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Abstract

Aims: Maternal cigarette smoking during pregnancy increases the risk of negative health consequences for the
exposed child. Epigenetic mechanisms constitute a likely link between the prenatal exposure to maternal cigarette
smoking and the increased risk in later life for diverse pathologies. Maternal smoking induces gene-specific DNA
methylation alterations as well as global DNA hypermethylation in the term placentas and hypomethylation in the
cord blood. Early pregnancy represents a developmental time where the fetal epigenome is remodeled and
accordingly can be expected to be highly prone to exposures with an epigenetic impact. We have assessed the
influence of maternal cigarette smoking during the first trimester for fetal global DNA methylation.

Methods and results: We analyzed the human fetal intestines and livers as well as the placentas from the first
trimester pregnancies. Global DNA methylation levels were quantified with ELISA using a methylcytosine antibody
as well as with the bisulfite pyrosequencing of surrogate markers for global methylation status, LINE-1, and AluYb8.
We identified gender-specific differences in global DNA methylation levels, but no significant DNA methylation
changes in exposure responses to the first trimester maternal cigarette smoking.

Conclusions: Acknowledging that only examining subsets of global DNA methylation markers and fetal sample
availability represents possible limitations for the analyses, our presented results indicate that the first trimester
maternal cigarette smoking is not manifested in immediate aberrations of fetal global DNA methylation.
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Introduction

Prenatal exposure to maternal cigarette smoking (PEMCS)
represents a fetal exposure with consequences for the
birth weight and delivery term [1, 2]. PEMCS also predis-
poses individuals for diseases later in life [3-5]. This
includes reduced pulmonary function and increased asth-
matic symptoms in childhood [6-9], changes in children’s
neurodevelopment and behavior [10-12], an increased
incidence of childhood obesity and metabolic disorders
[13-15], and reduced cardiovascular health among chil-
dren [16-19]. In the Western world, approximately 25%
of women of fertile age are smoking cigarettes and 7%

* Correspondence: aln@biomed.au.dk

Equal contributors

1Department of Biomedicine, Aarhus University, Bartholin building, DK-8000
Aarhus C, Denmark

Full list of author information is available at the end of the article

( BiolVled Central

continue smoking throughout pregnancy [4]. Epigenetics,
at least in part, may explain the connection between
PEMCS and increased disease risk later in life [3, 20].
Epigenetics can mechanistically describe the regulation of
cellular gene expression in response to a given environ-
ment, with epigenetics functioning through short and long
non-coding RNA (ncRNA), chromatin remodeling, histone
modification, and DNA methylation. DNA methylation pat-
terns can be dynamic, display the cell type and tissue speci-
ficity, and change upon environmental exposure [21-23].
The DNA methylation profile in the zygote is repro-
grammed during the cleavage phase with massive de
novo DNA methylation following the implantation
phase [24, 25]. Stringent-controlled dynamics for re-
moving DNA methylation and de novo DNA methyla-
tion is essential for correct development, with early
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embryogenesis representing one critical window in
which environmental factors can influence DNA
methylation in offspring [22, 23]. PEMCS is shown to
induce quantitative alterations in position-specific CpG
methylation in the placenta and blood from newborns,
and DNA methylation changes can be maintained into
adulthood [3, 20, 26—-34]. The latter are exemplified in
the longitudinal studies by Richmond et al. and Lee et
al., in which the researchers collected peripheral blood
samples and examined the methylation status of CpG
sites manifesting PEMCS-induced DNA methylation
changes in the cord blood at birth [30, 34]. The longitu-
dinal analyses at age 17 years showed persistently chan-
ged patterns of DNA methylation for CpG sites in
AHRR (cg05575921), MYOIG (cg22132788), CYPIAI
(cg09935388), and CNTNAP2 (cg25949550), whereas
the reversibility of DNA methylation was observed for
CpG sites in GFII (cg09935388), KLF13 (cg26146569),
and ATP9A (cg07339236) [30, 34].

Similar to locus-specific DNA methylation changes,
global DNA methylation changes also represent a biodo-
simeter of lifelong environmental exposures [35]. The
consequence of PEMCS for global methylation was
addressed by Wilhelm-Benartzi et al., who in placenta
tissue examined both gene-associated loci and long
interspersed nuclear element-1 (LINE-1) and AluYb8
repetitive elements [36]. LINE and Alu repeat elements
act as surrogate markers for global DNA methylation
measurements [36, 37]. In the term placentas, the DNA
methylation level of AluYb8 was significantly higher
among infants prenatally exposed to cigarette smoke,
whereas no significant DNA methylation changes were
observed for LINE-1 and gene-associated loci [36]. An-
other study of term placenta samples also failed to find
any significant association between LINE-1 DNA methy-
lation and PEMCS [38] but, notably, gene-associated
CpG site-specific DNA methylation alterations have
been described in the placenta [28, 33, 39, 40]. In the
cord blood, using methyl-specific ELISA-based method-
ology, global DNA hypomethylation was observed in
newborns from PEMCS and second-hand smoking ex-
posure [41]. For LINE-1, no significant change in DNA
methylation in the cord blood was observed between
cigarette smoke-exposed and non-exposed children, but
an association between LINE-1 DNA methylation status
and birth weight was present [38]. In buccal cells from
children with PEMCS, AluYb8 hypomethylation was
observed, whereas in LINE-1 DNA methylation was not
significantly affected [42].

Even if PEMCS is described to induce global alter-
ations in DNA methylation present at the time of birth
and such changes, at least to some extent, can be main-
tained into later life, to our knowledge no descriptions
are present of the timing for the developmental onset of
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PEMCS-mediated global DNA methylation changes. Ac-
cordingly, we examined whether PEMCS-induced global
DNA methylation changes are manifested already during
early fetal development, a period expected to be particu-
larly prone to exposure-induced epigenetic alterations.

Materials and methods

Ethics statement and sample collection

The fetal tissues were obtained with informed consent
from women seeking a legal (<gestation week 12) abor-
tion in a regional hospital within Region Midtjylland,
Denmark. The study was approved by The Danish Na-
tional Committee on Health Research Ethics (approval
no. KF (01)258206), and all the experiments were per-
formed in accordance with the Helsinki Declaration.
There was no change in treatment or care associated
with recruitment to the study. All personal identification
data are anonymized. Information concerning smoking
habits was obtained. Cotinine concentrations were previ-
ously measured in maternal serum and fetal organs for a
similar sample cohort, and the observed correspondence
between reported smoking status and cotinine concen-
tration supported the reliability of the women’s self-
reported smoking habits [43]. Fetal tissue (6 to 12 weeks
of pregnancy) was surgically removed from the uterus
according to routine procedures. The age of the fetuses
was determined by ultrasound examination prior to the
procedure. Immediately after the surgical procedure,
placental and fetal tissues were rinsed in sterile isotonic
saline and carefully dissected under a stereomicroscope.
All fetuses appeared morphologically normal, and no
disease was suspected prior to the procedure. The small
intestine, liver, and placenta samples were isolated,
rinsed in sterile isotonic saline and placed in separate
tubes containing RNA-later (Ambion, Inc., Austin, TX,
USA). The samples were stored for 2—4 hours at room
temperature and then frozen at -20 °C.

Tissue biopsies were snap frozen in RNA-later (Ambion,
Inc., Austin, TX, USA). The sample collection was con-
tinuously expanded throughout the study period, and
samples representing each tissue and experimental assay
are not systematically the same. The numbers of samples
for each tissue (N), subdivided into female (f) and male
(m) samples, or smoking (S) and non-smoking (NS) sam-
ples, were N = 40, with 19 fand 21 m and 17 S and 23 NS,
for the placenta; N = 33, with 14 f and 19 m and 18 S and
15 NS, for the liver; and N =21, with 15 f and 6 m and 12
S and 9 NS, for the small intestine. More details on the
samples used for each particular experimental assay in-
cluding information on fetal gender, age, and smoking
status of the mothers are described in Additional file 1:
Table S1 as well as in the figure legends for the given
experimental settings. Differences in the age distribution
for males and females, as well as for smoking-exposed or
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non-smoking-exposed groups, were, if present, encoun-
tered in subsequent data analyses.

DNA extraction and gender determination

DNA was extracted using the MasterPure™ Complete DNA
and RNA Purification Kit (Epicentre, Madison, W1, USA).
DNA quantities were measured using a Nanodrop spec-
trophotometer (Thermo Scientific, Wilmington, USA).
Gender was determined by pyrosequencing, as previ-
ously described [44].

ELISA-based global DNA methylation quantification

The percentage of methylation in total DNA was deter-
mined by measuring 5-methylcytosine (5-mC) using a 5-
mC DNA ELISA kit (Zymo Research Corp, Orange, CA,
USA) that features a unique anti-5-mC monoclonal anti-
body that is both sensitive and specific for 5-mC. Assays
were performed according to the manufacturer’s instruc-
tions with the modified standard curve. The percentages
of prepared methylated DNA standards were 5, 1.66,
0.55, and 0.185%. The amount of total DNA used was
100 ng. Logarithmic second-order regression was used
to calculate the results. Since the positive and negative
controls used to prepare the standard curve consist of
Escherichia coli gDNA, the obtained results were multi-
plied by 5.68 to correct for fold differences in the density
of CpGs between E. coli and humans following the
recommendations from the manufacturer.

Bisulfite conversion and pyrosequencing for global DNA
methylation analyses

A total of 1.2 ug of the small intestine and 2 pg of the pla-
centa and liver genomic DNA was bisulfite-converted
using the EpiTect Bisulfite Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Specific
genomic DNA sites were amplified by PCR using 5 pl of
bisulfite-converted genomic DNA as templates. PCR reac-
tions were performed using PyroMark PCR kit (Qiagen)
according to the manufacturer’s instructions. Pyrose-
quencing for quantitative DNA methylation analyses was
performed using the PyroMark Q24 Advanced system
(Qiagen). LINE-1 amplification and pyrosequencing was
performed using a predesigned assay PyroMark Q24 CpG
LINE-1 (Qiagen). AluYb8 amplification and pyrosequenc-
ing was performed as previously described [37].

Statistics

An unpaired ¢ test was used to compare two sample
groups, and a comparison between multiple groups was
done using two-way (gender and smoking exposure)
analysis of variance (two-way ANOVA) using the Graph-
Pad Prism (GraphPad Software, La Jolla, CA, USA). Ana-
lysis of covariance (ANCOVA) was used to examine the
interaction between smoking, gender, and age, where age
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was treated as a continuous exploratory variable and
smoking status and gender were treated as factors.
ANCOVA was carried out using R version 3.3.1, and the
outcomes are presented in Table 1. The normal distribu-
tion of data was investigated by QQ-plot, whereas the
linearity and the homoscedasticity of residuals were
assessed by inspecting a plot of the residuals against the
explanatory variables. We did not observe any violation of
the assumptions for the analyses. In all analyses, values of
p <0.05 were considered statistically significant.

Results

Placenta global DNA methylation levels and PEMCS

To characterize the impact of PEMCS for global DNA
methylation on fetuses and placentas, we sampled the

Table 1 ANCOVA for the effects of fetal age, gender, and
PEMCS for DNA methylation levels in the first trimester
placentas, fetal livers, and small intestines

Tissue Assay Variable F value P value
Placenta 5-mC ELISA Age 8.567 0.008*
Gender 8434 0.008*

PEMCS 0.704 0411

Aluyb8 Age 0.059 0.811
Gender 4.527 0.042*

PEMCS 2958 0.096

LINE-1 Age 0.376 0.544

Gender 0.013 0.909

PEMCS 1.017 0320

Liver 5-mC ELISA Age 1.214 0.286

Gender 0.191 0.667

PEMCS 0.001 0977

Aluyb8 Age 3.190 0.085

Gender 0.004 0953

PEMCS 0.106 0.747

LINE-1 Age 0.263 0612
Gender 8.779 0.006*

PEMCS 0672 0419

Small intestine 5-mC ELISA Age 3576 0.078

Gender 0.445 0.515

PEMCS 0.147 0.707

Aluyb8 Age 0.006 0.942

Gender 1417 0.250

PEMCS 0.121 0733

LINE-1 Age 0327 0575

Gender 0.568 0462

PEMCS 1.783 0.201

Analyses were done with age as a continuous variable and gender and PEMCS
as factors
*Indicates statistical significance, p < 0.05
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human placentas, fetal livers, and fetal small intestines
representing days 44 to 82 post-gestation. Gender was
determined by pyrosequencing a polymorphic region of
the amelogenin gene, as previously described [45]. Smok-
ing status was assigned to mothers with self-reported daily
smoking (approximately 90% of the smoking mothers
reported smoking 6-20 cigarettes per day). In addition,
information regarding exposure to passive smoking was
obtained. Whereas cigarette smoking mothers also reported
exposure to passive smoking, this additional exposure was
not reported to be present among the non-smoking
mothers. A description of the gender, age, and smoking
status of the study samples is presented in Additional
file 1: Table S1.

To address whether PEMCS manifests global DNA
methylation alterations during the first trimester in the
placenta, we first performed an ELISA methylcytosine
antibody-based measurement of global DNA methyla-
tion (5-mC ELISA). No statistically significant effects of
PEMCS were observed for the global DNA methylation
level in the placenta (Fig. 1la). Gender-specific DNA
methylation quantitative effects of PEMCS have been
described [46-48], and accordingly, a two-way ANOVA
was performed to investigate the impact of PEMCS and
gender on DNA methylation levels. We observed that
lower methylation levels were present in the placenta
from female pregnancies than male pregnancies (p = 0.004,
two-way ANOVA) (Additional file 2: Figure S1A). To inves-
tigate whether fetal age affects DNA methylation levels in
the placenta, we performed ANCOVA with age, gender,
and PEMCS status as variables (Table 1). This analysis
identified a statistically significant increase in global DNA
methylation with age (p =0.008) (Table 1). Altogether, the
ELISA analyses showed that global DNA methylation levels
in the placenta are affected by fetal age and gender but not
by PEMCS.
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The average DNA methylation level for repetitive
AluYb8 elements represents an estimate for the global
DNA methylation level [37]. By measuring AluYb8 DNA
methylation levels in term placenta, Wilhelm-Benartzi et
al. identified that PEMCS resulted in hypermethylation
(66.2% in PEMCS exposed versus 64.8% in non-exposed
placenta tissue) [36]. We analyzed our samples with an
AluYb8 bisulfite pyrosequencing assay similar to the
assay used by Wilhelm-Benartzi et al. [36]. The AluYb8
bisulfite pyrosequencing assay measures the DNA
methylation status of five consecutive CpG sites. For
each tested DNA sample, we determined the average
DNA methylation level for these five CpG sites. A com-
parison between smoking-exposed and non-exposed
samples revealed that PEMCS did not induce alterations
in AluYb8 DNA methylation (Fig. 1b). We next ques-
tioned whether differences in DNA methylation levels
existed between smoking-exposed and non-exposed
samples at individual AluYb8 CpG sites. We detected no
PEMCS-induced changes in DNA methylation levels for
any of the five CpG sites (Additional file 2: Figure S1B).
Two-way ANOVA using the DNA methylation data for
the average AluYb8 DNA methylation level for each
sample identified a lower AluYb8 DNA methylation level
in females than males (p=0.036, two-way ANOVA)
(Additional file 2: Figure S1C). We note that AluYb8
methylation levels in term placentas previously were
described to be gender dependent [36]. A subsequent
ANCOVA revealed no impact of the fetal age on AluYb8
DNA methylation in placentas (Table 1). Similar to
AluYb8, the average DNA methylation level for repeti-
tive LINE-1 elements represents an estimate for the
global DNA methylation level [37]. We analyzed our
samples with a LINE-1 bisulfite pyrosequencing assay.
The used LINE-1 bisulfite pyrosequencing assay mea-
sures DNA methylation levels for three consecutive CpG

A p value < 0.05 was considered statistically significant
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Fig. 1 Global DNA methylation in placentas. DNA methylation determined by ELISA using a 5-mC-specific antibody (non-smoking group N =15
and smoking group N =12). Data represent the means of two experiments. The average DNA methylation percentage for b five consecutive
AluYb8 CpG sites (non-smoking group N= 19 and smoking group N =13) and ¢ three consecutive LINE-T CpG sites (non-smoking group N =22
and smoking group N =17) were determined by pyrosequencing bisulfite-converted DNA. Data represent the means of two runs, except for
samples that differed more than 5% in methylation levels within the duplicates. For such samples, a third run was performed and the presented
data represent the means of the three runs. Mean methylation percentages + SD are shown. Unpaired t test was used to compare two groups.
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sites. For each tested DNA sample, we determined the
average methylation level of all three CpG sites. A
comparison between smoking-exposed and non-exposed
samples revealed that PEMCS did not induce alterations
in LINE-1 DNA methylation (Fig. 1c). We next ques-
tioned whether differences in DNA methylation levels
existed between smoking-exposed and non-exposed
samples at individual LINE-1 CpG sites. We detected no
PEMCS-induced changes in DNA methylation levels for
any of the three CpG sites (Additional file 2: Figure
S1D). Moreover, two-way ANOVA did not detect gender
differences in LINE-1 DNA methylation levels (Additional
file 2: Figure S1E), and ANCOVA revealed no association
between LINE-1 DNA methylation levels and fetal age
(Table 1). From the described analyses of surrogate repeti-
tive element markers, we conclude that PEMCS in the
first trimester is not manifested in placenta global DNA
methylation changes and no interaction is present be-
tween PEMCS, gender, and age (data not shown).

Global methylation levels in fetal livers and small
intestines and PEMCS

We next questioned whether global changes in DNA
methylation were present in the fetus due to the first
trimester PEMCS. We first examined global quantitative
DNA methylation levels in the fetal livers, which repre-
sent a key metabolic target tissue. In a 5-mC ELISA-
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based DNA methylation analysis, we identified no
significant differences caused by PEMCS (Fig. 2a). Two-
way ANOVA revealed a similar level of DNA methyla-
tion in males and females (Additional file 3: Figure S2A)
and no impact of fetal age for the global DNA methyla-
tion level in the fetal livers were detected by ANCOVA
(Table 1). We next addressed AluYb8 DNA methylation
with the same bisulfite pyrosequencing assay used for
the placenta analysis. PEMCS was not identified to have
an impact on the average DNA methylation level of the
five AluYb8 CpQG sites tested (Fig. 2b). DNA methylation
levels for the individual AluYb8 CpG sites also were
unaffected by PEMCS (Additional file 3: Figure S2B).
Gender was not identified to have an impact on AluYb8
DNA methylation (Additional file 3: Figure S2C).
AluYb8 DNA methylation levels were not affected by
the age of the fetal liver samples (Table 1, ANCOVA).
LINE-1 DNA methylation levels were next measured
with the same bisulfite pyrosequencing assay used for
placenta samples. No significant effects of PEMCS were
observed for LINE-1 methylation, either for the average
DNA methylation level for the three LINE-1 CpG sites
tested or for each of the three individual CpG sites
(Fig. 2c¢, Additional file 3: Figure S2D). We detected
significantly lower LINE-I DNA methylation levels in
females compared to that in males (p = 0.009, two-way
ANOVA) (Additional file 3: Figure S2E). LINE-1 DNA
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Fig. 2 Global DNA methylation in fetal livers and small intestines. a DNA methylation in the fetal liver was determined by ELISA using 5-mC-
specific antibody (non-smoking group N =10 and smoking group N=11). Data represent the means of three experiments. b—c Percentage of
methylation of AluYb8 and LINE-T in the fetal liver was determined by pyrosequencing bisulfite-converted DNA (non-smoking group N =15 and
smoking group N = 18). d DNA methylation in the fetal small intestine was determined by ELISA using 5-mC-specific antibody (non-smoking
group N=7 and smoking group N=12). Data represent the means of 2 experiments. e-f Percentage of methylation of AluYb8 (non-smoking
group N=9 and smoking group N=12) and LINE-T (non-smoking group N =9 and smoking group N =11) was determined by pyrosequencing
bisulfite-converted DNA. Percentages of methylation were calculated, analyzed and displayed as described in the legend for Fig. 1
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methylation levels were not affected by the age of the
fetal liver samples (Table 1, ANCOVA).

To investigate another fetal tissue, we also performed
DNA methylation analyses of the fetal small intestine. 5-
mC ELISA analysis showed no significant changes in the
small intestine global DNA methylation levels from
PEMCS (Fig. 2d). We also did not detect gender or age
effects for the global DNA methylation levels in the fetal
small intestines (Table 1 and Additional file 4: Figure
S3A). In accordance, bisulfite pyrosequencing of AluYb8
and LINE-1 showed no significant effects for the DNA
methylation levels in the small intestines (Fig. 2e and f,
Additional file 4: Figure S3B and S3D). Gender and age
had no significant effect on the AluYb8 and LINE-1
DNA methylation levels in the small intestines (Table 1
and Additional file 4: Figure S3C and S3E). From the
presented results based on the analyses of surrogate
markers for global DNA methylation status, we conclude
that, at least in the hereby examined sample cohort, the
first trimester PEMCS does not affect the global DNA
methylation level in fetal small intestines and livers.

Discussion

In the presented study, we have examined whether
PEMCS results in global DNA methylation changes in
the first trimester placentas and fetal livers and small
intestines. In term placentas and umbilical cord blood,
as well as in the peripheral blood and buccal epithelium
tissue of children, PEMCS-induced differences in global
DNA methylation have previously been described [36,
41, 42]. However, for tissue samples representing early
fetal development, to our knowledge, results addressing
maternal smoking and global DNA methylation alter-
ations, do not exist, and this lack of information reflects
the fact that relevant experimental samples are rarely
obtainable. In our analyses examining the first trimester
placentas and fetal livers and small intestines, we did not
identify significant PEMCS-induced alterations in global
DNA methylation levels. This indicates either higher
sensitivity for a DNA methylation response later in fetal
development or the requirement of a long-term dose-
effect response before smoking-mediated DNA methyla-
tion alterations will be manifested at birth and in later
life [34, 49]. Notably, an immediate manifestation of
gene-specific DNA methylation alterations from mater-
nal smoking in the first trimester was shown in the study
by Chhabra et al. [39]. Methylation array analyses identi-
fied gene-specific DNA methylation alterations associ-
ated with nicotine exposure, but only a few of these
changes were similar to the DNA methylation changes
described to be present at birth, in childhood, or in
adulthood due to PEMCS [39]. This observation, as well
as our results for global DNA methylation levels, is in
contrast to the general assumption that early pregnancy
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represents the most sensitive period for the lifelong mani-
festation of environmental-induced epigenetic changes.
Chhabra et al’s [39] observation of gene-specific DNA
methylation alterations in the first trimester tissue due to
maternal smoking, while global DNA methylation levels
were not affected, could reflect the remodeling of specific
signaling pathways by maternal cigarette smoking at this
particular developmental time. We note the existence of
developmental consequences of the first trimester smok-
ing exposure since the number of germ cells is signifi-
cantly reduced in the first trimester fetuses exposed to
maternal cigarette smoke [43].

The relative low number of available fetal samples
represents a limitation for the current study since it
could prevent the detection of subtle methylation differ-
ences; however, we were unable to increase the number
of samples given the limited availability of the human
samples for our analyses. A possible confounder in studies
of the effect of PEMCS is the reliability of self-reported
smoking status, as well as exposure to household smoking,
which has been found to cause the same DNA methyla-
tion effects in newborns as PEMCS [27, 41]. Most women
are aware of the fact that smoking during pregnancy can
be harmful to their child and may therefore understate
their smoking in the mother-child analyses [50-52]. How-
ever, as the women included in the present study sought
the active termination of their pregnancies, their willing-
ness to report smoking could be more reliable. In support
of this, measurements of cotinine levels in similar col-
lected samples from women undergoing the legal termin-
ation of their pregnancies have verified the reliability of the
women’s self-reported smoking habits [43]. In addition, we
note that all the non-smoking women in the study reported
an absence of exposure to second-hand smoking, whereas
nearly all smoking women reported additional exposure to
second-hand smoking. Finally, transgenerational smoking
effects as well as the preconception smoking of the father
and the mother have potential consequences for the fetal
epigenome and can confound the methylation levels mea-
sured in the non-exposed samples [20].

Conclusion

Smoking cessation prior to the second trimester of preg-
nancy seems to have many of the same health benefits
as smoking cessation before pregnancy or never having
smoked [2, 13, 53, 54]. To the best of our knowledge,
the presented data are the first to show that global fetal
DNA methylation is not significantly changed in organs
from the first trimester PEMCS. Obviously, site-specific
CpG methylation alterations from PEMCS with potential
devastating health consequences can already be mani-
fested from the first trimester smoking exposure, but
not elucidated in the present analyses of global alter-
ations. This was exemplified by Chhabra et al., who
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showed an association between gene-specific DNA
methylation changes and nicotine exposure in the first
trimester lung and placenta [39]. The current clinical
guidelines highlight the importance of the cessation of
cigarette smoking before or early in the pregnancy. It is
important to stress that epidemiological data and gene-
specific DNA methylation data still invariably support
reinforced attempts of the immediate smoking cessation
for women still smoking at the time of pregnancy recog-
nition to improve prenatal care.

Additional files

Additional file 1: Table S1. Description of fetal and placenta samples.
The number of samples (N) and fetal age in days are illustrated. Samples
were assigned to the smoking-exposed group if mothers smoked one or
more cigarettes per day (approximately 90% of the smoking mothers
were smoking 6-20 cigarettes per day). Exposure to passive smoking was
not reported among the non-smoking mothers, whereas among the
smoking mothers most also reported exposure to passive smoking.
Unpaired t test was used to determine whether there is a statistically
significant age difference between the non-smoking and smoking groups
and between females and males used for a particular assay (LINE-1, AluYb8,
and 5-mC ELISA). *Indicates statistical significance, p < 0.05. (DOCX 17 kb)

Additional file 2: Figure S1. DNA methylation in placentas. a DNA
methylation in female and male fetal placentas determined by the Elisa
method using 5-mC-specific antibody (non-smoking female group N=6,
non-smoking male group N =19, smoking female group N =7, and smok-
ing male group N'=5). Data represent the mean of two experiments. b
Percentage of AluYb8 DNA methylation at five consecutive CpG sites
(non-smoking group N=19 and smoking group N = 13). ¢ AluYb8 DNA
methylation in males and females (non-smoking female group N=7,
non-smoking male group N =12, smoking female group N =8, and
smoking male group N=5). d Percentage of LINE-1 DNA methylation at
three consecutive CpG sites (non-smoking group N =22 and smoking
group N=17). e LINE-T DNA methylation in males and females (non-
smoking female group N =9, non-smoking male group N = 13, smoking
female group N=9, and smoking male group N = 8). Percentages of
methylation were calculated and displayed as described in the legend for
Fig. 1. Unpaired t test was used to compare non-smoking and smoking
exposed group, while two-way ANOVA was used to compare combined
effects of smoke exposure and gender. *Indicates statistical significance,
p < 005. (PDF 559 kb)

Additional file 3: Figure S2. DNA methylation in fetal livers. a DNA
methylation in female and male fetal livers determined by the Elisa
method using 5-mC-specific antibody (non-smoking female group N=4,
non-smoking male group N =6, smoking female group N =6, and
smoking male group N = 5). Data represent the mean of three experiments.
b Percentage of AluYb8 DNA methylation at 5 consecutive CpG sites
(non-smoking group N =15 and smoking group N = 18). ¢ AluYb8 DNA
methylation in males and females (non-smoking female group N=6,
non-smoking male group N'=9, smoking female group N =8, and smoking
male group N = 10). d Percentage of LINE-T DNA methylation at three
consecutive CpG sites (non-smoking group N =15 and smoking group
N=18). e LINE-1 DNA methylation in males and females (non-smoking
female group N=6, non-smoking male group N =9, smoking female group
N =38, and smoking male group N = 10). Percentages of methylation were
calculated and displayed as described in the legend for Fig. 1. Unpaired t
test was used to compare non-smoking and smoking exposed group, while
two-way ANOVA was used to compare combined effects of smoke expos-
ure and gender. *Indicates statistical significance, p < 0.05. (PDF 539 kb)

Additional file 4: Figure S3. DNA methylation in fetal small intestines.
a DNA methylation in female and male fetal small intestines determined
by the Elisa method using 5-mC-specific antibody (non-smoking female
group N =5, non-smoking male group N = 2, smoking female group N=8,
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and smoking male group N =4). Data represent the mean of two experiments.
b Percentage of AluYb8 methylation at 5 consecutive CpG sites (non-smoking
group N =9 and smoking group N = 12). ¢ AluYb8 DNA methylation in males
and females (non-smoking female group N =7, non-smoking male
group N=2, smoking female group N=38, and smoking male group
N=4). d Percentage of LINE-1 DNA methylation at three consecutive CpG
sites (non-smoking group N =9 and smoking group N=11). e LINE-1 DNA
methylation in males and females (non-smoking female group N=7, non-
smoking male group N = 2, smoking female group N=7, and smoking male
group N =4). Percentages of methylation were calculated and displayed as
described in the legend for Fig. 1. Unpaired t test was used to compare non-
smoking and smoking exposed group, while two-way ANOVA was used to
compare combined effects of smoke exposure and gender. (PDF 529 kb)

Abbreviations
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PEMCS: Prenatal exposure to maternal cigarette smoking
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