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Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population.
Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole
chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are
also known as segmental aneuploidies, are also associated with deleterious effects. Here we examine how aneuploidy of whole
chromosomes and segmental aneuploidy of chromosomal regions are modeled in the mouse. These models provide a whole animal
system in which we aim to investigate the complex phenotype-genotype interactions that arise from alteration in the copy number
of genes. Although our understanding of this subject is still in its infancy, already research in mouse models is highlighting possible
therapies that might help alleviate the cognitive effects associated with changes in gene number. Thus, creating and studying mouse
models of aneuploidy and copy number variation is important for understanding what it is to be human, in both the normal and
genomically altered states.

1. Introduction

Traditionally, aneuploidy was defined as a deletion or dupli-
cation of a whole chromosome. This genomic abnormality
is thought to occur in at least 5% of all clinically recognized
pregnancies, usually resulting in spontaneous abortion [1].
Aneuploidy is thought to be usually highly deleterious
because many genes are “dosage-sensitive” in that their
expression is affected by their copy number in the genome,
and changes in gene expression levels may result in altered
phenotypes that can be lethal [2]. As well as whole chromo-
some aneuploidy, deletion of a few kilobases or megabases
of DNA (microdeletion) or similarly a duplicated region
(microduplication) within a chromosome can also result in
changes in gene copy number. Recent advances in genomic
technologies have revealed the association of many of these
segmental aneuploidies (microdeletions and duplications)
with specific genetic syndromes and diseases [3–5].

The most frequently occurring full autosomal aneuploidy
is that of trisomy of human chromosome 21 (Hsa21), which

causes Down syndrome (DS). DS is the most common
cause of genetic intellectual disability, occurring in ∼1 in
750 live births in all populations. People with DS have
an increased risk of developing cardiac defects, certain
leukemias, and early onset Alzheimer’s disease as well as
many other phenotypes [6]. Trisomies of chromosomes
18 (Hsa18) (Edwards syndrome) and 13 (Hsa13) (Patau
syndrome) occur at lower frequency than DS (1 in 4300 and
1 in 7100 live births, respectively), and infants with these
conditions have a very short life expectancy, typically less
than 1 year and less than 5 years, respectively [7]. Aneuploidy
of the sex chromosomes can occur with multiple copies of
the X or Y chromosome, or loss of the X or Y chromosome.
Relatively common sex chromosome aneuploidies include
Klinefelter syndrome (KS) (47 XXY, males with an additional
copy of the X chromosome), ∼1 in 500–1000 males [8], and
Turner syndrome (TS) (45,X, females with monosomy of the
X chromosome), 1 in ∼4000 live births [9].

Segmental aneuploidies, otherwise known as partial ane-
uploidies or segmental aneusomies may be more compatible
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with life than whole chromosomal aneuploidies, and result
in a large number of well-defined syndromes (Table 1). Many
of these conditions are associated with neurodevelopmental
and growth problems that result in epilepsy, intellectual
disability, and autism.

The challenge facing scientists and clinicians from the
aneuploidy syndromes is how to unravel the interaction
between abnormal gene dosage and abnormal gene expres-
sion that leads to the specific phenotypes of each syndrome,
and then to find therapies for intervention for these pheno-
types.

2. Mouse Models of Aneuploidy

The use of mouse models of aneuploidy allows scientists
to study the direct effects of abnormal gene dosage on
specific syndromes, at the molecular, cellular, physiological,
and behavioural level. Many technologies exist to manipulate
the mouse genome to mutate, overexpress, and knock-
out specific genes of interest, and help to define which
dosage sensitive genes are causative for any given phenotype
(reviewed in [10]). Such technologies now include chro-
mosome engineering whereby large regions of the mouse
genome can be deleted or duplicated corresponding to the
partial aneuploidies found in humans (reviewed in [11,
12]). However, one confounding factor is that each human
chromosome has syntenic regions to two or more mouse
chromosomes. An alternative approach has been to transfer
an entire human chromosome into a mouse, to overcome
this problem [13]. Here, we discuss the contribution of
mouse models of whole chromosome and segmental aneu-
ploidy to our biological understanding and highlight possible
future models and how they may further our knowledge.

3. Mouse Models of Whole
Chromosome Aneuploidies

3.1. Down Syndrome. A number of mouse models have
been developed to study the most frequently occurring
autosomal aneuploidy, Down syndrome (Figure 1). The
Tc1 transchromosomic mouse model contains a freely
segregating maternally inherited copy of Hsa21 and is
trisomic for approximately 75% of Hsa21 genes [13]. This
mouse has altered learning and memory, synaptic plasticity,
a reduced cerebellar neuronal number, heart anomalies,
reduced solid tumor development, and defects in angiogen-
esis and megakaryopoiesis [13–18]. Other mouse models
of DS contain an additional copy of regions of mouse
chromosomes 16, 17, and 10, which are syntenic with Hsa21.
The Ts65Dn mouse model is the most widely used; it
contains an extra copy of a segment of mouse chromosome
16 (Mmu16) and is trisomic for about 50% of the genes
found on Hsa21 [19]. This model shows impaired learning
and motor deficits [19], neuronal degeneration similar to
that observed in people with Alzheimer’s disease (which is
part of the DS phenotype) and heart and angiogenesis defects
[20–22]. Another commonly used model is the Ts1Cje mouse
which contains a smaller segmental trisomy of Mmu16

including approximately 68 genes; it also exhibits learning
and behavioral deficits, but does not exhibit neuronal
degeneration [23]. The newest model of DS, developed by Yu
and colleagues, contains three copies of all Hsa21 homologs
on mouse chromosomes 16, 17, and 10 and shows learning
and memory deficits that may be similar to some of the
cognitive problems that people with DS experience [24, 25].

To determine the identity of trisomic genes that cause
specific phenotypes, aneuploid mouse models of DS can be
crossed with mouse models of segmental Hsa21 monosomy
(Ms1Yah and Ms4Yah) [26–29] or to gene knockouts to
alter dosage of individual genes within a region of trisomy.
These techniques have been recently used to identify the
genes responsible for trisomy-21-related protection against
the tumour formation [30], furthering our understanding
of the biology that underlies these important processes.
Mouse models of Hsa21 trisomy have been used also
for demonstrating the potential for cognitive enhancement
therapies for people who have DS [21, 31, 32]. A number
of the drugs tested in studies of DS mouse models for their
effects on learning and memory are currently in small-scale
clinical trials, demonstrating the utility of these mice to
combat the deleterious effects of DS.

3.2. Edwards Syndrome and Patau Syndrome. A mouse model
of Edwards syndrome has yet to be developed. Hsa18 is
78 Mb in length and has conserved synteny with 5 principal
regions encoded on three mouse chromosome (Mmu 1, 17,
and 18). Similarly, no animal model of Patau syndrome
has been reported; Hsa13 has conserved synteny with six
mouse chromosome segments. Thus, although technically
challenging, it would be possible to generate models of these
syndromes by duplication of the mouse syntenic regions.
These models could be used to further our understanding of
the biology of this devastating conditions.

3.3. Turner Syndrome and Klinefelter Syndrome. Mouse
models with both paternal and maternally inherited 45,X
karyotypes exhibit behavioural changes including reduced
attention, growth retardation, and hearing defects, which
resemble aspects of human Turner syndrome (TS) (reviewed
by [33]). These models have been useful for understanding
the X-parent-of-origin-effect on TS-associated phenotypes.
However, 39,X mice do not manifest some TS-associated
phenotypes, such as motor deficits; this may reflect dif-
ferences in X-inactivation between mouse and humans.
Mouse models of Klinefelter syndrome (XXY male) develop
hypogonadism and cognitive problems and have impaired
fertility (reviewed by [34]), phenotypes that resemble aspects
of KS. Molecular studies undertaken in XXY mouse models
have shed light on the possible chemical alterations in the
brain that cause cognitive problems observed in KS [34], and
this knowledge may lead to the development of therapeutic
strategies.

4. Mouse Models of Segmental Aneuploidies

Mouse models of segmental aneuploidy are invaluable for
our understanding of which dosage-sensitive genes result in
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Table 1: Examples of mouse models of segmental aneuploidies.

Human syndrome Associated genetic change Aneuploid mouse models

Angelman syndrome deletion of maternal 15q11–13
PatDp [37]

MatDf(Ube3a-Gabrb3) [38]

Prader-Willi syndrome deletion of paternal 15q11–13 MatDp [37]

Autism risk factor Duplication 15q11–13 matDp; pat Dp [57]

Smith-Magenis syndrome deletion of 17p11/17p11.2
Df(11)17 [58]

Df(11)17-1; Df(11)17-2; Df(11)17-3 [59]

Potocki-Lupski syndrome duplication of 17p11/17p11.2 Dp(11)17 [58]

DiGeorge syndrome deletion of 22q11.2

Df1 [44]

Idd-Ctp [45]

Idd-Arvcf [46]

Df2; Df3; Df4; Df5 [60]

Williams-Beuren deletion of 7q11 PD and DD [53]

— deletion/duplication of 17q21 Df11[1] and Dp11[1] [35]
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Figure 1: Mouse models of Down syndrome. Hsa21 (in blue) and the syntenic mouse chromosomes (Mmu 16, orange, Mmu 17, purple,
Mmu10, green). The trisomic regions of several of the well-established mouse models of DS, the Tc1 mouse, Ts65Dn, Ts1Cje, and
Dp(10)1Yey/+, Dp(16)1Yey/+, Dp(17)1Yey/+ are aligned to the corresponding parts of the human and mouse genome.

the deleterious phenotypes that are associated with these
genomic changes in humans. Moreover, mouse models of
segmental aneuploidy, not associated with a specific human
syndrome, can also be used to understand the relationship
between gene and phenotype. For example, mouse models
with 0.8 Mb reciprocal chromosomal deletions and duplica-
tions have been used to identify the role of Stat5 in immune-
hypersensitivity and metabolic syndrome [35].

A number of models of Prader-Willi syndrome (PWS)
(deletion of paternal 15q11–13) and Angelman syndrome
(AS) (deletion of maternal 15q11–13) have been reported
[36–38]. PWS is also associated with chromosome 15 mater-
nal disomy and AS with paternal chromosome 15 disomy.
Mouse models of these genetic changes have been reported
and both exhibit reduced viability and neonatal growth retar-
dation [36, 37]. Deficits in learning and memory have also
been observed in a mouse model with a maternally inherited

segmental deletions (Ube3a-Gabrb3) corresponding to part
of the region lost in AS [38]. Mouse models deficient in
the Ube3a and Gabrb3 PWS/AS candidate genes exhibit
neurodevelopment and behavior changes, highlighting the
key role these genes play in the syndromes [39–41].

Interestingly, maternal duplications of the PWS/AS asso-
ciated region, 15q11–13, are associated with autism [42].
A mouse model of the duplication of the mouse syntenic
region of chromosome 7 exhibits some features that resemble
autism, but only when the duplication is paternally inherited
in contrast to the inheritance pattern observed in humans
[43]. These models will help give insight into the genetic and
biochemical abnormalities causing autism.

Mouse models of DiGeorge syndrome (deletion of 1.5–
3 Mb at 22q11) have been crucial to the molecular under-
standing of this condition. A series of complementary mouse
models with full or partial deletions of the region syntenic
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with 22q11 identified the key deleted gene, Tbx1, responsible
for the syndrome’s deleterious phenotypes [44–46]. The
22q11 deletion is also the largest known genetic risk factors
for schizophrenia [47, 48], and the DiGeorge mouse models
may also be useful to further understanding of this condition
[49]. Similarly, mouse models of the complete 3.7 Mb
deletion and duplication associated with Smith-Magenis
(SMS) and Potocki-Lupski (PTLS) syndromes have helped
identify one of the key dosage sensitive genes, Rai1 [50].
Moreover, these models have also been used to investigate
the relative effect of genomic rearrangement versus gene
copy number change on gene expression [51]. Work in this
field has also highlighted the very complex interactions of
genes both within the copy number altered region and those
elsewhere in the genome [52], as the penetrance of some
PTLS-like features in the mouse models vary with the size
of the region disrupted and the genetic background of the
model. The effect of genetic background on the penetrance of
aneuploidy-associated phenotypes has also been highlighted
in the Tc1 mouse model in which DS-like heart defects
appear with a greater penetrance on a C57BL/6 mouse inbred
line background [15].

A mouse model of Williams-Beuren syndrome (WBS)
has been developed recently that exhibits a large number
of informative neurodevelopmental and behavioural abnor-
malities [53]. This model is likely to be crucial to further
understanding of WBS.

5. Future of Aneuploid Mouse Models

Complete and partial mouse models of aneuploidy have
significantly contributed to our understanding of the com-
plex relationship between dosage of individual genes and
the resulting phenotypes that arise in individual aneuploidy
syndromes. Unfortunately, even for the most widely studied
aneuploidy disorders such as DS, we are a long way from
understanding much of the molecular basis of the pathology.
However, the rate of progress in understanding the effects
of gene copy number and expression levels is increasing,
and we now know that there is a considerable variation
of small genomic regions, copy number variation (CNV),
across the entire human genome in normal individuals.
These regions can be up to a megabase in size and affect
much of normal human phenotypic variation, including
susceptibility or resistance to common disorders (e.g., see
[54–56]). New mouse models of CNVs will be beneficial
to study not only the effects of gene dosage but also to
dissect the effects of altering copy number for the regulatory
elements found in these regions of the genome.

Advances in our understanding of the human genome
will present new opportunities for the development of novel
mouse aneuploid models. Equally, findings from existing
mouse models will continue to influence human genetic
studies. Thus, complementary human and mouse genetic
studies are key to unraveling the links between gene copy
number and phenotype.
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