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Implant-associated osteomyelitis (IAO) is a common complication in orthopedic surgery. The aim of this study was to
elucidate how deep IAO can go into the peri-implanted bone tissue within a week. The study was performed in a por-
cine model of IAO. A small steel implant and either 104 CFU/kg body weight of Staphylococcus aureus or saline was
inserted into the right tibial bone of 12 pigs. The animals were consecutively killed on day 2, 4 and 6 following implan-
tation. Bone tissue around the implant was histologically evaluated. Identification of S. aureus was performed immuno-
histochemically on tissue section and with scanning electron microscopy and peptide nucleic acid in situ hybridization
on implants. The distance of the peri-implanted pathological bone area (PIBA), measured perpendicular to the implant,
was significantly larger in infected animals compared to controls (p = 0.0014). The largest differences were seen after 4
and 6 days of inoculation, where PIBA measurements of up to 6 mm were observed. Positive S. aureus bacteria were
identified on implants and from 25 lm to 6 mm into PIBA. This is important knowledge for optimizing outcomes of
surgical debridement in osteomyelitis.
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Implant-associated osteomyelitis (IAO) is among
the most severe orthopedic conditions (1). The
absolute number of IAO cases is increasing, owing
to the growing number of patients with bone
implants (2). In the United States of America, the
infection rate is 5–15% in fracture fixation devices
and 0.3–5% in joint prosthesis (3, 4). Treatment of
IAO can include surgical debridement, removal of
implants and long-lasting antimicrobial therapy,
and calls for a multidisciplinary approach (1). Nev-
ertheless, treatment failure is common. Despite
removal of the infected device and extensive
debridement, there is a high risk of re-infection and
prolonged use of postoperative antibiotics (5). In
two different retrospective studies, treatment failure
rates of IAO have been estimated to 41.8 and 58.2
percent, respectively (6, 7). An explanation for the

infections and re-infections of IAO has been sug-
gested to be bacterial survival in the peri-implanted
bone tissue (8).

Insertion of orthopedic implants is an equipment
requiring process that involves drilling and often
the use of bone cements. A by-product of these
procedures is the generation of heat resulting in
osteonecrosis (9). The necrotic osteocytes lose their
inhibitory effects on osteoclasts leading to increased
osteoclast activity and thereby bone resorption (10).
Aside from resorption of dead bone, the process of
osseointegration of an implant is especially depen-
dent on the ingrowth of osteoblasts and mesenchy-
mal stem cells (11). Along with osteonecrosis, bone
resorption and osseointegration, a foreign body
response also occurs around the implant (12). All
these cellular changes make the peri-implanted bone
tissue a perfect locus resistentiae minoris for bacte-
rial infection (13).Received 12 May 2016. Accepted 31 July 2016
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The aim of this study was to answer the follow-
ing question: how deep is a bacterial infection going
in the peri-implanted bone tissue, in a case of IAO,
within a week? The question was addressed in a
porcine model of IAO in which evaluation of the
entire infected bone is possible after a fixed period
of time, compared to surgical biopsies from
humans. Furthermore, it is highly relevant to use
pigs for modeling of infectious diseases in humans,
like IAO, as the porcine immune system shows a
higher degree of similarity when compared to
rodents and rabbits (14).

MATERIAL AND METHODS

Study design

The study is a descriptive study based on mainly micro-
scopic observations in bone tissue and on orthopedic
implants, obtained from a porcine model of IAO. The
model is based on tibial insertion of a small steel implant
combined with inoculation of Staphylococcus aureus bacte-
ria or sterile saline. Twelve pigs of 30 kg body weight,
obtained from a specific pathogen-free (SPF) herd, were
divided into three groups based on their time of killing
(Table 1). The Danish Animal Experimental Inspectorate
approved the protocol (license No. 2013/15-2934-00946).

Experimental surgery and inoculum

Animals were anesthetized (15) and a tibial implant was
inserted (K-wire 2 9 20 mm) 1 cm below the growth plate
of the right tibia. The procedure was recently described
(16). The bacterial inoculum or saline was injected around
the implant, before closure of the periost, subcutis and
skin (16). The inoculating S. aureus strain was a

pathogenic porcine strain, previously used in porcine models
of osteomyelitis (17). The strain was prepared as described
by Johansen et al. (18) and diluted with 0.9% sterile iso-
tonic saline to obtain an inoculation dose of 104 colony
forming units (CFU)/kg BW in a final volume of 10 lL.

Postoperative care of pigs

The pigs were daily monitored throughout the experiment
by skilled personal. A body temperature above 41 °C,
impaired ability to stand and anorexia were set as human
endpoints. The pigs received intramuscular injections
(0.1 mg/kg BW) of buprenorphine (Temgesic 0.3 mg/mL,
Schering-Plough, Heist-op-den-Berg, Belgium) every 6–
8 h. The pigs did not receive local or systemic antibiotic
treatment, which is applied to human patients under ther-
apy, as this would have hampered the focus of the study,
that is, the ability to spread within the bone of the inflam-
mation and infection.

Pathology

Following killing after 2, 4 and 6 days, the implant was
removed from the implant cavity using a sterile lancet and
collected for scanning electron microscopy (SEM) and
peptide nucleic acid fluorescence in situ hybridization
(PNA FISH). From all pigs, the right tibia was dissected
free and decalcified. However, in group C animals, the
right tibial bone was sagittal sectioned through the
implant cavity before decalcification. Following decalcifi-
cation, the proximal end of right tibial bone, containing
the implant cavity, was cut into five sagittal pieces 3–
4 mm each. Afterward, the bone pieces were processed
routinely and embedded in paraffin wax. Sections
(4–5 lm) were stained with hematoxylin and eosin (HE)
and special stained with phosphotungstic acid hematoxylin
(PATH) and Masson’s trichrome for demonstration of fib-
rin and collagen, respectively. Bone tissue with

Table 1. Summary of design and results in a porcine model of implant-associated osteomyelitis

Animals Summary of results

Group Inoculum
CFU/Kg BW
af S. aureus
(Spa-type)

Time of
killing PI
(Days)

Microbiology of
swab from
implant cavity
(Spa-type)

IHC
detection of
S. aureus in
PIBA

Detection of
S. aureus on
implant surface
by PNA FISH

Detection of
biofilm on
implant surface
by SEM

Score of
neutrophils
in PIBA13

A Saline 2 S. aureus (not
Spa-typed)

No – – 3+

Saline 2 S. aureus (t034) No No – 2+
104 (t1333) 2 S. aureus (t1333) Yes No – 3+
104 (t1333) 2 S. aureus (t1333) Yes – Yes 3+

B Saline 4 S. aureus (not
Spa-typed)

No – – 2+

Saline 4 S. aureus (t034) Yes No – 3+
104 (t1333) 4 S. aureus (t1333) Yes No – 3+
104 (t1333) 4 S. aureus (t1333) Yes – Yes 3+

C Saline 6 S. aureus (not
Spa-typed)

No – – 2+

Saline 6 S. aureus (t1430) No – Yes 2+
104 (t1333) 6 S. aureus (t1333) Yes – Yes 3+
104 (t1333) 6 S. aureus (t1333) Yes Yes – 2+

BW, body weight; PI, postinfection; IHC, immunohistochemistry; PIBA, peri-implanted pathological bone area; PNA
FISH, peptide nucleic acid in situ fluorescence hybridization; SEM, scanning electron microscopy.
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pathological changes, around the implant cavity, was
defined as the peri-implanted pathological bone area
(PIBA). The largest size of PIBA was measured perpendic-
ularly to the implant cavity on the most representative sec-
tion. On the same section, the scoring system developed
by Pandey el al. (19) was used to define whether an infec-
tion occurred. Pandey found that the presence of 2+ or
more (more than one neutrophil granulocyte per high
power field (400) on average after examination of at least
10 high power fields) in periprosthetic tissue, distinguish-
ing between septic and aseptic loosening of prosthesis and
bone implants in humans. The scores were as follows:
0 = absent; 1+ less than 1 cell on average per high power
filed; 2+ = 1–5 cells on average per high power fields;
3+ = >5 cells on average per high power fields.

Microbiology

Cotton swabs were taken from the implant cavity after
removal of the implant. Swabs were processed and charac-
terized as previously described (20), and selected bacterial
isolates were Spa-typed (21).

Immunohistochemistry of bone tissue

Tissue sections of 4 lm were prepared and processed for
indirect in situ identification of S. aureus with immunohis-
tochemistry. Primary S. aureus-specific antibodies
(ab37644; Abcam, Cambridge, UK, diluted 1:1000 in 5%
swine serum) were used (18). The size of the largest
observed S. aureus-positive aggregates and their distance
to the implant cavity were estimated on each section, by
measuring the length directly on the immunohistochem-
istry (IHC) sections.

Scanning electron microscopy and peptide nucleic acid

fluorescence in situ hybridization of implants

Selected implants were examined with scanning electron
microscopy (SEM) and peptide nucleic acid fluorescence
in situ hybridization (PNA FISH) (Table 1). The implants
were placed in 2, 5% glutaraldehyde or formalin for SEM
and PNA FISH, respectively. The samples for SEM were
rinsed three times in 0.15 M sodium phosphate buffer
(pH 7.4); specimens were postfixed in 1% OsO4 in
0.12 M sodium cacodylate buffer (pH 7.4) for 2 h. Fol-
lowing a rinse in distilled water, the specimens were dehy-
drated to 100% ethanol and critical point dried (Balzers
CPD 030 instrument, Leica Microsystems, Wetzlar, Ger-
many) using CO2. The specimens were subsequently
mounted on stubs, using colloidal coal as an adhesive,
and sputter coated with gold (Polaron SEM E5000 coat-
ing unit). Specimens were examined with a Philips FEG30
scanning electron microscope operated at an accelerating
voltage of 2 kV. The samples for PNA FISH were care-
fully rinsed in sterile saline for 5 min. Samples were
placed in a dish (depth 1 mm, diameter 10 mm) and cov-
ered by 100 lLn PNA FISH-specific S. aureus probe
(Advandx, Woburn, Massachusetts, USA). Samples were
incubated at 55 °C for 90 min. Subsequently, dishes were
submersed for 30 min in 55 °C warm wash buffer (4 mL
609 wash buffer (Advandx) to 240 mL miliQ water).
Afterward, the samples were air-dried in the dark

followed by covering by 3 mM DAPI solution (Life Tech-
nologies, Carlsbad, California, USA) for 15 min at room
temperature. Excess DAPI was removed by gently rinsing
with PBS (the Substrate Department at the Panum Insti-
tute, Denmark). All observations were performed using a
Zeiss LSM 710 confocal laser scanning microscope (Ober-
kochen, Germany).

Statistics

An unpaired t-test was used to analyze PIBA measure-
ments between control and infected animals (GraphPad
Software inc, version 7, LaJolla, California, USA).

RESULTS

Clinical observations

All animals were healthy when entering the study,
but became lame on the operated leg after surgery
and up until killing. The degree of lameness was
low, as the animals were able to use the leg and
walk around freely. One of the infected Group B
animals had intermittent elevated body tempera-
ture. All animals ate and drank normally before
and during the experiment.

Macroscopic pathology

Thick purulent material was seen within the implant
cavity in the infected animals following 4 and 6 days.
In all control pigs, and pigs infected for 2 days, sero-
hemorrhagic fluid was present. Following sagittal
section of the inoculated tibial bone from the two
infected Group C animals, signs of osteomyelitis
were seen around the implants as purulent and
sequestered trabecular bone tissue (Fig. 1).

Histopathology

The neutrophil granulocyte score counted inside PIBA
and the size of PIBA is presented in Table 1 and
Fig. 2A, respectively. The size of PIBA showed no
marked difference between infected and control ani-
mals after 2 days from surgery with a mean difference
of 0.7 mm (Fig. 2A). However, in Groups B and C,
the mean differences between infected and control ani-
mals were 4.3 mm and 4.4 mm, respectively
(Fig. 2A). The p-value of the difference in PIBA size
between control (n = 6) and infected animals (n = 6)
was 0.0014 (Fig. 2B). The largest registered PIBA
value for day 4 (Group B) and day 6 (Group C) was
6.0 mm and 6.21 mm, respectively (Fig. 2A).

The following description of pathomorphological
changes is correlated with the trabecular tissue
only. In Group A, PIBA was a mix of erythrocytes,
bone marrow leukocytes, necrotic trabecular tissue
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(with empty lacuna), neutrophils and fibrin exuda-
tion (Fig. 3A). However, more neutrophils and
extensive fibrin exudation were seen in the infected
animals. At 4 and 6 days after inoculation (Groups
B and C), a cellular layer of elongated fibroblasts,
neutrophils, macrophages and giant cells were seen
toward the implant cavity (Fig. 3B). This layer was
surrounded by osteonecrotic trabecular bone inter-
mingled with the same cell types. The most pro-
nounced pathomorphological findings within PIBA
of infected Groups B and C animals were massive
extension of the cellular layer and active osteoclasts
seen in resorptions lacuna of the necrotic bone tra-
becular (Fig. 3C,D). In the periphery of PIBA,
fibroblasts and associated new collagen could be
seen, although more pronounced in infected ani-
mals compared to controls. Generally, almost no
bone tissue was present within PIBA of infected
Group C animals.

Localization of bacteria in bone tissue

Bacteria were not identified by IHC in cortical bone
tissue of any animal. Immunopositive S. aureus
bacteria were present in all infected pigs of Groups
A, B and C within both the exudate of the implant
cavity and within PIBA (Table 1 and Fig. 4A).
Additionally, S. aureus bacteria were also detected
in one control animal of Group B within BIPA
(Table 1 and Fig. 4B). IHC-positive S. aureus

bacteria were not identified in the control animals
of Groups A and C. On the tissue section repre-
senting the center of PIBA, the size of the largest
S. aureus-positive aggregate stayed between 25 and
84 lm and was located from 25 to 2000 lm within
PIBA regardless of the time of inoculation. More-
over, bacteria were found on two consecutively sec-
tions from distant bone pieces (2–3 mm each), not
covering the implant cavity, in one infected animal
of Groups A and B, each. All bacterial aggregates

Fig. 1. Macroscopic pathological changes in a porcine
tibial bone 6 days after S. aureus inoculation and insertion
of a steel implant. The implant was inserted just below the
grow plate (gp) in the trabecular bone tissue. The implant
has been removed on the picture, presenting the implant
cavity (ic). Purulent exudation is seen in the implant cavity
and within the surrounding bone tissue. The peri-
implanted bone tissue with pathological changes is
referred to as the peri-implanted pathological bone area
(PIBA).
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Fig. 2. (A) The size in mm of the peri-implanted pathological
bone area (PIBA) in a porcine model of implant-associated
osteomyelitis 2, 4 and 6 days after tibial insertion of a steel
implant and injection of Staphylococcus aureus (blue) or saline
(red). PIBA was measured perpendicular from the implant cav-
ity and until normal tissue architecture occurred. (B) Grouping
of animals inoculated with Staphylococcus aureus and animals
inoculated with saline. The figure shows the size in mm of
the peri-implanted pathological bone area (PIBA). Boxes,
95% confidence interval; whiskers, min. and max. value: bold
line, mean value. The size of PIBA was significantly (** = P ≤
0.001) increased in pigs inoculated with S. aureus.
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inside PIBA were seen within the cellular zone or
adjacent to osteonecrosis.

Microbiology

All swab and Spa-typing results are presented in
Table 1.

Implants SEM and PNA FISH

By SEM, coccoid bacteria were observed attached
to the surface of all implants from both control
and infected animals in the form of biofilm. The
areas of biofilm were defined to isolated islands on
the implant surface. In general, the bacteria were
found embedded in a biomass of extracellular

matrix, leukocytes and erythrocytes (Fig. 4C).
Attached leukocytes appeared to be more dominant
on implants of infected animals. By PNA FISH,
S. aureus could be identified on one implant
(Table 1 and Fig. 4D).

DISCUSSION

This study shows that pathomorphological changes
and infecting bacteria of IAO can go up to 6 mm
into the surrounding bone tissue within a week, in
a porcine model (Fig. 2). The surrounding bone
tissue was described as PIBA. Within PIBA, S. au-
reus bacteria could be identified both adjacent to
and distant from the implant. However, despite

A B

C D

Fig. 3. Overview of histopathological bone changes in porcine tibial bones following 2 (A) and 6 (B, C and D) days after
S. aureus or saline inoculation and insertion of a steel implant. Pictures A and B represent pigs inoculated with saline, and
pictures C and D represent pigs inoculated with S. aureus. IC: implant cavity. Picture A: an overview of the peri-implanted
pathological bone area (PIBA) after 2 days of inoculation. HE, bar = 400. Picture B: a thin area of primarily fibroblasts
and collagen was seen on the surface toward the implant cavity. Masson’s trichrome, bar = 250. Picture C: a large area of
fibroblasts, collagen, giant cells and macrophages was seen toward the implant cavity. Almost no bone (b) tissue was left
within PIBA. HE, bar = 300. Picture D: a dominant finding between infected and control pigs after day 4 of inoculation
was a substantial presence of active osteoclasts (arrow). HE, bar = 200.
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bacteria in PIBA (shown with IHC), in the exudate
within the implant cavity (shown with microbiol-
ogy of swabs) and within the biofilm on the
implants (shown with PNA FISH and SEM), bac-
terial aggregates could not be demonstrated laying
on the surface of PIBA, that is, facing the implant
cavity.

The present observations of peri-implanted bacte-
ria are supported by a study of subcutaneous
implant-associated infections (IAI) in a mouse
model, showing that bacteria (Staphylococcus epi-
dermidis) could be found within the tissue at a cer-
tain distance from the implant (22, 23). In
orthopedic infections, bacteria are usually discussed

in the context of biofilm formation directly on the
implant (24). However, case reports of IAO have
also confirmed that peri-implanted bone tissue may
contain pathogenic bacteria (25, 26). Recently, by
the same method as in this study (27), the size of
bacterial colonies within peri-implanted bone tissue
from patients with osteomyelitis has been estimated
to range between 5 and 50 lm. In general, the max-
imal size of an in vivo biofilm has been estimated to
be 200 lm (27). All measurements of S. aureus col-
onize within peri-implanted bone tissue of the pre-
sent porcine model were below 84 lm. Therefore,
the size of the observed bacterial colonies can be
accepted as discriminative to human cases.

A B

C D

Fig. 4. Visualization of bacteria inside bone tissue and on the surface of steel implants from a porcine model of implant-
associated osteomyelitis inoculated with S. aureus or saline. IC: implant cavity. Picture A: six days after bacterial inocula-
tion, S. aureus-positive bacteria (arrow) were seen in the peri-implanted pathological bone area (PIBA). Insert; Close-up of
a positive S. aurous colony, IHC staining for S. aureus, bar = 300. Picture B: four days after inoculation with saline, S. au-
reus-positive bacteria were seen enclosed just inside PIBA. These bacteria are supposed to be a result of self-contamination,
as the Spa type of the implant cavity revealed another S. aureus strain as the one used for inoculation, IHC staining for
S. aureus, bar = 200. Picture C: scanning electron microscopy (SEM) of an implant surface following 4 days of inoculation
with S. aureus showing bacteria (b) and extracellular material (e), bar = 5 lm. Picture D: peptide nucleic acid fluorescence
in situ hybridization (PNA FISH) of implant surface following 6 days of inoculation with S. aureus. Bacteria positive for
the S. aureus probe light up in red and leukocytes in blue, bar = 20.
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The Infectious Disease Society of America (IDSA)
has recently proposed five criteria for the diagnosis of
periprosthetic infections (28). The infected pigs from
this study fulfill criteria 2 (pus around the implant), 3
(histopathological evidence of inflammation) and 5
(positive intraoperative cultures). Additionally, the
control animals also fulfilled criteria 3 and 5. How-
ever, Spa-typing results indicated that the control ani-
mals contaminated and infected themselves. The Spa
types observed among control pigs isolates are typi-
cally seen in commensal porcine S. aureus strains (29)
and differed from the Spa type used for inoculation
(17). Self-contamination of the control animals thus
highlights the hypothesis of the peri-implanted area
as a locus resistentiae minoris; that is, a minimal num-
ber of bacteria can colonize an implant and the sur-
rounding tissue. As S. aureus is the most common
pathogen associated with IAO, and an independent
risk factor of treatment failure (6), this bacterium was
used. The selected porcine S. aureus strain was cho-
sen, due to its ability to induce bone infection and
inflammation (17, 18). The dose of 104 CFU/kg BW
was estimated to be among the lowest infective dose,
based on a former dose–response study using the
same porcine S. aureus strain (18).

All animals scored 2+ or 3+ in number of neu-
trophils. The scoring system for the number of neu-
trophils was originally used on tissue section from
cases of chronic low-grade IAO in humans (19).
Specific neutrophil number cutoffs for high-grade
IAO, to which infected animals of this study may
belong, has not been established (30).

Although the number of infected and control
animals killed on each time point is limited, group-
ing of pigs as either being infected (n = 6) or con-
trol (n = 6) animals allowed a statistical
comparison of PIBA size (Fig. 2B). As significance
was observed between these two groups, the group
size was acceptable, that is, including more pigs
could be a waste of animals. It was not possible to
do statistical calculations between infected and con-
trol animals of each time points. However, the val-
ues from each time points can give an estimate of
the variance and effect size in power/sample size
calculations. This might be relevant for further
experiments aiming to study effects of surgical or
medical treatments in the porcine model. The
histopathological examinations of all animals
clearly demonstrated trabecular osteonecrosis
around the implant cavity due to drilling of the
bone prior to insertion of the implant. Addition-
ally, the injection of S. aureus bacteria resulted in
noticeable pathomorphological changes between
infected and control animals, visualized by the size
of PIBA (Fig. 2A). The most obvious changes
within infected animals were bacterial aggregates

and accumulations of inflammatory cells, giant
cells, active osteoclasts and fibroblasts. Thus, the
present injection of bacteria, during insertion of the
bone implants, resulted in biofilm formation on the
implants and a peri-implanted bacterial reservoir
directing bone pathomorphology. A peri-implanted
bacterial reservoir might hamper a fast diagnosis
and therapeutic debridement in cases of IAO. Fur-
thermore, when located in the peri-implanted bone
tissue, S. aureus bacteria can form biofilm (24),
small colony variants (31) and be internalized by
osteoblasts (31), three situations which favor persis-
tence of the bacteria and infection.

The present porcine model of IAO showed that
bacterial aggregation occurred on the surface of
implants and within the surrounding bone tissue
within 6 days of infection. Thus, it is important to
notice that peri-implanted bone tissue shortly after
implantation can serve as a reservoir for infecting
bacteria. This is important knowledge for optimiz-
ing outcomes of surgical debridement in IAO. In
clinical situations of acute IAO, that is, lasting for
less than 3–4 weeks, simple lavage has been recom-
mended (28). However, as this study shows, this
approach might be problematic if the bacteria
already within 1 week can be located half a cen-
timeter into the surrounding bone tissue.
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