT
solver to find all other MC diagnoses. In contrast, divide-and-join computes all MC
diagnoses for every observation while searching for the first MC diagnoses. Thus, the extra
work one-SAT does between finding a first MC diagnosis and finding all of them is smaller
than in the divide-and-join algorithm, and consequently the gap between finding a single
MC diagnosis and a finding all of them is smaller. Following, we focus on the runtime of
finding all MC diagnoses and study the impact of different parameters.

Figure 4 shows runtime results as a function of the MC diagnoses’ cardinality, for sys-
tems 74181 and c880 and pint = 0.7 (other configurations showed similar trends). Interest-
ingly, the runtime divide-and-join grows faster than that of one-SAT as the MC grows.
Divide-and-Join is even slower than one-SAT for cardinality 5 and even 4 in c880. This is
reasonable since higher cardinality suggests that more observations exhibited abnormal
behavior and therefore the join operation will be more time consuming. By contrast, when
the cardinality is small this suggests that some of the observations will not even exhibit
abnormal behavior. The divide-and-join algorithm is especially suited for such cases,
as these observations will not contribute any diagnosis and the join operation can simply
skip them.
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Figure 4. Runtime as a function of the MC diagnosis.

Lastly, Figure 5 shows the runtime of both algorithms for problems on the c880 system
with different number of observations—2, 4, and 8—and different values of pint—0.3,
0.5, and 0.7. As expected, the runtimes of both algorithms increase with the number of
observations. The intermittency rate—pint—had different effect on the different algorithms.
For one-SAT, pint almost had no effect on the overall runtime. By contrast, higher pint values
resulted in significantly longer runtimes for divide-and-join-MC. This is understandable,
as having lower intermittency rate means fewer components act abnormally, thus resulting
in more observations that did not have any diagnosis, making the join operation easier.
Similar trends were observed in all the benchmark systems in most configurations.
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Discussion

The following conclusions can be drawn from the experiments:

1. divide-and-join approach is faster than one-SAT for the harder problems (with
larger set of components).

2. The time gap between finding the first diagnosis and all diagnoses is significant in
one-SAT but less so in divide-and-join.

3. The divide-and-join algorithm is especially suited for diagnosis problems with low
cardinality.

4. divide-and-join is faster for cases with fewer abnormal behaviors—smaller MC and
pint, while one-SAT is more appropriate for cases in which there are many abnormal
behaving components.

We believe that these results are significant since they show the benefits of each
approach as dependent of the configuration of the system. For instance, for large systems
with expected low cardinality and intermittency level, we will prefer divide-and-join
than one-SAT. These results are orthogonal to sequential diagnosis. Sequential diagnosis is a
diagnosis problem in which observations are generated sequentially. Most previous work
on sequential diagnosis focused on which observation to generate to reduce the number of
diagnoses [9,30–33], or to learn more about the probabilities of components to be faulty [34].
The results in our work can be used by sequential diagnosis algorithm to allow them to
process faster the sequence of observations they receive.

7. Conclusions and Future Work

In this paper, we studied the MO-MBD problem, showing that in this problem
all four configurations of WFM/SFM and intermittent/non-intermittent are possible.
For the specific case of Int.+WFM we proposed two SAT-based algorithms—one-SAT
and divide-and-join. There is no dominant algorithm, but we investigated empirically
under which conditions each algorithm is superior. Future work will extend one-SAT
and divide-and-join to the other fault mode and intermittency configurations (Int.+SFM,
NonInt+WFM, and NonInt.+SFM). In particular, adapting NonInt.+WFM is expected to be
challenging, as it requires encoding defining that a faulty behavior is consistent without
any notion of what the faulty behavior will be.
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