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Abstract: COVID-19 has sparked a debate on the vulnerability of densely populated cities. Some
studies argue that high-density urban centers are more vulnerable to infectious diseases due to a
higher chance of infection in crowded urban environments. Other studies, however, argue that
connectivity rather than population density plays a more significant role in the spread of COVID-19.
While several studies have examined the role of urban density and connectivity in Europe and the
U.S., few studies have been conducted in Asian countries. This study aims to investigate the role
of urban spatial structure on COVID-19 by comparing different measures of urban density and
connectivity during the first eight months of the outbreak in Korea. Two measures of density were
derived from the Korean census, and four measures of connectivity were computed using social
network analysis of the Origin-Destination data from the 2020 Korea Transport Database. We fitted
both OLS and negative binomial models to the number of confirmed COVID-19 patients and its
infection rates at the county level, collected individually from regional government websites in Korea.
Results show that both density and connectivity play an important role in the proliferation of the
COVID-19 outbreak in Korea. However, we found that the connectivity measure, particularly a
measure of network centrality, was a better indicator of COVID-19 proliferation than the density
measures. Our findings imply that policies that take into account different types of connectivity
between cities might be necessary to contain the outbreak in the early phase.

Keywords: COVID-19; spatial proliferation; density; connectivity; social network analysis; negative
binomial regression

1. Introduction

Since the outbreak of COVID-19 in December 2020, the virus has rampaged across
the globe, causing 2.6 million deaths at the time of writing. South Korea has recorded
a cumulated total of 92,817 positive cases and 1642 deaths. From its inception in China,
the outbreak of the virus proliferated through Europe, the U.S., and eventually across all
continents, at which point the World Health Organization officially declared it to be a
pandemic [1]. The sheer speed of the virus infection and the consequent heavy death toll
strike fear in all people around the globe. Based on previous research on infectious diseases,
such as AIDS, SARS, and Swine flu (the 2009 H1N1 Pandemic), the key determinants of
virus spread were found to be closely related to the movement of people, urbanization, and
the mass inflow of foreign nationals from overseas, all of which are characteristics often
found in large metropolitan cities [2–4].

While large cities offer many benefits, tightly connected networks of goods and people
around urban cores could accelerate the COVID-19 pandemic. Matthew and McDonald [3]
noted that the factors that precipitated the spread of malaria were economic development,
patterns of land use, movement of people, and urbanization, whilst the spread of SARS
and MERS were impacted by the inflow and outflow of people brought on by accelerated
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globalization. Other studies have also shown that transmission of infectious diseases is
related to urban structure and people’s movement between cities. For example, SARS, a
viral respiratory illness, first originated from a wild animal market in Guangdong Province
but later spread via international air travel into the world’s cities. The 2014 West African
Ebola virus shares similarities to SARS. Even though 64% and 60% of the population of
Guinea and Sierra Leone lived in low-density agricultural areas, due to high connectivity
and ease of travel, the two nations became the epicenter of the disease [5].

At first glance, places with a high degree of urbanization, such as New York, London,
and Seoul, appear to be more susceptible to the proliferation of COVID-19. Previous
studies have reported that infectious global diseases often leave behind a greater number
of infections and a higher death toll [6]. Kao [7] found that the 2009 H1N1 virus lasted
longer in areas with a higher population density within Taiwan. Garrett [8] also noted that
there existed a statistically significant relationship between the mortality rate of the 1918
Spanish Flu (influenza) and the population density per state. Thus, the concentration of
population in a given area seems to be a catalyst for spreading infectious diseases. On the
other hand, Nishiura et al. [9] found that the 1918 Influenza in the UK and Japan showed
no statistically significant relationship between population density, the severity of infection,
and the mortality rate. Moreover, Parmet et al. [10] found that during the 1918 Influenza,
areas of lower density saw higher mortality rates than that of high-density cities.

Given these mixed findings, this study aimed to investigate the role of urban spatial
structure on COVID-19 during the first eight months of the outbreak in Korea. Specifically,
we focused on two factors related to the built environment: density and connectivity. By
comparing different measures of density and connectivity, we sought to provide empirical
evidence to determine which of the two measures are more related to the spread of COVID-
19 in Korea. This research helps inform public health agencies and municipalities to find
more effective measures of prevention and response against COVID-19 and other infectious
disease threats.

2. Literature Review
2.1. Cities and Pandemics

Globalization and urbanization have progressed rapidly over the past 100 years.
Globalization, prompted by the development of transportation and communication tech-
nologies, has been recognized as a distinct shift in the spatial and temporal dimensions of
social and economic life, a phenomenon known as “time-space compression” [11]. This
transition to the highly connected global marketplace has not only facilitated the move-
ment of capital but also people and information, overcoming both distance and temporal
obstacles of physical movement. However, globalization has not only positive effects of
opening up new opportunities and new markets but also negative effects of promoting
imbalances between countries, regions, or social classes [2,4]. Moreover, globalization
has led to an unexpected spread of disease by intensifying trade and human movement
between countries [12,13], resulting in more frequent outbreaks of infectious diseases and
their spread on a global scale. Before the rapid progress of globalization and urbanization,
infectious diseases were more localized, and their spread was slow and intermittent [14].

Several high-profile infectious disease outbreaks occurred before the COVID-19 pan-
demic. For example, the 1918–1919 Influenza pandemic, known as the Spanish Flu, was
the most severe pandemic in recent history, resulting in about 50 million deaths around
the world. During this pandemic, the United States had implemented stringent social
distancing measures, such as the closure of theaters, churches, schools, and saloons as
well as the mandatory wearing of face masks [15]. Since then, with the exception of the
1968 Hong Kong influenza pandemic, the outbreak and spread of infectious diseases were
limited to certain regions or countries and were contained before spreading around the
world. However, the current COVID-19, although often compared to the 1918 Influenza
pandemic, is not just the return of the typical pandemic [16]. This pandemic marks a new
chapter in the history of infectious disease, demonstrating how quickly viruses can spread
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around the world in the 21st century with so many countries that are tied together in the
global marketplace [16,17].

In both popular media and scholarly communities, there is an increasing debate
around urban density and COVID-19 pandemic [18,19]. On the one hand, cities are often
characterized by their high-density urban form, which could be a risk factor for infectious
disease outbreaks, such as COVID-19 [20]. Additionally, urban activities are not confined
within the city boundary or a certain spatial domain because cities are agglomeration
centers for socioeconomic connections of people, goods, and services. Higher connectivity
within a city or between cities can amplify the risk of infectious diseases. On the other
hand, cities can also provide a critical line of defense against pandemics [21,22]. Responses
to disease outbreaks could be faster and more efficient in larger cities with more resources
and disaster preparedness. Cities have more diverse and higher quality health care systems,
offering more choices and potential for their citizens to receive better care in times of crisis.

As we are responding to the immediate COVID-19 crisis, this pandemic highlights the
need to start thinking about how to rebuild our cities and neighborhoods against future
shocks. For example, urban planners have been increasingly discussing alternative urban
models, such as “Superblocks”, “Tactical urbanism”, or “15-min City” to overcome some of
the major problems that have been exposed during the pandemic [23–26]. Before we start
thinking about the future of cities after the pandemic, we first need to come to the drawing
board and make a good assessment of which characteristics of cities are more vulnerable to
pandemics and how we might be able to address them.

2.2. Density and Connectivity

Many empirical studies have attempted to assess the effects of urban factors on the
spread of infectious disease, but the results have been mixed. In a study of the 1918
Spanish Influenza (H1N1), Garrett [8] reported that there was a statistically significant
relationship between mortality and population density and claimed that high-population-
density counties served as a catalyst that accelerated the spread of the infectious disease.
Arbel et al. [27] assessed the influence of population density and socioeconomic factors on
COVID-19 infection rates in Israel and found that the possibility of COVID-19 infection
grew with population density levels. Ehlert [28] attempted to find the relationship between
density and socio-economic variables vis-a-vis mortality rate. He reported that population
density and employment density were positively correlated with COVID-19 mortality rates.
Wand and Li [29] found that population density mattered in the spreading of COVID-19
on the U.S. county level. They demonstrated that population density alone accounted
for up to 76 percent of cumulative infection cases in the U.S. from early March to late
May 2020. However, Agnoletti et al. [30], reported that density was not significantly
associated with the distribution of COVID-19 in Italy. After reviewing the most up-to-
date state of knowledge, UN-Habitat [22] reported that density in itself appears not to
be a decisive factor in the spread of the virus; but rather, inequality around income, race,
service provision, and pre-existing health conditions seemed to have played a critical role
in aggravating the vulnerability of individuals.

Another important factor related to urban spatial structures concerns connectivity.
In a study of the 1918 Spanish Influenza in England and Wales, Chowell [31] explored
the association between influenza death rates and a number of geographical and demo-
graphical indicators. While they found that cities had 30–40% higher death rates than
rural areas, there was little association between mortality and measures of population
density or residential crowding. The World Health Organization [5] reported that even
though the majority of the population of Guinea and Sierra Leone live in rural areas, high
cross-border connectivity due to the ease of travel seemed to have caused the wide spread
of Ebola, making the two nations the epicenter of the pandemic. In a recent study of the
COVID-19 pandemic in the U.S., Hamidi et al. [32] found that urban density was unrelated
to COVID-19 infection rates and even inversely related to death rates. They reported that
connectivity between counties had a greater impact on both the infection and mortality
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rates than the population density of a given county. Similarly, reviewing research papers
on the impact of urban density on COVID-19, Teller [33] argued that its impact was not
closely related to density but connectivity.

2.3. Research Gap and Our Contribution

While there is a growing body of research examining the impact of urban spatial
structure on COVID-19 outcomes, empirical evidence is mixed and inconclusive. These
mixed results may stem from the use of different measurements across the study. Especially,
the results could differ by how the dependent variable is measured and calculated. For
example, in research conducted by Hamidi et al. [32], when the number of total confirmed
COVID-19 cases was used as the dependent variable, the results for population density
were found to be statistically significant. However, when the dependent variable was rede-
fined as the number of confirmed cases per 10,000 population, the result was statistically
insignificant. Therefore, it is important to assess how robust the results are to different
definitions of the dependent variable.

Moreover, some measures of urban densities could be biased when the denominator
includes undevelopable lands, such as mountain ranges and rivers. Hence, we should take
caution while calculating population and employment densities by using administrative
regions that only include inhabitable areas. The measure of connectivity could also affect
study results. For example, Hamidi et al. [32] used a proxy measure of connectivity
computed as a ratio of yearly airplane passengers per 10,000 population. While this is an
appropriate measure in large countries with many domestic airline services, such measure
may not be appropriate in smaller countries with limited airline travels. In addition,
Toller [33] identified that only a few empirical studies measured connectivity to identify
diffusion of COVID-19.

In assessing the impact of connectivity, the social network analysis has been used in
the infectious diseases studies to identify geographic transmission hubs of the infection as
well as geographic distribution of infected patients [34,35]. In addition, the analysis could
be more useful for representing a holistic structure of the urban transportation network [36].
The indicators measured using their analysis method allowed for examining the degree
of connection between nodes at the specified spatial unit which, in this case, are cities.
Cho et al. [37] used the social network theory to analyze the characteristics of Chinese
railway networks that have clear points of departure and arrival. The data on the points of
departure and arrival for travel were used to compute mobility variation between cities.
Shin [38] also analyzed the effects of COVID-19 on South East Asian airports’ network
centrality and found that the density and centrality of the airport network have shrunk
during the initial phase of the COVID-19 pandemic. We followed these social network
methods to develop the indicators of degree centrality, closeness centrality, betweenness
centrality, and eigenvector centrality.

In this study, we aimed to fill the gap in the literature by comparing different measures
of urban density and connectivity during the first eight months of the outbreak in Korea.
We make contributions to the existing literature on three perspectives. First, we used the
actual density indicators that take into account only habitable lands. Second, we used
the aggregated origination and destination (O/D) data for all travel modes to calculate
the degree of connectivity, closeness centrality, betweenness centrality, and eigenvector
centrality to gain insight into how the connectivity of the overall transportation network
affected the spread of COVID-19. Finally, we tested the sensitivity of the results by using
different measures of dependent variables. This study provides insights into multiple
factors of urban spatial structure, reflecting the current debate at play on the vulnerability
of densely populated cities.
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3. Materials and Methods
3.1. Study Area

Our study area was the entire country of South Korea to empirically identify the main
causes of the spatial proliferation of COVID-19. In response to the COVID-19 outbreak,
the Korean government has adopted a stringent contact-tracing strategy, called the 3T
framework (Testing-Tracing-Treatment), to control and reduce the number of COVID-19
cases [39]. Because of the effective control strategies and low infection rates, the Korean
government has not imposed any national lockdown policies commonly adopted in the U.S.
and most European countries [20]. Soon after the COVID-19 outbreak in Korea, the health
officials swiftly installed drive- and walk-through testing facilities, adopted extensive
movement- and contract-tracing strategies, and communicated movement trajectories of
confirmed patients via online maps and automatic mobile phone alert systems [40,41].
Most Korean citizens actively followed the quarantine guidelines, such as mask-wearing
and hand-washing, while voluntarily practicing strong social distance measures in high-
incidence areas as a self-protection measure.

Moreover, private firms as well as public offices implemented flexible work schedules,
such as working from home and flexible working hours, as well as encouraging their
employees to hold virtual meetings in lieu of in-person meetings. A survey conducted by
the Korea Enterprises Federation (KEF) [42] among the top 100 sales firms in September
2020 revealed that about 88 percent of the responded firms have implemented some form
of work-from-home measures. Firms have adopted a wide range of work-from-home
strategies to adapt to the rapidly escalating situation while continuing their operations
remotely. Most of these behavioral and institutional changes were made possible relatively
smoothly, largely owning to the past experience of the Middle East respiratory syndrome
(MERS) outbreak, which caused great damage to the nation’s economy back in 2012.
Korea is considered one of a few countries that has prevented the rapid spread of COVID-
19 without implementing the national lockdown widely adopted by other high-income
countries, while also sustaining the national health and economic systems [43].

Thanks to the Korean government’s rapid response and strict hygiene practices
adopted by citizens and private firms, the infection rates have stayed well under con-
trol, with the rates ranging between 2 and 2.5% and even staying at 3.3% during the third
spike in December 2020. This level is well below the 10% benchmark level that the World
Health Organization recommends as adequate test-positivity levels [44]. In addition, a
recent review of 29 COVID-19 studies reporting reproductive numbers [45] indicated that
Korea was the only country that reported less than 1.0 in its estimated reproduction number
(R, 0.76, 95% CI, 0.34–1.70). Other countries showed much higher reproductive numbers,
reporting 3.14 for mainland China followed by 5.08 for Spain, 6.07 for Germany, and 6.32
for France.

The spatial unit of analysis in our study was a city, a county, and a district level,
which is a smaller geographic unit than counties in the U.S. [32,46] and in Germany [28].
Several studies of COVID-19 have used similar geographic units (e.g., counties) to capture
the effects of population density and connectivity on the spread of COVID-19. Moreover,
the data on the number of confirmed cases for COVID-19 were only attainable at the
city, county, and district levels, which are named Si, Gun, and Gu in Korean, respectively.
While all of these administrative divisions have self-governing authority, they are classified
differently depending on whether it is an urban or rural area as well as an urban area within
a metropolitan area. Specifically, Si is an urbanized area, Gun is a rural area with small-
sized towns, and Gu is an urbanized area within a metropolitan city in Korea. Figure 1
shows the spatial distribution of confirmed cases of COVID-19 at the county level as of 17
September 2020.
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Figure 1. Spatial distribution of the number of confirmed COVID-19 patients at the county level (As
of 17 September 2020).

3.2. Main Outcomes

Our main outcome variable was the accrued number of positive cases starting from 20
January 2020 until 17 September 2020, collected per county, which is Si/Gun/Gu. There
was no official county-level COVID-19 data, so we manually compiled the data from
websites of each city, county, and district. The actual government websites from which
we sourced the original data can be found in the Table 1 (accessed on 18 September 2020).
The total number of confirmed cases by 17 September 2020 was 22,657. Of this number,
1432 cases were people returning from overseas, so we excluded them from the analysis.
Moreover, the website for Seoul Metropolitan City, Busan Metropolitan City, Incheon
Metropolitan City, and North Jeolla Province had a separate category for patients who
contracted the disease from other regions, such as other cities or from foreign countries.
We excluded these cases, making the total number of confirmed cases 20,787.

3.3. Explanatory Variables

Of the variables that have the potential to affect the outcome variable, we chose
indicators of density and connectivity as the explanatory variables. We calculated net
density measures for the population and employment densities. Using the aggregated
travel data with origination/destination(O/D) at the county level, social network theory
was used to calculate the four different measures of connectivity. We further standardized
the density and connectivity measures to enable robust comparison in the model results.

The urbanization-related indicators of density used in this research were population
and employment densities. Data for these variables were drawn from the Korea Statistical
Information Service (KOSIS). In order to accurately determine the effects of urban densities,
we used the concept of net density, which refers to the number of housing units in a given
area of land devoted to residential development. As discussed in the literature review, we
took caution in calculating these density measures because the outskirts of urban areas in
Korea are often dominated by forestry, agricultural lands, and other non-residential lands.
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Failure to account for these inhabitable lands could result in the underestimation of urban
density [47].

We used the 2020 travel O/D data at the county level on all transport modes provided
by the Korea Transport Database (KTDB) to compute the connectivity measures. We used
social network analysis (SNA) to calculate these measures. The form of the analysis
is usually either an array of the social networks or a structure classified by different
social network characteristics [48]. A variety of social network analysis methods exist to
quantify network structures, such as centrality, density, structural holes, concentration,
and modularity.

In light of the COVID-19 pandemic, the analysis has been employed either to demon-
strate the infection network of the confirmed patients and its structural characteristics [49–51]
or to explore how key nodes can play an important role in social networks of COVID-19.
These studies mainly relied on data from Twitter users and their followers [52] to under-
stand the spatial diffusion of the COVID-19 infection [53] or to visualize the COVID-19
pandemic risk [54].

Our approach for the social network analysis is different from the aforementioned
studies. We applied the social network theory to estimate the spatial structure and its
functional characteristics, resulting from the movement of people in daily life using trans-
portation O/D data aggregated at the county level. A city is a place where people travel
within and move to and from, and it should not be confined by its administrative bound-
ary [20,55]. Our goal was to identify the geospatial and relational characteristics which
are embedded in the intricate and complex transportation networks and the movement of
people influenced by their daily activities within the transportation networks [56,57].

We used the centrality measures to quantify how cities exist within a network [58].
Specifically, we calculated the indicators of degree centrality, closeness centrality, between-
ness centrality, and eigenvector centrality. The equations to calculate each of the centrality
measures are shown below in Table 1.

Table 1. The four indicators of connectivity.

Indicators Equation

Degree Centrality

g
∑

i=1
xij, i 6= j

∑
g
i=1 xij: Number of connections node i has with (g − 1) nodes.

Closeness Centrality

1
∑

g
i=1 d(Ni ,Nj)

∑
g
i=1 d

(
Ni , Nj

)
: The sum of the closest distance between node i and j

g: number of nodes

Betweenness Centrality
∑

i<k

gjk (Ni)

gik

gjk : the number of the closest routes between nodes j and k
gjk(Ni): the number of closest routes between nodes i and j that includes node i

Eigenvector Centrality

λ
g
∑
i

xijCE
(

Nj
)
, i 6= j

λ: Eigenvalue
g: number of nodes

x: the quantitative value of the connection between nodes i and j

The degree of centrality is defined as the summation of the number of direct links
upon a node, and, using the number of different links a singular node has, the degree of
the node’s centrality can be quantified. In other words, degree centrality tells us if a node
takes on a key role within the social network and is positioned in a place of importance.
Cities with high-degree centrality can be interpreted as having high linkages, both direct
and local, with other cities. Closeness centrality measures centrality based on the closeness
of other nodes and differs from the degree of centrality in that it is calculated by adding
the distances of the nodes that are both directly and indirectly linked. Since the distances
between the nodes are considered, it is used to determine the global relationship of the
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social network as opposed to direct linkages. Betweenness centrality calculates where a
node is situated in relation to other nodes, and if the value of centrality is high, the node
can be understood as a mediating city between other cities. Finally, eigenvector centrality
measures the comparative score of every node within a network based on the principle
that connections to a node with high centrality must positively impact the centrality value
of the node in question. In other words, a weight is placed on the connected node, which is
then considered in calculating the node’s centrality. Cities with high eigenvector centrality
have a high probability of being linked to cities with a high degree of connectivity, which
in turn, implies that these cities are more likely to come into contact with other contagious
viruses. It is also important to note that if a node is linked to a city with a low connectivity
value, the eigenvector-centrality value can decrease.

3.4. Control Variables

Our control variables included physical environment, socioeconomic factors, and other
additional indicators. Hamidi et al. [32] considered the vulnerable population, including
the elderly, and the level of medical services and facilities, in addition to density, as the main
factors affecting the spread of COVID-19 and mortality in the United States. Arbel et al. [27]
and Ehlert [28] reported that socioeconomic factors other than density are closely related to
the COVID-19 fatality rate. Identifying the effect of social distancing on trip reduction in
U.S. metropolitan areas, Hamidi & Zandiatashbar [59] employed demographic attributes,
park accessibility, as well as density. Teller [33], reviewing many empirical studies on
the relationship between COVID-19 and urban density, reported that urban settlement
environment, socio-economic factors, physical environment, and urban service level might
be the main determinants of its spread. For example, access to parks can have more benefit
than cost from the possible risk of COVID-19 disease outbreaks since they may play a
role in mental health improvement [59,60] and adaption of people to not-crowed outdoor
activities [61] during COVID-19. Agnoletti et al. [30] measured the unemployment rate as
one of the control factors for the cases of COVID-19 by province.

We followed the methods used in previous studies to measure potential determinants
of COVID-19 in Korea. Specifically, we included ratio variables for females and youth (20–
29 years old) and the older adults (65+ years old) as demographic characteristics obtained
from the KOSIS database. For neighborhood resources, measures of medical accessibility,
nursing home service, and park accessibility were obtained from the public data portal
(http://data.go.kr, accessed on 17 September 2020) and processed using ArcGIS version
10.6 (ESRI, San Diego, CA, USA), a geographic information system (GIS) software. Per
capita growth regional domestic product (GRDP) was derived from the KOSIS database
as a measure of neighborhood economic characteristics. Unlike the Italian study [30], we
did not include the unemployment rate at the city-county-district level, as this measure
was not available at the time of the study. Land area (km2) was also included to control for
differences in the spatial units. In addition, there was a sudden rise in infection associated
with a super-spreader event at a particular church in the city of Daegu. As shown in
Figure 2, the confirmed cases from the Daegu metropolitan area accounted for the majority
of accrued confirmed cases. Thus, we created a dummy variable to separately examine the
effect of this particular region affected by the super-spreader event.

3.5. Analytical Approach

To estimate the numbers of COVID-19 cases over the study period, we developed
a robust ordinary least squares (OLS) regression model and a robust negative binomial
regression (NBR) model. The probability of being diagnosed with COVID-19 exhibits the
same probability distribution of a coincidental event. In such a case, a Poisson regression
model or a robust negative binomial model are more appropriate to use than a standard
OLS model [62]. When using the Poisson regression model, the underlying assumption is
that the mean and the variance of an event occurring are identical to each other. Hence, if
the actual analysis of the data shows over-dispersion, then there are obvious limitations

http://data.go.kr
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to using this model. As such, when looking at the means and the variances of the two
dependent variables used in this study, we found that the Poisson model was not suitable.
Over-dispersion was detected in the means of the total number of confirmed cases and
cases per 10,000 (91.17 and 3.55, respectively) as well as their variances (28,435.98 and
66.51, respectively). Also, not many cases of zero-patients were observed in our data;
therefore, it was more suitable to use a robust negative binomial model than a zero-inflated
Poisson model [62]. Moreover, we chose to use the robust model to minimize the impact
of heteroskedasticity.
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Finally, this paper compared four models—two that differ by the type of model (OLS
model and the NBR model) used and an additional two that differ in the definition used for
the dependent variable (total number of positive cases and total number of positive cases
per 10,000). Model A defined the dependent variable as the total number of confirmed
positive cases, and the analysis was based on the OLS model. Model B, similar to Model A,
used the same dependent variable but switched the analysis methodology to NBR. Model C,
on the other hand, defined its dependent variable as the total number of positive cases per
10,000, and the OLS method was used for its analysis. Finally, we used the same dependent
variable for Model D as we did for Model C but used the NBR method of analysis. All
analyses were performed in Stata (version 16, StataCorp LLC, College Station, TX, USA).

4. Results
4.1. Descriptive Summary

Table 2 shows the summary statistics of the variables used in this research. The av-
erage number of confirmed COVID-19 at the city-county-district level was 91.17, and the
confirmed cases per 10,000 population was 3.56. Their respective standard deviations were
196.05 and 8.16, which were more than twice the average. This indicates that there was
larger between-group variability in the outcome measure. Also, the maximum values
for cases and rate of COVID-19 were 1671 and 92.90, respectively, indicating non-normal
distribution. The distribution of COVID-19 cases was skewed to the right (Figure 2); there-
fore, we standardized the density and connectivity indicators to allow direct comparison
between the magnitudes of their impacts on the cases and their rates per 10,000 population
for COVID-19.
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Table 2. Descriptive summary of the study variables (n = 228).

Variables Description Mean Std. Dev. Min Max VIF

Dependent variables

Total cases Accrued confirmed cases per city, county, district 91.171 196.051 0 1671

Case rates Accrued confirmed cases per 10,000 3.557 8.155 0 92.897

Connectivity

Degree centrality Degree of centrality found using SNA 2.13 × 10−9 1 −1.101 4.599 4.59

Closeness centrality Closeness Centrality found using SNA −3.45 × 10−9 1 −5.77 1.361 1.85

Betweenness centrality Betweenness Centrality found using SNA −1.04 × 10−9 1 −0.514 10.257 1.39

Eigenvector Eigenvector found using SNA 1.23 × 10−9 1 −0.182 10.356 1.46

Density

Net population density Population/Land Area −1.33 × 10−9 1 −0.961 2.716 3.89

Net employment density Total # Employed/Land Area −1.58 × 10−9 1 −0.449 12.230 1.65

Population characteristics

% Female Total female population/total population 0.499 0.013 0.433 0.523 1.81

% 20 s years old Total number of people between the ages of
20–29/total population 11.633 5.235 2.508 66.198 1.70

% 65+ years old Total population of 65+/total population 21.556 8.277 8.7 40.7 4.78

Neighborhood resources

No. of doctors/1000 people (Total number of doctors/total population) ×
1000 2.778 2.286 1 19.6 1.69

Availability of nursing home Availability of nursing home (0/1) 0.552 0.498 0 1 1.18

Park area/1000 people (Total park area/total population) × 1000 19,200.83 18,499.82 0 132,334.9 1.60

Economic factor

Per capita GRDP Growth regional domestic product (GRDP)/total
population 33.677 30.935 8.072 385.763 1.57

Other Control factors

Land area Area of city, county, district (km2) 77.762 95.87 3.71 595.33 1.78

Dummy for Daegu Whether or not include Daegu (0/1) 0.035 0.18 0 1 1.11

4.2. Model Results

Table 3 shows the results of the OLS and NBR models. Two different measures of
outcome were estimated: one for the total number of confirmed cases (Models 1 and 2)
and the other for the number of confirmed cases per 10,000 people (Models 3 and 4). The
indicator of dispersion, α was greater than zero, indicated that the data were over-dispersed.
Hence, an NBR model appeared to be more suitable than a Poisson model.

In terms of the overall model fitness, the AIC and BIC values were smaller in the
NBR models than the OLS models, indicating that the NBR models perform better than
the OLS models. This implies that a random event could occur in the relationship, affect-
ing the probability of infection. Hence, we focused our efforts on interpreting the NBR
model results.

When it comes to the connectivity measures, degree centrality was most strongly
correlated with the number of cases (coefficient = 45.62 for the OLS model and coefficient =
0.44 for the NBR model). However, none of the connectivity measures were statistically
significant for the models that use infection rates. Of the density variables, only net
population density was strongly associated with the number of cases (coefficient = 29.38
for the OLS model and coefficient = 0.31 for the NBR model). Again, none of the density
measures were associated with the infection rates.
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Table 3. OLS and negative binomial regression (NBR) models of the district level COVID-19 cases (n = 228).

Variables
Number of Cases Number of Cases/10,000 Residents

Model 1: OLS Model 2: NBR Model 3: OLS Model 4: NBR

Connectivity

Degree centrality 45.62188 *
(−2.34)

0.44392 **
(3.18)

−0.50209
(−0.54)

0.15022
(−1.35)

Closeness centrality −21.27929 *
(−2.58)

−0.17435
(−1.40)

−0.44005 +

(−1.86)
−0.12804
(−1.48)

Betweenness centrality 7.78549
(1.35)

0.30548
(1.45)

0.55370
(−0.75)

0.27804
(1.28)

Eigenvector −9.26285
(−1.50)

−0.10502 +

(−1.91)
0.22048
(0.68)

−0.04594
(−0.98)

Density

Net population density 29.37699 *
(2.51)

0.30569 *
(−2.48)

−0.02309
(−0.05)

0.05392
(0.48)

Net employment density −4.33808
(−0.70)

−0.00395
(−0.06)

−0.45149
(−1.04)

−0.01695
(−0.34)

Population characteristics

% Female 562.86792
(−1.09)

21.16410 **
(2.60)

47.50386
(−1.41)

9.38009
(1.46)

% 20 s years old 2.66258
(−0.99)

0.00978
(−0.34)

0.22942
(−1.09)

0.01577
(0.89)

% 65+ years old 1.18664
(0.98)

−0.05200 *
(−2.52)

−0.01805
(−0.29)

−0.00268
(−0.15)

Neighborhood resources

No. of doctors/1000 people −13.07725
(−1.49)

−0.05617 *
(−2.12)

0.14679
(0.77)

−0.02717
(−1.16)

Availability of nursing home (0/1) 10.23637
(−0.8)

0.45998 **
(2.73)

−0.51969
(−0.62)

0.14658
(1.01)

Park area/1000 people −0.00042
(−1.54)

−0.00001 ***
(−3.69)

−0.00003
(−1.49)

−0.00001
(−1.58)

Economic factor

Per capita GRDP −0.19593
(−0.99)

−0.00176
(−1.21)

−0.002
(−0.36)

0.00067
(−0.56)

Controls

Land area (km2)
−0.00914
(−0.11)

0.00113
(−1.43)

−0.00358
(−1.46)

−0.00139 *
(−2.01)

Dummy for Daegu (0/1) 800.48779 ***
(5.89)

2.45792 ***
(−7.9)

32.33786 ***
(4.63)

2.60876 ***
(−10.8)

Constant −228.62082
(−0.92)

−5.89396
(−1.51)

−22.74795
(−1.32)

−3.79063
(−1.24)

Log Likelihood −1.37 × 103 −1.05 × 103 −694.8584 −465.41374

Adjusted R2 or Pseudo R2 0.73776 0.10397 0.57988 0.14277

Alpha (SE) 1.007541 ***
(−0.1174)

0.493818 ***
(−0.14)

AIC 2764.2 2141.95 1421.72 964.83

BIC 2819.07 2200.24 1476.59 1023.13

Note: *** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.10.

Among the population characteristics, the number of cases was positively correlated
with the proportion of females (coefficient = 21.16) but negatively associated with the
proportion of older adults (coefficient = −0.052) in the NBR model. The OLS model as well
as the models that used infection rates showed no statistically significant results with any
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of the population characteristics. All of the variables indicating neighborhood resources
were strongly correlated with the number of cases in the NBR model (Model 2).

While the availability of a nursing home was positively correlated with the number
of cases, the number of doctors per 1000 people and park area per 1000 people were
both negatively correlated with the number of cases, indicating some protective effects
of neighborhood resources against the COVID-19 outbreak. This finding is similar to the
conclusion of Ma et al. [61], who found that the benefits of visiting parks outweighed
the risks associated with possible COVID-19 infection. Interestingly, the dummy variable
indicating the city of Daegu was strongly correlated with both the number of cases and
the infection rates across all models. This result indicates that the super-spreader event
clustered around the Daegu area indeed was strongly associated with the spread of COVID-
19 in the early phase of the outbreak.

5. Discussion

Our results suggest that the total number of confirmed cases was more appropriate
than the infection rates in explaining the relationship with urban spatial structure. One
possible reason is that using infection rates in the model could have resulted in canceling
out the effect of population density. Because our models included density measures that
incorporated population counts in the denominator, dividing the number of confirmed
cases by population counts could negate the effect of density and other urban-related
factors, leading to the classic type II error. This indicates that further caution will be needed
to account for possible biases when modeling the spread of infectious diseases [63].

Using the standardized coefficients, we found that the measures of connectivity were
more positively related to COVID-19 infection than the measures of density (standardized
coefficient = 0.31 for net population density; standardized coefficient = 0.44 for degree
centrality). This result is somewhat consistent with findings from previous research [32] that
suggested that dense places do not necessarily lead to more infection but more connected
places, as measured by a metropolitan size and an enplanement rate, were positively
associated with the infection rates. Another study conducted in China also found that
connectivity, as measured by the betweenness centrality of the road networks of 255 Chinese
cities, was one of the key determinants of infection rates [64].

Interestingly, the eigenvector connectivity measure had a negative effect on the in-
fection in our model. This was because the eigenvector centrality takes into account the
level of connectivity of the connected node (city). Thus, even if the node is connected to a
lower-networked city, it has a high degree of connectivity. Both closeness centrality and
betweenness centrality were found to be statistically insignificant. This might be because
the closeness-centrality measure captures the global connectivity of the social network;
therefore, it might not fully capture all the variations in the network condition that are
more related to the spread of the virus. Similarly, the betweenness centrality measures the
degree to which a node is situated in between different cities within the social network.
Again, we believe that this measure is irrelevant in explaining the network condition that is
more vulnerable to virus dissemination. On the other hand, the degree of centrality which
captures direct connection in the network was found to be the best predictor among other
connectivity measures.

The net population density was positively and significantly associated with the virus
infection. This is consistent with the results of previous studies that found a strong
association between population density and infectious disease outbreak [8,27]. Interestingly,
net employment density was not statistically significant in the model. This is somewhat
different from the findings of Ehlert [28], where both population density and employment
density were significant associated with the spread of COVID-19. The reason for this
difference could be because Ehlert’s research was conducted in Germany and/or because
he did not consider any indicators of connectivity in his research. In absence of the
connectivity measure, employment density may actually capture the effect of the network
connection between home and work. In addition, it is possible that our findings reflect the
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large-scale effect of social-distancing policies, where a transition to working from home
gradually took place around August 2020. In fact, the Korean government never imposed
strict lockdown policies that would have resulted in a complete closure of retail stores
and businesses; however, our results suggest that activities and movements related to
employment may have little impact on the spread of COVID-19. Further research should
examine if there is a combined effect of social-distancing policies and employment density
on COVID-19 outbreak.

Limitations

There were a few limitations with the study. First, this study did not consider the
influence of social-distancing policies implemented in Korea since February 2020. There
were several versions of social-distancing policies throughout the study period, from school
closure to restriction on social gatherings. We were unable to examine the effect of social-
distancing policies because our data were based on a cumulative record of COVID-19
cases, which did not include time information. The individual public health agency by
province only releases aggregate data; therefore, we compiled the data manually from
individual government websites at one point in time (17 September 2020). Second, there is
a slight possibility that the total number of cases in the early phase of the outbreak could be
biased due to the availability of testing. However, some of the undercounting of confirmed
cases were resolved as the government ramped up testing capacity early on. In fact, a
number of international media praised Korea as one of the few countries with the most
aggressive COVID-19 test program [65]. Third, this study did not consider the impact of
COVID-19 mortality because no reliable data were available at the appropriate spatial scale.
If high-quality mortality data become available, it would be desirable to include mortality
rates along with infection rates in future studies.

6. Conclusions

This study provides evidence that connectivity seems to matter more than density it-
self. Contrary to the common belief, cities are not necessarily more vulnerable to the spread
of the disease than the rural counterparts. Instead of focusing on restricting movements in
all places, having stricter control over movements and activities in highly connected places
could be more effective in dampening the spread of COVID-19.

We also found that direct and local degree centrality were more strongly associated
with the spread of COVID-19 than the global closeness centrality. This suggests that future
mitigation strategies may focus on restricting movements between cities that are directly
linked. Despite having a lower effect size than the connectivity measure, the net population
density was still statistically significant in explaining the dissemination of COVID-19.
Therefore, we cannot ignore the fact that density, especially residential density, could still
play a role in the spread of the disease.

Our study offers new insights into the current debate on the vulnerability of densely
populated cities, especially from the perspective of an Asian country. If our results can be
confirmed by prospective studies, they could have implications for developing mitigation
strategies to contain future outbreaks. Connectivity and residential density may indeed
reflect one of a constellation of factors that need to be taken into account for future planning
to protect our cities against infectious disease threats in the foreseeable future. Our study
provides important insights into how we might plan and build safer, healthier, and more
resilient cities in a post pandemic world.
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Appendix A Information about the COVID-19 Dataset

At the time of our study, there was no central government agency that aggregated and
provided data on confirmed COVID-19 cases and deaths. Therefore, we manually collected
the data by visiting the homepage of each municipality and regional government. We
cross-checked the number of confirmed COVID-19 cases from each municipality against the
total numbers reported by the Korea Disease Control and Prevention Agency. The web link
for each municipal government from which we used to collect our data is provided below.

Table 1. Website information on the COVID-19 data set provided by municipality.

Municipality Website Information
(All Websites Below Were Accessed on 18 September 2020)

Seoul https://www.seoul.go.kr/coronaV/coronaStatus.do
Busan https://www.busan.go.kr/covid19/Corona19.do
Daegu https://www.daegu.go.kr/

Incheon https://www.incheon.go.kr/health/HE020409
Kwangju https://www.gwangju.go.kr/c19/
Daejon https://www.daejeon.go.kr/corona19/index.do
Ulsan https://www.ulsan.go.kr/u/health/contents.ulsan?mId=001002003000000000
Sejong https://www.sejong.go.kr/bbs/R3273/list.do?cmsNoStr=18839

Gyunggi https://www.gg.go.kr/contents/contents.do?ciIdx=1150&menuId=2909
Kwangwon http://www.provin.gangwon.kr/covid-19.html
Chungbuk http://www1.chungbuk.go.kr/covid-19/index.do
Chungnam http://www.chungnam.go.kr/coronaStatus.do

Cheonbuk https://www.jeonbuk.go.kr/board/list.jeonbuk?boardId=BBS_0000105&menuCd=DOM_000000110001000000
&contentsSid=1219&cpath=

Cheonnam https://www.jeonnam.go.kr/coronaMainPage.do
Kyungbuk https://gb.go.kr/corona_main.htm
Kyungnam http://xn--19-q81ii1knc140d892b.kr/main/main.do

Jeju https://www.jeju.go.kr/corona19.jsp
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