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Abstract: Respiration is a key vital sign used to monitor human health status. Monitoring respiratory
rate (RR) under non-contact is particularly important for providing appropriate pre-hospital care
in emergencies. We propose an RR estimation system using thermal imaging cameras, which are
increasingly being used in the medical field, such as recently during the COVID-19 pandemic. By
measuring temperature changes during exhalation and inhalation, we aim to track the respiration of
the subject in a supine or seated position in real-time without any physical contact. The proposed
method automatically selects the respiration-related regions from the detected facial regions and
estimates the respiration rate. Most existing methods rely on signals from nostrils and require close-
up or high-resolution images, while our method only requires the facial region to be captured. Facial
region is detected using YOLO v3, an object detection model based on deep learning. The detected
facial region is divided into subregions. By calculating the respiratory likelihood of each segmented
region using the newly proposed index, called the Respiratory Quality Index, the respiratory region
is automatically selected and the RR is estimated. An evaluation of the proposed RR estimation
method was conducted on seven subjects in their early twenties, with four 15 s measurements being
taken. The results showed a mean absolute error of 0.66 bpm. The proposed method can be useful as
an RR estimation method.

Keywords: thermal imaging; vital sign measurement; deep learning; object detection; signal process-
ing; likelihood index

1. Introduction

Respiration along with pulse, blood pressure, and body temperature is considered a
critical vital sign for monitoring human health status. Observing respiratory rate (RR) and
depth is important for early disease detection and physical state management [1-3]. Specif-
ically, it has been reported that an RR higher than 27 breaths/min was the most important
predictor of cardiac arrest in hospital wards [4], and that 21% of ward patients with an RR
of 25-29 breaths/min assessed by critical care outreach service died in hospitals [5].

RR is particularly important for providing appropriate pre-hospital care during emer-
gencies. Although different medical emergency response teams have different definitions of
“abnormal” RRs, recent evidence suggests that adults with RRs higher than 20 breaths/min
are probably unwell, and those with RR greater than 24 breaths/min are likely to be
critically ill [6-10].

At present, popular respiration measurement methods require the attachment of
sensors to the body, which not only causes discomfort, but also causes measurement errors
due to body movements and cannot be used for trauma patients. In order to overcome these
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problems, non-contact respiration measurement methods have been actively developed in
recent years.

In this paper, we propose an RR estimation system using thermal imaging cameras,
which are increasingly being used in the medical field. By measuring temperature changes
during exhalation and inhalation, we aim to track the respiration of the subject in a supine
or seated position in real-time without any physical contact. An overview of the proposed
method is shown in Figure 1. The proposed method automatically selects the respiration-
related regions from the detected facial regions and estimates the respiration rate. Most
existing methods rely on signals from nostrils and require close-up or high-resolution
images, while our method only requires the facial region to be captured. Facial region is
detected using YOLO v3, an object-detection model based on deep learning. The detected
facial region is divided into subregions. By calculating the respiratory likelihood of each
segmented region using the newly proposed index, called the Respiratory Quality Index,
the respiratory-related region is automatically selected and the RR is estimated.

The further structure of this work is described as follows: Section 2 provides an
overview of related works in the field of RR monitoring. Section 3 describes the proposed
algorithm for RR extraction. Section 4 presents the experimental setup, face detection
results, and RR estimation results. Section 5 analyzes the results of the proposed method
and describes the limitations of the algorithm.

o—e )
I 2 74
! = x
[ E‘ L3
T <]

3
o-e S §
L 2 e
\ 5 E
| £ =
o-e|, . § L

| I (74

t frequency

Figure 1. Overview of proposed method: Firstly, a rectangular region of a face is detected by YOLO
v3 [11]. The detected face region is divided into 4 x 6 subregions. Signal intensity is extracted
from each subregion, and signal processing is applied. By calculating the respiratory likelihood
of each segmented region using the newly proposed index “RQI (Respiratory Quality Index)”, the
respiratory-related region is automatically selected and RR is estimated.

2. Related Works

At present, a popular respiratory tracking method involves attaching a band to the
subject’s thorax [12]. A piezoelectric sensor built into the band measures the changes in the
thorax caused by breathing. Another method that uses the changes in the chest is a system
that measures RR during sleep using an accelerometer built into the patient’s bed [13].

An approach for estimating the respiratory cycle by measuring the temperature change
of the airflow around the nose detected by a PVDF sensor attached around the nasal cavities
has also been proposed [14].

These methods, however, require that the sensor is attached to a human body, e.g., to
the chest or nasal cavity, which might induce stress and discomfort. The sensor may also get
detached when the patient moves, resulting in erroneous measurements [15]. Furthermore,
such sensors cannot be applied to patients with major trauma. As for the bed with a built-in
sensor, it is not suitable for use in an ambulance, which shakes during transportation.

For these reasons, respiratory measurements in emergencies often rely on the vi-
sual and auditory senses of the person taking the measurements. Consequently, inac-
curacies have been reported in some studies [16-18]. Although RR is considered impor-
tant, it is often ignored in actual emergency situations, owing to the lack of suitable
measurement techniques.

Given the aforementioned concerns, there has been considerable effort towards devel-
oping non-contact RR monitoring techniques in recent years. Marchionni et al. used a laser
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Doppler vibrometer, which measures vibrations of a surface, for contactless monitoring
of respiration and heart rate [19]. However, this method has the disadvantage that the
measurement cannot be performed when body movements other than breathing occur.

Imaging technologies for visible, near-infrared, mid-infrared, and long-infrared wave-
lengths have also been studied. Tan et al. proposed a system for estimating RR from
chest motions recorded by a single RGB camera [20]. The method employs image and
signal processing techniques to extract information on chest and abdominal movements
from a sequence of video images recorded using a single video camera. For respiration
measurement using an RGB camera, methods using deep learning have been actively
developed in recent years [21,22]. The problem with these methods is that they are af-
fected by the subject’s clothing and measurement is not possible when the subject moves.
Infrared thermography, also known as thermal imaging, is a very promising approach for
unobtrusive and non-contact monitoring of RR. In contrast to visible and near-infrared
imaging systems, thermal imaging does not require any active illumination. As it is a
completely passive technology that works in total darkness, it is a promising monitoring
and diagnostic technique for use in a wide range of medical fields [23].

Abbs et al. proposed an algorithm for estimating RR using the continuous wavelet
transform based on the temperature change around the nasal cavity obtained from thermal
images [24]. In this study, the region of interest (ROI) needs to be selected manually in
the first frame. Pereira et al. improved on the method of Abbs et al. by implementing a
tracking algorithm [25]. In this method, the face is detected using Otsu’s binarization-based
face region detection algorithm. The area around the nasal cavity is then detected based
on anatomical features. Fei et al. also proposed a method to estimate RR by normalizing
the respiratory temperature waveform obtained from the nasal cavity detected using the
coordinated tracking algorithm and then performing wavelet transform on the resampled
signal [26]. Lewis et al. proposed a method to estimate RR by tracking the nasal cavity
based on the Piece-wise Bezier Volume Deformation model [27].

However, most of the non-contact monitoring methods described above require the
subject to remain stationary, making it difficult to apply them to ambulances, which are
subject to shaking during transport. In addition, thermal imaging cameras do not provide
accurate measurements when the nose and mouth regions are not visible in the image.

In light of these concerns, we propose a system that extracts respiratory-related signals
from facial regions detected with a deep learning model using a newly defined respiration
likelihood index, RQI. This system enables us to measure respiration independent of the
detection of nose and mouth regions.

3. Methodology
3.1. Overview of the Algorithm

The overview of the proposed system is shown in Figure 1. First, a rectangular region
containing the patient’s face is detected using YOLO v3 [11], an object detection model
based on deep learning. The detected face region is divided into 4 x 6 subregions. Signal
intensity is extracted from each subregion, and signal processing is applied. By calculating
the respiratory likelihood of each segmented region using the newly proposed index, RQI,
the respiratory-related region is automatically selected and RR is estimated.

3.2. Detection of Facial Region

Object detection methods based on deep learning can be broadly classified into two
types: two-stage and one-stage. Two-stage methods first estimate the region candidates
(region proposal) and then estimate the class and bounding box coordinates. In contrast,
the one-stage type estimates the class and bounding box coordinates directly without a
region proposal.

Examples of a typical two-stage object detection model includes Region Based Con-
volutional Neural Networks(R-CNN) [28], Fast R-CNN [29], and Faster R-CNN [30]. The
two-stage models are computationally expensive, and even the relatively fast Faster R-



Sensors 2021, 21, 4406

40f12

CNN has a processing speed of about 5 frames per seconds (fps) on average. To address
this concern, a one-stage object detection method has been studied, which simultaneously
estimates the class and bounding box coordinates.

Single Shot Multibox Detector (SSD) [31] and YOLO (You Only Look Once) [32] are
typical methods for one-stage object detection.

YOLOV3 [11], which is an improved version of YOLO, achieves faster detection with
the same performance as the state-of-the-art detection models (Figure 2). More specifically,
YOLO v3 can detect 320 x 320 [pixel] images at about 1/3rd of the processing time while
maintaining the same detection accuracy as SSD.
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Figure 2. YOLOV3 architecture

The respiratory monitoring of emergency patients, which is the focus in this study,
requires real-time performance. For this reason, we use YOLOvV3, which is capable of high
accuracy and high-speed detection, to detect facial regions in thermal images.

3.3. Extraction of Signal Intensity
We divide the region detected by YOLOvV3 into 4 x 6 regions (because the aspect ratio

of a typical face is 1 : v/2). For the kth ROI, the signal intensity Sgo 1, (t) at timestamp ¢ is
calculated as the mean value within the ROI as follows:

w—1

1
Sroy (t) = = 2 ROIk i,j,t) 1)

HMI

The width and height of ROl are denoted by w and h respectively, while Iroy, (7, ], t)
denotes the intensity at pixel i, j at the time stamp ¢.

Firstly, we apply a rectangular window to the signal. A rectangular window has a
narrow dynamic range but a high frequency resolution.

Considering that frequency resolution is important in RR estimation, we chose the
rectangular window as the window function. The length of the window was set to 15 s
because of the trade-off between time resolution and frequency resolution.

Second, each signal is detrended, that is, the linear trend is removed from the signal.
Detrending is expected to improve the accuracy of spectrum analysis in the low-frequency
region. As will be discussed in the next section, given that the respiratory-related frequency
is relatively low, we believe that trend removal is effective in respiration rate estimation.

3.4. Likelihood Index for Respiratory Signal

The signal intensity Sroj, (t) was calculated for each grid from the previous section.
However, the degree of relevance to respiration differs depending on the region. For
example, it is expected that the area around the nose and mouth region contains more
respiratory-related signals than the area containing a large amount of hair. In order to
select regions that contain more respiratory-related signals, we examine the respiratory
likelihood index of each grid based on the characteristics of signal intensity. The likelihood
index was considered from two perspectives: RR analysis and spectrum analysis. Each of
them is explained below.
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3.4.1. RR Analysis

Typical methods for estimating RR can be classified into two types: frequency domain
analysis and time domain analysis. We consider that the higher the number of respiratory-
related signals that are included, the greater the agreement between the RR estimates of
both methods. For the signal intensity Sroy, (f) in each region, the methods of estimating
RR by frequency domain analysis and time domain analysis are described as follows.

(A) Estimation of RR from frequency domain:

Power spectrum density is estimated for the signal preprocessed in the previous
section. A periodogram is used to estimate power spectrum density. The power spectrum
density P(f) of the signal S(t) with the number of data points N and sampling rate f; is

expressed as follows:
2

Nfi—1
P = xE| L SWee(—iF) @

P(f) is used to estimate RR. Here, we consider three different frequency bands for P(f) as
follows.

(1) Low-frequency (LF) band f<01Hz
(2) Breath-related frequency (BF)band 0.1Hz < f <2Hz
(3) High-frequency (HF) band 2Hz < f

The LF region contains low-frequency noise components, and the HF region contains
high-frequency noise components. The BF region is the frequency range of respiration. The
BF range is defined as from 0.1 Hz to 2 Hz. The respiratory-related frequency frr . [Hz] is
calculated as follows.

fkgfzzwgaggézP(f) ®)

As frr stands for the number of breaths per second, RR £ [bpm] is calculated as follows:
RR; = 60 X frr )

(B) Estimation of RR from time domain:

To estimate RR from the time domain, we used the zero-crossing method. Zero-
crossing is a method to estimate the fundamental frequency by obtaining the points where
the time signal value changes from positive to negative (zero-crossing points). When N
zero-crossing points are detected from the signal intensity Sgoy, (t), N — 1 fundamental fre-
quencies are estimated. Let the ith and i + 1th zero-cross points be ¢, and ¢, , respectively.
The fundamental frequency fr R, [Hz] is calculated as follows.

frR,; = 2 ®)

a bz —tz
Denoting the median of fr R;, @S fr R, RR¢[bpm] is calculated as follows:

60

RR; =
fRRmedian

(6)

3.4.2. Spectrum Analysis

Examples of respiratory-related signal and noisy signal are shown in Figures 3a and 4a,
respectively. Thus, it can be seen that there are differences between the characteristics
of a breath-related signal and the noisy signal (Figures 3b and 4b). For each of the BF
and HF ranges defined in Section 3.4.1, the characteristics of the breath-related signal are
empirically considered as follows.
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Figure 3. Respiratory-related signal: The signal extracted from the segmented region near the nose
and its spectrum.
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Figure 4. Noisy signal: The signal extracted from the segmented region far from the nose and its
spectrum.

(A) There is only one large spectrum in the BF region.
(B) Thereis no large spectrum in the HF region.

Based on the above characteristics, the signal likelihood index SI (Spectrum Index) in
the frequency domain is defined as follows:

1
SI=1- E(FBP + Fyr) )

Fgr and Fyr are based on the two features of the power spectrum density P(f) in
each region, representing the conditions A and B, respectively. Let the maximum spectrum
in the BF region be Ppr,,,,, (Equation (8)). Fgr represents the proportion of the BF region
that is larger than 0.25 Pgy,,,, (Equation (9)) and Fyr represents the proportion of the HF
region that is larger than 0.1 Pgf,, ,, (Equation (11)).

Pgryux = o ax P (f) 8

b _ Joa PU)He(F)df
.

©)

Joa P(FIS
Har (f) = {(1) Z?:n P(f) < 0.25Pgp,, (10)
= J> P(f)Hur(f)df 1)

Jo P(f)df
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0 when P(f) < 0.10Ppr,,

12
1 else (12)

Hyr(f) = {

3.4.3. Investigation of Likelihood Index

Based on the considerations in Sections 3.4.1 and 3.4.2, we discuss the likelihood index.
Figure 5 shows the relationship between the likelihood index and RR estimation error for
respiratory-related signals obtained from the region where RR estimation error is lower
than 1 bpm and for noisy signals obtained from the region where RR estimation error
is higher than 1 bpm. RR; and RRy indicate the estimated RR obtained by time domain
analysis and frequency domain analysis, respectively.

This shows that the spectrum index S1 is larger and the difference in RR is smaller in
the region that contains more respiratory-related signals. Based on these characteristics,
we propose a new likelihood index for respiratory signals, Respiratory Quality Index. The
details are described in the next section.

x x
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Figure 5. Verification of likelihood index: (a) shows signal obtained from the region where RR
estimation error is lower than 1 bpm. (b) shows signal obtained from the region where RR estimation
error is higher than 1 bpm. The x-axis represents the difference in respiratory rate [bpm] estimated
from the time and frequency domains, respectively. The y-axis represents the Spectrum Index.

3.4.4. Respiratory Quality Index

In this paper, we introduce the Respiratory Quality Index as a new likelihood index of
respiratory-related signals. The RQI is calculated for each segmented region. RQIj for the
k-th region is defined as follows:

RQI; = SI-G(a — [RRy, — RRy|) (13)

Based on its definition, possible values of the RQI are limited to [0, 1]. The closer the
value is to 1, the more likely it is to be a respiratory-related signal.

G(x) stands for a sigmoid function. The sigmoid function is a monotonically increasing
function with a value range of [0, 1] (Equation (14)). The value of a is a parameter, which
is set to a = 5 in this study because Figure 5a shows that the difference between RR; and
RRy is less than 5 among most of the samples from the respiratory-related signals. The
likelihood of the respiratory signal is calculated in each region by RQIL. RRy in the region
where RQI is maximum is taken as the RR of the subject.

1

= Trop(0) 14)

G(x)
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4. Experimental Setup and Results
4.1. Device

The thermal imaging camera used in this study is a Boson 320 thermal imaging
camera (FLIR Systems, Inc.). It has a resolution of 320 x 256 pixels, a viewing angle of
34.1° (horizontal) x 27.3° (vertical) and frames per second of 8.6. This camera captures
16-bit raw images. In the proposed system, raw images are used for signal processing, and
grayscale images converted from raw images are used for image processing such as region
detection.

4.2. YOLOv3 Training

The training data used in this study consisted of 772 thermal images captured using
a Boson 320. The images obtained from the thermal imaging camera were resized to
320 x 320 pixels for training. Twelve subjects, each in the age range 2024 years (four
females and eight males) participated. The images were captured with subjects in a seated
as well as a supine position (Figure 6). In the latter case, the camera was set up at a height
of 1.23 m from the foot (assuming that it would be installed in the ambulance). The labeling
of the facial region was done manually.

(a) seated (b) supine

Figure 6. Training data: Images obtained from the thermal imaging camera for YOLOv3 training.
The images were taken in a seated (a) and supine (b) position.

In training, fine-tuning was performed using the weights obtained by pre-training on
the FREE FLIR Dataset for Algorithm Training [33].

We trained the networks (Figure 2) on the NVIDIA GTX 1080 (NVIDIA, Corp. (Santa
Clara, CA, USA)). The batch size was 8 and the number of epochs was 100. We used
Adam [34] as the optimizer and set the learning rate to 0.001. We trained the networks on
the FLIR Dataset. In the same way, we trained using the 772 original data under the same
condition.

4.3. Face Detection

We validate the face detector using 77 thermal images captured by Boson320. Seven
healthy subjects (four females and three males) voluntarily agreed to participate in this
study. Subjects were placed in the supine position. During the experiments, the camera
was set up at a height of 1.23 m from the foot.

We used Intersection of Union (IoU) as the evaluation index. The IoU value between
the detection box and label box was set from 0.7 to 0.8, with a step size of 0.05. The detection
is regarded as successful when the IoU value is equal to or greater than the threshold value.
The detection results are listed in Table 1. The results show an IOUg 79 of 1.00, IOUj 75 of
0.97, I0Ug g9 of 0.83, and Average IOU of 0.86.
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Table 1. Detection result: IoUj 7y, IoUg 75, and IoUj gy indicate the ratio of detection results whose
IoU is higher than a certain value. For example, IoUj 79 shows the fraction of detection whose IoU is
greater than 0.7, and Average IoU shows the Average of IoU of detection results.

Subjects IoUg 7o TIoUg 75 IoUp g0 Average IoU
1 1.00 0.89 0.56 0.80
2 1.00 0.90 0.30 0.79
3 1.00 1.00 1.00 0.89
4 1.00 1.00 1.00 0.89
5 1.00 1.00 1.00 0.88
6 1.00 1.00 1.00 0.91
7 1.00 0.97 0.81 0.85
Mean 1.00 0.97 0.83 0.86

4.4. RR Estimation

We conducted an evaluation experiment of the proposed RR estimation method. Four
15 s measurements were performed on four female and three males subjects, 20-24 years
old each, who were not included in the training data. In order to reproduce various
respiratory states, the subjects were instructed to set their RR to 15, 20, 25, and 30 bpm for
each measurement.

A thermal imaging camera was placed at a height of 1.23 m from the feet of a supine
patient who was being photographed from above. A piezoelectric respiratory measurement
belt BlTalino (Plux-Wireless Biosignals, Inc., Lisboa, Portugal) was used to obtain the
ground truth.

The results of RR estimation are listed in Table 2. This shows Mean Absolute Error
(MAE) in the range of 0.33 bpm (patient 1) and 1.60 bpm (patient 4). Figure 7 displays a
Bland—Altman plot comparing the proposed method with ground truth. This plot shows
the difference of RR against the mean on the x-axis. RRp;,; and RRgt stand for the RR
predicted by the proposed system and ground truth, respectively. The bias average is
0.19 bpm and the 95% limits of agreement vary between —1.9 and 2.3 bpm.

4_ [ ]
~ 3_
g _________ o | _ _ _ _ L __ __ L _ _ loaw
S >
=
(G}
& 1
I 7777.”2777”7777”;7777? Bias
S o P- - - -
g 0 L4 s !.. ° ¢
Q °
m ®
oC -1 *
LOA(-)
_2_ __________________ ® _ _ _ - - - - - —
10 15 20 25 30 35
(RRPred + RRGT)/Z[bpm]

Figure 7. Bland—-Altman plot of RR estimation: This plot shows the difference of RR against the mean
on the x-axis. RRpgeq and RRgt stand for the RR predicted by the proposed system and ground truth,
respectively. The bias average is 0.19 bpm and the 95% limits of agreement vary between —1.9 and
2.3 bpm.
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Table 2. RR estimation result: This shows the MAE of the RR between the prediction and the ground
truth.

Subjects Mean
1 2 3 4 5 6 7
MAE[bpm] 0.33 0.45 0.29 1.60 0.50 1.10 0.42 0.66

5. Discussion
5.1. Face Detection

We extract facial regions in thermal images using YOLOvV3, an object detection algo-
rithm based on deep learning. The results of the experiment suggest that good agreement
of ground truth and prediction was observed (IOU: 0.86, IOUj 7p: 1.00). In the future, we
will validate whether the proposed model can show good performance in actual emergency
situations. In real-world scenarios, it is assumed that other people such as a clinicians will
appear on the camera in addition to the patient. Therefore, we consider that it is necessary
to detect the patient and the clinician as different classes, as described in [35].

5.2. RR Estimation

We proposed an algorithm to estimate the respiration rate from a facial region de-
tected by YOLOv3. We introduced RQI to calculate the respiratory likelihood from the
signals in a grid obtained by splitting the facial region and automatically selected the
respiratory-related region using this index. The results of the experiment showed that
the MAE was 0.66 bpm and the 95% limits of agreement were between —1.9 and 2.3 bpm,
indicating sufficient accuracy as a respiratory monitoring method in an ambulance. Many
other methods rely on the signal from the nostrils and require close-up or high-resolution
images, while our method only requires the facial region to be captured. As these reported
techniques based on nasal region tracking result in an MAE of 0.33 bpm [25], our method is
comparable to these. One limitation of this study is the limited number of subjects for the
statistical analysis. The effects of shaking assumed in the ambulance were not investigated.
In addition, each of the features (e.g, Fpr, Fyr) in RQI is expected to have a different degree
of association with respiratory likelihood. Although we determined the subregions to be
analyzed based on the RQI in this study, we may apply machine learning methods such as
SVM from these features to determine the subregions .

6. Conclusions

In this paper, we implemented a new non-contact respiration monitoring method
based on a new introduced respiratory likelihood index. Facial region is detected using
YOLOv3 [11], an object detection model based on deep learning. By calculating the
respiratory likelihood of each segmented facial region using the newly proposed index RQ],
the respiratory-related region is automatically selected and RR is estimated. Our method
only requires the facial region to be captured while many other methods rely on the signal
from the nostrils and require close-up or high-resolution images.

The results of face detection suggest that good agreement of ground truth and pre-
diction was observed (IOU: 0.86, IOUj 7y: 1.00). RR estimation showed that the MAE was
0.66 bpm and the 95% limits of agreement were between —1.9 and 2.3 bpm.

An RR that can be estimated from the proposed method is restricted from 6 to 120 bpm,
hence it cannot measure apnea. It is very important to monitor apnea in emergencies.
However, to our best knowledge, there is no system that overcomes this issue. We will
investigate the changes in the distribution of RQI according to the patient’s respiratory state
to identify apnea. In future work, we will evaluate this proposal method in a clinical study.
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