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Abstract
The humanities, like many other areas of society, are currently undergoing major changes 
in the wake of digital transformation. However, in order to make collection of digitised 
material in this area easily accessible, we often still lack adequate search functionality. For 
instance, digital archives for textiles offer keyword search, which is fairly well understood, 
and arrange their content following a certain taxonomy, but search functionality at the level 
of thread structure is still missing. To facilitate the clustering and search, we introduce 
an approach for recognising similar weaving patterns based on their structures for tex-
tile archives. We first represent textile structures using hypergraphs and extract multisets 
of k-neighbourhoods describing weaving patterns from these graphs. Then, the resulting 
multisets are clustered using various distance measures and various clustering algorithms 
(K-Means for simplicity and hierarchical agglomerative algorithms for precision). We eval-
uate the different variants of our approach experimentally, showing that this can be imple-
mented efficiently (meaning it has linear complexity), and demonstrate its quality to query 
and cluster datasets containing large textile samples. As, to the best of our knowledge, this 
is the first practical approach for explicitly modelling complex and irregular weaving pat-
terns usable for retrieval, we aim at establishing a solid baseline.
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1  Introduction

In the humanities, the digitisation of cultural heritage and cultural practices plays an ever 
more important role (Stone 2012; Rosner et al. 2014). However, digitising cultural herit-
age is far from trivial. In many cultures textiles play a prominent role (Schoeser 2012), 
for instance in African (Clarke et al. 2015), Andean (pre-Columbian) (Bjerregaard and 
Huss 2017), British (Gale et al. 2012), Chinese (Kuhn 2012), Greek (Spantidaki 2016), 
and Indian (Fotheringham 2019) civilisations. They were used to communicate informa-
tion, such as social standing, and are therefore important for researchers studying the 
history and prehistory of these regions. The traditions around weaving and the crea-
tion of textiles are kept alive by communities throughout the whole world, located in 
countries such as the United Arab Emirates, China, Vietnam, and Peru. However, this 
is becoming more and more difficult, as there is a waning interest in these traditions 
among younger generations, which makes the preservation of this cultural heritage a 
timely and pressing issues.

There are a number of digital archives for textiles that are publicly accessible, but 
these archives offer limited functionality when it comes to searching the collections. 
For example, the TEXMEDIN digital library (http://www.texme​dindi​gital​ibrar​y.eu/) 
provides keyword-based search facilities. The Textile Museum of Canada (http://www.
texti​lemus​eum.ca/) goes further by allowing users to browse the collections according 
to different categories, such as textile type, region, materials, techniques, and period 
and the University of Leeds International Textile Archive (ULITA) (http://ulita​.leeds​.ac.
uk/) organises their collection by region. In the context of an earlier project (Brownlow 
et al. 2015; Martins et al. 2013), called “Weaving Communities of Practice”, we went 
even further by constructing an ontology for Andean textiles and utilising this ontol-
ogy for building a knowledge base, offering additional querying functionality. All of 
the platforms above require the use of certain terminology or keywords to make them 
work, though. During several visits to South-American museums taking place in our 
earlier project, the domain experts encountered new textile patterns previously unknown 
to them, which means that in some cases the exact terminology to describe these textiles 
is still missing. This motivated us to come with an approach to let the textiles speak for 
themselves, i.e., developing a method to compare textile patterns directly without first 
creating a (natural) language description.

While there are formal mathematical models for representing very regularly shaped 
grid-like textile patterns produced by machines, it is much harder to model manually 
created textiles, which exhibit a much more complex and irregular internal structure. We 
were not able to find an efficient technique powerful enough to represent the patterns we 
were confronted with in Andean and Vietnamese textiles. We opted for a hypergraph-
based model: (graphs and) hypergraphs have been used widely to represent human-made 
objects, in fields as diverse as knowledge bases, natural language and image representa-
tion, and medicine. What made hypergraphs particularly interesting for us is the fact 
that they have been successfully applied to represent and model objects, their contexts, 
and the spatial relationships of subcomponents (Wong et al. 1989). After an ineffective 
attempt to model complex and irregular textile patterns with labelled regular graphs, we 
found hypergraphs to offer the functionality and expressibility we were looking for.

The purpose of this paper is to propose a hypergraph-based model for textile repre-
sentation and develop suitable methods on the hypergraphs for textile pattern retrieval 
and clustering. This would not only help in the search and recognition process, but 

http://www.texmedindigitalibrary.eu/
http://www.textilemuseum.ca/
http://www.textilemuseum.ca/
http://ulita.leeds.ac.uk/
http://ulita.leeds.ac.uk/
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would also allow domain experts to gain deeper insights by being able to quantify dif-
ferences and variations in patterns that evolved over time and in different regions. In 
summary, we make the following contributions here:

•	 We develop a novel approach based on hypergraphs for representing textiles. Our 
approach can handle many different structures, like woven, knitted, or braided textiles 
and it is invariant to orientation. To the best of our knowledge, this is the first practical 
approach that can handle very complex textile patterns.

•	 We propose a 2-step approach to measure the structural similarity of textiles. First, 
multisets of k-neighbourhoods, which describe the weaving structures from the hyper-
graph representation, are extracted. Essentially, these neighbourhoods are star-shaped 
subgraphs of hypergraphs. In a second step, the multisets are compared through various 
distance measures.

•	 We show the efficiency and effectiveness of our technique in querying and clustering a 
data set of 1600 textile samples, measuring the performance of our similarity measure. 
We validate the results obtained in our earlier work (Helmer and Ngo 2015) by evaluat-
ing our approach under multiple different scenarios, utilising a larger and more diverse 
data set and new distance and quality measures. The results we get back up our earlier 
results and demonstrate the robustness and generality of our approach. Our aim is to 
establish a baseline for modelling textile structure usable for identification and retrieval 
of weaving patterns.

The remainder of the paper is organised as follows. In the next section we review the 
related work. Section 3 covers the state-of-the-art for modelling textile structures and dis-
cusses their advantages and disadvantages. The new approach is introduced and detailed 
in Sect. 4. The new similarity measures were applied to well-known and popular unsuper-
vised learning (clustering) algorithms in Sect. 5. We evaluate our approach experimentally: 
we present the methodology in Sect. 6 and the results in Sect. 7. We conclude and give 
some future directions in Sect. 8.

2 � Related work

2.1 � Terminology‑based approach

A widely-used terminology for textiles and the basic patterns they are made of was com-
piled by Emery (2009), who, at the time of writing, was a curator at the Textile Museum 
in Washington D.C. We provide more details on Emery’s classification and particular 
issues in Sect. 3. Although the terminology is not always completely consistent (Brezine 
2009), it is a comprehensive work that systematically classifies textiles according to their 
internal structure. Nevertheless, it has some gaps when it comes to textiles created in vari-
ous cultural contexts, including the South American Andes  (Arnold and Dransart 2014; 
D’Harcourt 2002). It is also very challenging to try to find a natural language descrip-
tion for every possible textile structure, since there is a large diversity of textile patterns, 
especially when looking at manually created fabrics. Thus, it comes as no surprise that 
researchers have tried to develop formal and mathematical models to describe textile struc-
tures (Grishanov et al. 2009a, b).
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2.2 � Topology‑based approach

When reviewing formal models, we have to distinguish between two different types: those 
for regular grid-like structures and those for more irregularly shaped patterns. Mechani-
cal looms create very regular patterns, which can be represented with the help of matri-
ces  (Milasius and Reklaitis 1988). As these methods are not adequate for describing 
complex patterns in handcrafted textiles, we focus on the second type of models. Topology-
based approaches used elements from knot theory to describe textile patterns. Grishanov 
et al. (2009a, b) went further by developing a method using tangles, i.e., knot fragments 
embedding arcs into a sphere.1 Although this is a more generally applicable approach, it 
still has some drawbacks. It can only be applied to structures that show periodicity (in two 
perpendicular directions) and it does not consider multi-layered disjoint textiles. Addition-
ally, the topology-based models focus on the classification and enumeration of textile pat-
terns, while we are interested in their fast retrieval. However, checking the equivalence of 
two structures made up of knots, links, or tangles is intractable in the general case (Crom-
well 2004).

2.3 � Textile image‑based approach

We now turn to a completely different approach: describing textile patterns not with the 
help of abstract models, but with images taken with cameras. Many papers exploiting 
supervised learning techniques have been applied to defect detection  (Yapi et  al. 2015; 
Li et  al. 2019a), fabric classification  (Jing et  al. 2019; Arora et  al. 2020), and textile 
retrieval  (Deng et  al. 2018; Xiang et  al. 2019). However, these approaches rely on tex-
tile colour rather than structure and share some general drawbacks of supervised learning 
techniques, such as being heavily dependent on the training data sets. Some researchers 
exploit the regularity of textures for material inspection  (Ngan and Pang 2009), density 
detection (Zheng and Wang 2017), and textile recognition (Chan et al. 2017), while oth-
ers use Fourier transform for the retrieval of weavings  (Zhang et  al. 2019) or clustering 
fabrics (Zhang et al. 2017). There is also work on utilising an entropy-based method to cal-
culate the distribution of weave points (Zheng et al. 2009). Applying image processing to 
the analysis of textile structures has the advantage that the process can often be automated. 
Most of the approaches described above are not generally applicable, though, i.e., they can 
only be used for specific patterns, such as knitting or regular grid-like structures. Addition-
ally, since textiles are three-dimensional objects, some features may be hidden and many 
image-processing approaches have problems with this. While Ma et al. were able to extract 
some of the hidden information (Ma et al. 2011), they can only do so for regular grid-like 
structures.

Varma and Zisserman (2009) propose texton-based representations, obtained from sin-
gle images under unknown viewpoints and illumination, for fabric classification. These 
representations are suitable for modelling compact neighbourhood distributions with 
Markov random fields. Xie et al. (2015) use a two-step texton-encoding algorithm to clas-
sify the whole image, using a learned dictionary and the corresponding sparse coefficients 
over the features extracted from the image. Li et al. (2019b) propose a low-rank representa-
tion that divides an image into blocked matrices for dimensionality reduction with the goal 

1  We provide more background on knots, links, and tangles in Sect. 3.
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of detecting various fabric defects. They also apply Eigen-value decomposition on blocked 
matrices to implement a version without a training phase. Kang and Zhang (2019) devise 
an Elo-rating algorithm of integral images to improve fabric products and to speed up the 
detection of defects. It needs to be trained on defect-free samples of a particular textile pat-
tern to be effective. This means, that it cannot be used for categories that do not have an 
unambiguous representative. The categories of complex textile patterns we look at do not 
necessarily have unique representatives. Additionally, all the methods we just discussed 
work on images of textiles, not directly on their structure.

2.4 � Application of graph and hypergraph representation

Graphs and hypergraphs have many applications in various fields. For instance, they are 
used to represent structure of both natural and human-made objects. The NLP researchers 
apply graph for constructing a knowledge base to retrieval complex text answer (MacA-
vaney et al. 2019; Sawant et al. 2019) or integrate entity and concept (Shalaby et al. 2019). 
Qiao et  al. (2020) model location-based social networks by using heterogeneous graphs 
which describe representations of users, points of interests, and temporal information. 
Gbadouissa et al. (2020) propose a heuristic clustering based on hypergraph theory, which 
optimises and effectively manages the used energy of sensor nodes in wireless sensor net-
works. Lierde and Chow (2019) use hypergraph transversals for text summarisation. In that 
context, nodes are the sentences of the corpus and hyperedges are themes which group 
sentences belonging to the same topics. Liang et al. (2019) propose hypergraphs to model 
electroencephalography (EEG) signals for emotion recognition. Here, a vertex is one trial 
of EEG signals, and the relationships among the vertices are the extracted EEG character-
istics in the three domains of frequency, time, and wavelets. However, so far there is no 
work using graphs or hypergraphs for modelling textile structures.

3 � Textile modelling in the state‑of‑the‑art

Before presenting our approach, we define some basic concepts currently used for mod-
elling textiles and also discuss their merits. One of the most important is the notion of 
textile structure, which describes the spatial relationships between segments or pieces 
of fibre, e.g. yarns, threads, or strands. Emery distinguishes three different general 
structures found in textiles (Emery 2009): felted fibres and interworked and interlaced 
elements. The first one, felted fibre, is of no particular interest to us, as it describes 
textiles in which fibres are compressed, matted, and condensed, resulting in dense and 
very irregular entanglements. This makes it very hard or almost impossible to iden-
tify the relationships between individual fibres. However, this is not an issue, since 
felted fibres are not compared to each other on this level of detail, as the individual 
entanglements will look different even for the same type of textile. The remaining two 
structures, interworked and interlaced elements, are much more important to us. In the 
former, techniques such as knotting, linking, stitching, looping, or twining are used to 
connect threads; in the latter, threads pass over and under each other (and this is the 
only way they connect). Figure 1 shows typical examples for interworked (Fig. 1a and b) 
and interlaced elements (Fig. 1c and d). Here we offer only a short glimpse into Emery’s 
classification scheme, giving a comprehensive overview would be beyond the scope 
of our paper. Especially, because we are not interested in providing natural language 
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description, but we want to develop a formal model. We now turn to the topic most 
important for us: given (a fragment of) a textile pattern, find other textiles the the same 
or a similar arrangement of the constituent elements.

3.1 � Knots

In the following we give a brief summary of topological concepts taken from (Cromwell 
2004; Grishanov et al. 2009a) that have been used to model textile structures, starting 
with the concept of knots, which are one-dimensional subsets of points K ⊂ ℝ

3 homeo-
morphic to a circle. A trivial knot, a circle, is depicted in Fig. 2a, while a more compli-
cated structure, a so-called trefoil is shown in Fig. 2b. One important way to compare 
knots is to check whether they are equivalent or not. An intuitive notion of equivalence 
asks if we can transform one knot into another one by deforming it without breaking or 
cutting it. Two knots that can be transformed into one another are depicted in Fig. 2c 
and d.

A well-known topological deformation is a homotopy, which is a continuous mapping 
of a space X ⊂ ℝ

3 over time. However, a homotopy is not sufficient to accomplish the task 
at hand, i.e., checking whether a continuous deformation is possible. In order to distin-
guish knots we need the concept of ambient isotopy. Rather than deforming the subspace 
X ⊂ ℝ

3 , we distort the whole space around X, carrying it along.

(a) Knitting (b) Braid (c) Plain weave (d) Twill (2/1)
Interworked elements Interlaced elements

Fig. 1   Examples of textile structures

(a) Trivial knot (b) Non-trivial knot (c) Knot A (d) Knot B
snoitamrofsnarTsepyT

Fig. 2   Examples of knot types and transformations

Fig. 3   Examples of links

(a) Trivial link (b) Borromean rings
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3.2 � Links

A generalisation of a knot is called a link, which is a set of entangled knots; Fig.  3a 
illustrates a trivial link that we get by untangling or unlinking the knots to obtain a sim-
ple reference link. A more complicate structure, called Borromean rings, is shown in 
Fig. 3b. Similar to knots, the equivalence of links can be defined using ambient isotopy, 
i.e., we can check whether a link can continuously be deformed into another link with-
out breaking or cutting any knots.

3.3 � Tangles

Knot theory is a well-established mathematical field, but we found that we could not 
apply it directly to our use case, since textiles are not created by combining and entwin-
ing circles. Nevertheless, the notion of a tangle, introduced by Conway (1970), is much 
closer to what we need. Tangles are fragments of knots and Conway tried to simplify the 
enumeration and classification of knots and links with the help of tangles. It turns out 
that tangles are also useful when it comes to describing textiles: Grishanov et al. first 
applied them to describing textile structures (Grishanov et al. 2007).

Originally, Conway defined a tangle as a fragment of a knot with arcs ending in the 
four corners, which are labelled NW, NE, SW, and SE (like a compass rose). For exam-
ples of tangles, see Fig. 4. The original definition of 2-tangles, containing two disjoint 
arcs and a collection of loops, can easily be extended to n-tangles, containing n disjoint 
arcs. In our approach, we basically use simple 2-tangles containing exactly one cross-
ing. We break down more complex structures into simple 2-tangles. We would represent 
the first two structures in Fig. 4 directly, while breaking down the third structure into 
two tangles and the fourth one into three tangles.

3.4 � Two‑dimensional projections

Although strictly speaking textiles are three-dimensional objects, for an abstract descrip-
tion and classification a two-dimensional representation is sufficient in most cases. We 
do not know the exact height of a point in a two-dimensional representation, but we can 
still clearly distinguish different types of textile patterns, as textiles do not protrude far 
into the third dimension. Mathematically, we are projecting knots, links, and tangles 
from ℝ3 to ℝ2 . We have to be careful when projecting these elements, though. First, 
an edge is not allowed to be parallel to the projection direction. Second, the projection 
needs to be regular, i.e., it is injective except for a finite number of points. These excep-
tions are crossings in a link and we may only have at most two points in a link projected 
onto a crossing. Third, we have to be able to distinguish the arc on top from the one 

Fig. 4   Examples of tangles



144	 Information Retrieval Journal (2021) 24:137–173

1 3

below. Usually, the lower arc is represented by a break in the line, a convention which 
we have used implicitly so far (and will keep using).

A two-dimensional projection creates some problems when transforming links by grad-
ually deforming them, though. A transformation that is perfectly fine in ℝ3 can lead to a 
situation in which the projection to ℝ2 is not regular anymore. Reidemeister identified the 
problematic cases and defined his Reidemeister moves, shown in Fig. 5, that allow a trans-
formation to avoid the critical transformation steps by skipping over them. When checking 
the equivalence of two links, we need to find a sequence of gradual deformations and Rei-
demeister moves that transform one link into the other.

3.5 � Discussion

Researchers such as Grishanov were interested in determining the equivalence of textile 
structures with the help of topological methods. Mapping this problem to knot theory 
allows the application of methods developed for determining the equivalence of knots. 
While this works on a theoretical level, in practice the situation is much more complicated. 
One of the first algorithms for determining the equivalence of knots is extremely complex 
and was never implemented  (Haken 1961). Hass et  al. surveyed a number of knot algo-
rithms (Hass et al. 1999). However, their conclusion was that none of them are of any prac-
tical use and that for several (general) problems in the area, it is not even clear what their 
exact complexity is. For instance, Hotz claimed to have developed an efficient knot-equiva-
lence algorithm (Hotz 2008), which turned out to have a complexity of O(2

n

3 ).
Since determining the equivalence of knots is a very challenging problem in the gen-

eral case, knot invariants have been investigated as an alternative. There are a considerable 
number of knot and link invariants, which are used to divide knots and links into different 
equivalence classes. The multiplicity of a link is a simple invariant for links: it is simply 
the number of its components. More complex invariants, such as the unknotting number, 
which counts the minimum number of times a link has to cross itself to be transformed 
into a trivial link, are easy to express, but hard to actually calculate. Grishanov et al. have 
compiled some useful invariants for classifying specific textile structures, more precisely 
doubly-periodic structures (Grishanov et al. 2009b).

In summary, the state-of-the-art consists of complex knot-equivalence algorithms and 
very specific invariants for classifying certain textile structures. None of these techniques 
help us in formulating a retrieval model that ranks textiles according to their similarity 
to a given query pattern. Furthermore, some of the methods are based on deforming and 
unknotting a structure, which, applied to textiles, could lead to breaking them up into indi-
vidual threads. This would be contrary to what we are trying to achieve: measuring the 
similarity of two textile structures according to the relative positions of crossings within 

Fig. 5   Reidemeister moves
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them. Although our work was inspired by knot theory, especially the notion of tangles, we 
were striving for a more practical approach. In the following section, we provide details on 
the inner workings of our technique.

4 � Our graph textile modelling approach

In this section we discuss the different components of our approach: a representation of tex-
tile structures based on hypergraphs, the extraction of features (which we call neighbour-
hoods) from these hypergraphs, and finally a similarity measure based on neighbourhoods.

4.1 � Textile graphs

In a first step, we decompose a fabric into its basic building blocks, which in our case is 
a crossing of two threads together with the four links connecting it to neighbouring cross-
ings. As already mentioned in Sect. 3, this is basically a 2-tangle, but we only allow a sin-
gle crossing in the tangle.

Definition 1  A textile graph is defined as a hypergraph H(C,  T ,�,� ,�) , where C is a set 
of vertices that belong to crossings, T a set of terminal nodes that end threads, � a set of 
hyperedges (of degree four), also called crossings, that connect vertices from C, � a set of 
regular edges (of degree two) that indicate which thread is on top in each crossing, and � a 
set of edges connecting vertices to vertices from other crossings or to terminal nodes.

The hypergraphs created by the mapping of textile structures have the following proper-
ties. The cardinality of the set of vertices, |C|, is always a multiple of four (as these are the 
four endpoints of a tangle or crossing) and every ci ∈ C belongs to exactly one hyperedge 
xj ∈ � , which connects the different parts of a crossing. Associated with every xj is one 
(and only one) pj ∈ � , which indicates the thread on top in this crossing. Since we only 
allow a single crossing in a tangle, only two of the ci belonging to xj are connected via a top 
edge. Furthermore, every node ci is either connected to a node from another crossing or to 
a terminal node ti ∈ T  (ending a thread). Consequently, every ci and ti show up in only one 
edge o ∈ � and all ti have a degree of one. The set T can be empty, which means that all 
the threads form one or more loops, i.e., we only have knots or links. However, as we focus 
on knitted, woven, and similar textiles, we ignore these kinds of constructs here.

In Figs.  6 and 7 we show examples of textile structures and their mapping to hyper-
graphs. In these figures the nodes ci,j belong to C, the ti to T. The solid lines oi,j are the 
edges in � , the dashed lines pi belong to � , while the hyperedges xi in � are represented 
by circles.

4.2 � Comparing textile graphs

After defining a hypergraph representation for textiles, we now need a method to 
compare these graphs. Many of the approaches found in literature, such as sub-
graph isomorphisms for hypergraphs  (Ha et  al. 2018), graph editing distances for 
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hypergraphs  (Bunke et  al. 2008), and morphology-based techniques  (Bloch et  al. 
2013), have a high complexity, i.e., exponential run time.

We utilise an efficient two-phase approach for estimating the similarity of two tex-
tile graphs. In the first phase, we extract features from a textile hypergraph in the form 
of sets of subgraphs (we give details in Sect. 4.3). In the second phase, we express the 
similarity of two textile graphs via the similarity of sets of subgraphs (we cover this 
part in Sect. 4.5).

c1,3

c1,2
c1,4

c1,1

x1 ∈ Ξ

p1 ∈ Π

o1,3

o1,t1 ∈ Ω

o1,t3

o1,2

c2,3

c2,2
c2,4

c2,1

x2

p2

c3,3

c3,2
c3,4

c3,1
c4,3

c4,2
c4,4

c4,1

t1 t2

t3

t5

t4

t6

t7 t8

Fig. 6   A textile structure and its hypergraph H
1

c1,3 c1,2

c1,4c1,1

x1 ∈ Ξ

p1 ∈ Π

o1,2a ∈ Ω

o1,2b

o1,3a o1,3b

c2,3 c2,2

c2,4c2,1

x2

p2

c3,3 c3,2

c3,4c3,1

c4,3 c4,2

c4,4c4,1

t1 t2 t3 t4

Fig. 7   Another example: hypergraph H
2
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4.3 � Extracting structural information

We were inspired by work done by Zeng et al. on traditional graphs using so-called star 
structures to represent the internal structure of graphs  (Zeng et  al. 2009). Essentially, a 
star structure is a node together with all its surrounding neighbours: a graph can then be 
described by a set of star structures (one for each node). Basically, a star structure is an 
unordered tree of depth two. Strictly speaking, the neighbours of a node in a hypergraph 
are also unordered, but the top edges provide some additional information we can exploit. 
We also go beyond the work of Zeng et  al. Zeng et  al. (2009) by generating extracted 
subgraphs of fixed but arbitrary size. Let us start by formalising the relative positions of 
threads in two neighbouring crossings.

Definition 2  Given a node ci belonging to crossing xi ∈ � and a node cj belonging to 
crossing xj ∈ � ( xi ≠ xj ) connected by an edge oi,j = (ci, cj) ∈ � , we say that oi,j is

•	 alternating, if one of its endpoints is found in � (i.e., it is connected via a top edge) and 
the other is not. More formally, either (∃�i ∈ xi ∶ (ci, �i) ∈ �) ∧ (∀�j ∈ xj ∶ (cj, �j) ∉ �) 
or (∀�i ∈ xi ∶ (ci, �i) ∉ �) ∧ (∃�j ∈ xj ∶ (cj, �j) ∈ �).

•	 non-alternating, if both of its endpoints are either connected via a top edge 
or both are not. Formally, ∃�i ∈ xi, �j ∈ xj ∶ (ci, �i) ∈ � ∧ (cj, �j) ∈ � or 
∀�i ∈ xi, �j ∈ xj ∶ (ci, �i) ∉ � ∧ (cj, �j) ∉ �.

•	 terminated, if one of its endpoints is a terminator: ∃tj ∈ T ∶ (ci, tj) ∈ �

So, an alternating thread changes positions from one crossing to the next one, either 
going from top to bottom or the other way around. For instance, in Fig. 6 the edges o1,2 and 
o1,3 are alternating, whereas the edges o1,t1 and o1,t3 terminate. Figure 7 depicts an alternat-
ing thread from edge o1,3a to edge o1,3b , while the thread from o1,2a to o1,2b is non-alternat-
ing. Also, the edge from c3,1 to t1 is terminated.

4.3.1 � Neighbourhood

We now define the neighbourhood of a crossing, which is essentially a 2-tuple with two 
sets of labels. The first set describes the behaviour of the edges connected to the top edge 
vertices, i.e., it specifies whether these edges are alternating (’a’), non-alternating (’n’), or 
connect to a terminal (’t’). The second set describes this for the edges connected to the bot-
tom edge vertices.

Definition 3  Given a crossing defined by xi ∈ � , let ci,1 and ci,2 stand for the top thread, i.e. 
(ci,1, ci,2) ∈ � and ci,3 and ci,4 for the bottom thread, i.e. (ci,3, ci,4) ∉ � . B(xi) = [{z1, z2}, 
{z3, z4}] is the neighbourhood of crossing xi where

and the �l,j are nodes from the other crossings that the ci,j connect to, or in the case of tl it is 
a terminator

zj =

⎧
⎪⎨⎪⎩

’a’ if (ci,j, �l,j) ∈ � alternating

’n’ if (ci,j, �l,j) ∈ � non-alternating

’t’ if (ci,j, tl) ∈ � terminated
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For example, the neighbourhood of crossing 1 in Fig.  6 is described by the tuple 
[{’t’, ’a’}, {’t’, ’a’}] . Hence, one of the main advantages of this approach becomes evi-
dent: the representation retains all the relative spatial relationships, but at the same time 
is orientation invariant. Rotating the textile pattern by 90 or 180 degrees or mirroring 
the structure has no effect on the textile graph and its crossing neighbourhoods.

We can now represent a textile hypergraph by determining the neighbourhood of 
every crossing in the graph and storing all the neighbourhood tuples in a multiset.

Definition 4  The fingerprint F(H) of a textile graph H(C, T,   �,� ,�) is the multiset of 
the neighbourhoods of its crossings: F(H) = {B(xi)|xi ∈ �}

For example, the fingerprint of the textile graph shown in Fig.  6 is 
F(H1) = {[{’a’, ’t’}, {’a’, ’t’}], [{’a’, ’t’}, {’a’, ’t’}], [{’a’, ’t’}, {’a’, ’t’}], [{’a’, ’t’}, {’a’, ’t’}]} , which 
means that all the nodes of the crossings are connected to terminals or are part of alter-
nating edges. This makes sense, as the textile shown in Fig. 6 is a plain weave, which is 
characteristically defined by alternating threads. The fingerprint of the textile in Fig. 7, 
on the other hand, looks different: F(H2) = {[{’a’, ’n’}, {’a’, ’n’}], [{’a’, ’n’}, {’a’, ’n’}], 
[{’a’, ’t’}, {’a’, ’t’}], [{’a’, ’t’}, {’a’, ’t’}]}.

4.3.2 � k‑neighbourhood

Next, we generalise the concept of a neighbourhood by not just looking at immedi-
ate neighbours of a crossing, but by continuing to follow a thread farther and noting 
whether it alternates or not. By traversing the next k neighbours of the four outgoing 
threads of a crossing, we create a k-neighbourhood. In case we encounter a terminal 
node, the traversal stops in that direction.

ci,j

xi

oj,1

γl1,j′′

γl1,j′

xl1

oj,2

γl2,j′′

γl2,j′

xl2

γlk−1,j
′′

γlk−1,j
′ oj,k

γlk,j′′

γlk,j′

xlk

Fig. 8   Illustration of one branch of a k-neighbourhood
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Definition 5  Given a crossing defined by xi ∈ � , again let ci,1 and ci,2 stand for the top 
thread, i.e. (ci,1, ci,2) ∈ � and ci,3 and ci,4 for the bottom thread, i.e. (ci,3, ci,4) ∉ � . Fur-
thermore, let xl1,j, xl2,j,… , xlk ,j be the sequence of k crossings we encounter when following 
the thread leaving xi via ci,j and let �lh,j� , �lh,j�� ∈ xlh,j be the nodes in each crossing along 
this thread, i.e., either �lh,j� , �lh,j�� ∈ � or �lh,j� , �lh,j�� ∉ � . The edges oj,h ∈ � connect nodes 
from different crossings, so oj,1 connects ci,j and �l1,j′ , and for h ≥ 2 , oj,h connects �lh−1,j�� and 
�lh,j′ . Figure 8 illustrates this situation. Then Bk(xi) = [{y1, y2}, {y3, y4}] is the k-neighbour-
hood of crossing xi with yj = [yj,1, yj,2,… , yj,k] where each

If oj,m is a terminated edge for m < k , we only have m elements in tuple yj . For the example 
in Fig. 8 the tuple yj is equal to [’a’, ’n’,… , ’a’].

This makes the neighbourhood described in Definition 3 a special case of a k-neigh-
bourhood with k = 1 . The 2-neighbourhood of crossing x1 in Fig.  7, for example, 
is [{[’a’, ’t’], [’n’, ’a’]}, {[’n’, ’a’], [’a’, ’t’]}] . The fingerprints of hypergraphs using 
k-neighbourhoods are computed accordingly, we just have to replace B(xi) with Bk(xi) in 
Definition 4.

4.4 � Implementation

We now turn to implementation issues. Algorithm 1 shows how to compute the fingerprint 
of a hypergraph in pseudo-code. We go through all the crossings of a hypergraph and fol-
low the outgoing threads from the four nodes of this crossing to the next k crossings to 
explore its neighbourhood. W.l.o.g., we call the nodes connected via the top edge ci,1 and 
ci,2 , i.e., (ci,1, ci,2) ∈ � , and we denote the nodes of the bottom thread ci,3 and ci,4 , i.e., 
(ci,3, ci,4) ∉ � . For a node in a crossing, the function neighbour gives us the node in a 
neighbouring crossing that it is connected to. The function findlabel returns the label of 
an edge and, given a node, the function opposite gives us the node located on the other side 
of a crossing. If we encounter a terminal node before visiting k neighbouring crossings, we 
pad the labels with NULL values.

yj,m =

⎧
⎪⎨⎪⎩

’a’ if oj,m ∈ � alternating

’n’ if oj,m ∈ � non-alternating

’t’ if oj,m ∈ � terminated
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In order to implement our algorithm efficiently, we use the following data structure to 
store nodes of a crossing in a hypergraph: 

We store all the nodes of a hypergraph in an array, taking care to place the four nodes 
of a crossing into four consecutive cells of the array. So, the nodes at positions 4i to 4i + 3 
belong to crossing i (for 0 ≤ i ≤ n − 1 , assuming we have n crossings). nextNode con-
tains the index of the node of the neighbouring crossing that the current node connects 
to. We set this value to -1 if it connects to a terminal node.2 The Boolean onTop tells us 
whether node belongs to the top edge of a crossing or not. Strictly speaking, we do not 
need oppositeNode: we could check all the nodes belonging to the same crossing as 
node and find the node with the same value for onTop. However, doing so would be very 
inefficient.

2  We do not store the terminal nodes explicitly.
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For the overall complexity of the algorithm, this means that we can compute the k-neigh-
bourhoods of all n crossings of a textile hypergraph in O(nk).

4.5 � Similarity measures

Having defined fingerprints of textile patterns for the first phase, for the second phase we now 
have to specify how to actually measure their similarity or distance. The Euclidean distance, 
the cosine measure, the Hamming distance, the Jaccard distance and the overlap coefficient 
are all typical distance metrics employed for measuring similarity (Leskovec et al. 2014; Zaki 
and Meira 2014), which we also apply to our fingerprints.

However, the fingerprints of our textile graphs are multisets rather than sets, i.e., for every 
element in a multiset we store the number of occurrences of the element. For instance, the 
multiset {a, a, a, b , c, c} becomes {a ∶ 3, b ∶ 1, c ∶ 2} or just (3, 1, 2) if we assign fixed posi-
tions to each element. In this case, position 1 represents the frequency of a, position 2 the fre-
quency of b, and position 3 the frequency of c. Fixing the positions of the elements within the 
multisets allows us to interpret them as points or vectors.

Using the point or vector representation of two two multisets R = (r1, r2, … , rn) and 
S = (s1, s2, … , sn) allows us to apply the Euclidean distance, the cosine measure, the Ham-
ming distance, the Jaccard distance, and the overlap coefficient for measuring the distance 
between R and S. We go into more details in the following.

4.5.1 � Euclidean distance

We can calculate the Euclidean distance between two points (using a vector representation):

Computing DE(F(H1),F(H2)) gives us the distance between two textile graphs H1 and H2 . 
For example, the fingerprint of H1 (Fig.  6), using 1-neighbourhood, is made up of four 
times the tuple [{’a’, ’t’}, {’a’, ’t’}] and does not contain [{’a’, ’n’}, {’a’, ’n’}] , while the 
fingerprint of H2 , using 1-neighbourhood, contains both of these tuples two times each, 
i.e., we can represent H1 by (0,  4) and H2 by (2,  2). Applying Formula (1), we obtain √
(0 − 2)2 + (4 − 2)2 = 2

√
2.

4.5.2 � Cosine measure

We can also apply the cosine distance, which applies an inner product, to a vector 
representation:

Dc(F(H1),F(H2)) computes the cosine measure distance between two textile hyper-
graphs H1 and H2 . For instance, using Formula (2) on the frequency vectors of 
the fingerprints (using a 1-neighbourhood) of H1 = (0, 4)� and H2 = (2, 2)� yields 
1 − 0 + 8

�
4
√
8 = 1 −

√
2
�
2.

(1)DE(R, S) =

√√√√ n∑
i=1

(ri − si)
2

(2)Dc(R, S) =1 −

∑n

i=1
ri ⋅ si�∑n

i=1
r2
i
⋅

�∑n

i=1
s2
i



152	 Information Retrieval Journal (2021) 24:137–173

1 3

The law of diminishing returns also applies to term frequencies within individual docu-
ments and in the whole document collection. The more frequently a term appears in a doc-
ument, the smaller the additional impact will be. Also, terms appearing less frequently in 
document collections tend to be more important. Term frequency (TF) and inverse docu-
ment frequency (IDF) factors are used to counter this effect. These factors are applied to 
the input vectors, we use logarithmic TF-IDF factors: TFp,t = 1 + log(fp,t) and IDFp = log

N

fp
 

where fp,t is the frequency of fingerprint p in textile t, N is the overall number of textiles in 
the collection, and fp is the number of textiles in the collection in which fingerprint p 
occurs.

4.5.3 � Hamming distance

Mathematically, the Hamming distance counts the number of components that are different 
in two vectors. Let fH(ri, si) be a function comparing the components ri and si , then:

A formal definition of the Hamming distance is equal to:

For the same example, applying the hamming distance of the frequency vectors of the fin-
gerprints, using 1-neighbourhood, of H1 = (0, 4)� and H2 = (2, 2)� return 1 + 1 = 2.

The basic Hamming distance suffers from a few issues. There are a few issues with the 
Hamming distance. First, there is a lack of normalisation, i.e., the distance between two 
vectors can range anywhere from 0 to n, which even varies depending on the size of the 
vectors. Second, if there is a total order on the elements of the domain, then users have an 
intuition on how close or distant these elements should be. For example, with integer vec-
tors, intuitively (1, 0, 3)� is closer to (1, 0, 2)� than (1, 0, 7)� . The basic Hamming distance 
would return a distance of 1 for both cases, though. This can be fixed by redefining the 
Hamming distance: fH̃(ri, si) = |ri − si| . Consequently, the distance measure becomes

Applying H1 = (0, 4)� and H2 = (2, 2)� to Formula (4) gives us 2 + 2 = 4.

4.5.4 � Jaccard coefficient

The Jaccard coefficient is one of the most common similarity measures for (multi-)
sets. Given the multisets R and S, |R ∩ S| is computed as 

∑n

i=1
min(ri, si) and 

�R ∪ S� = ∑n

i=1
max(ri, si) . Putting this together yields the Jaccard coefficient distance:

fH(ri, si) = �ri,si =

{
0 if ri = si
1 if ri ≠ si

(3)DH(R, S) =

n∑
i=1

fH(ri, si)

(4)DH̃(R, S) =

n∑
i=1

fH̃(ri, si) =

n∑
i=1

|ri − si|

(5)DJ(R, S) = 1 −

∑n

i=1
min(ri, si)∑n

i=1
max(ri, si)

=

∑n

i=1
�ri − si�∑n

i=1
max(ri, si)
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Applying Formula (5) to the frequency vectors of the 1-neighbourhood fingerprints of 
H1 = (0, 4)� and H2 = (2, 2)� gives us 2 + 2

/
2 + 4 = 2

/
3.

4.5.5 � Overlap coefficient

The overlap coefficient, which is related to the Jaccard coefficient, takes the cardinality of 
the intersection of the two sets and divides it by the cardinality of the smaller of the two 
sets. So, with |R ∩ S| = 

∑n

i=1
min(ri, si) and min(|R|, |S|) = min(

∑n

i=1
ri,

∑n

i=1
si) , the overlap 

coefficient distance measure between multisets R and S is

For the same example; H1 = (0, 4)� and H2 = (2, 2)� , the overlap coefficient is: 
Do(H1,H2) = 1 − 0 + 2

/
min(4, 4) = 1 − 2

/
4 = 1

/
2.

5 � Textile retrieval and clustering

When developing our hypergraph-based approach, we had two applications in mind. On the 
one hand, we wanted to apply it in the ranked retrieval of textile structures from a collec-
tion. On the other hand, we wanted to see whether our method is suitable for unsupervised 
learning techniques such as clustering. The textile retrieval and clustering techniques help 
to find and determine the structure or kind of the textile patterns. From that, we can know 
their particular applications, materials, fabrication methods and origins. The techniques 
allow domain experts to gain deeper insights about quantify differences and variations of 
textiles in different time and cultures. They also support some algorithms for detecting den-
sity and defect of a textile. Specially, in the paper, the retrieval and clustering are used to 
show the accuracy or performance of the similarity measure.

5.1 � Retrieval

An algorithm for ranked retrieval is quite straightforward (see Algorithm 2). We just have 
to compute the similarity between each textile in a collection and a query and then sort the 
result by this similarity. The crucial part of the algorithm is the distance measure dm being 
DE , Dc , DH , DH̃ , DJ or Do described in Sect. 4.5. In Sect. 7 we evaluate the performance of 
the different measures for ranked retrieval.

(6)Do(R, S) = 1 −

∑n

i=1
min(ri, si)

min(
∑n

i=1
ri,

∑n

i=1
si)
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5.2 � Clustering

Basically, clustering is a classification task grouping n textile hypergraphs into m 
clusters of textiles with similar weaving structures. For the cluster algorithms we 
used the well-known methods of hierarchical agglomerative clustering (HAC) and 
K-means  (Yildirim et  al. 2018), using our textile modelling approach to measure dis-
tances between textiles. In the following, we describe HAC and K-means in more detail.

5.3 � Hierarchical agglomerative clustering (HAC)

Algorithm 3 shows a basic version of hierarchical agglomerative clustering in pseudo-
code. Each textile hypergraph is treated as a single cluster at initiation, and then pairs 
of clusters are merged (or agglomerated) as we move up the hierarchy until, finally, we 
have m clusters in the active set L. When two clusters are merged, they are removed 
from L and their union is added to L. The algorithm has a time complexity O(n2d log n) 
to find m clusters from n patterns having d dimensions.

In the algorithm, we use the function distancematrix to compute a distance matrix 
� containing all the pairwise distances between the fingerprints of all the hypergraphs 
in S. For that purpose, we use the distance measure dm , which is one of the measures 
described in Sect. 4.5. The function twoclosest determines the two clusters u1 and u2 in 
L that are closest to each other. For this, we need the distance matrix � and a criterion 
dc , which defines how to compute the distance between two sets of hypergraphs. Com-
monly used criteria in HAC are Ward’s method, single-linkage, complete-linkage, and 
average-linkage, which are described in the following. 
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Ward’s criterion considers the squared (Euclidean) distance between the centroids of two 
clusters:

where cl is the centroid of cluster ul and is defined as:

The single-linkage and complete-linkage criteria look at the minimal and maximal dis-
tance, respectively, over all possible hypergraph pairs from different clusters:

Rather than just considering the minimal and maximal distance, the average-linkage crite-
rion averages over all possible hypergraph pairs between the clusters:

5.4 � K‑means

Algorithm 4 depicts the pseudocode for the K-means algorithm, which finds the clusters 
based on centroids.3 Initially, m centroids are picked randomly, we call the (current) set 

(7)DCW (ui, uj) =
|ui||uj|

|ui| + |uj|DE(F(ci),F(cj))
2

(8)cl =
1

|ul|
∑
Hi∈ul

F(Hi)

(9)DCS(ui, uj) = min
Hr∈ui,Hs∈uj

dm(F(Hr),F(Hs))

(10)DCC(ui, uj) = max
Hr∈ui,Hs∈uj

dm(F(Hr),F(Hs))

(11)DCA(ui, uj) =
1

|ui||uj|
∑
Hr∈ui

∑
Hs∈uj

dm(F(Hr),F(Hs))

3  Usually, k stands for the number of clusters, which we already use for neighbourhoods. Thus, we use the 
parameter m for the number of clusters.
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of clusters ∁ . There are different strategies for picking this initial set, but common to these 
strategies is to put them near the data points and well apart from each other. We use the 
function random(S, m) that randomly selects m items from S. Every centroid defines a clus-
ter and we assign every textile pattern Hi to the centroid closest to it. The function clos-
est(∁ , Hi , dm ) finds the centroid in ∁ closest to Hi , according to distance measure dm . After 
assigning all hypergraphs, we move each centroid to the average or mean location of the 
data points assigned to it by recomputing it using Formula (8). We repeat the assignment 
and recomputation step until there is no (or very little) change. As there is no guarantee 
that the algorithm will converge, we also define a number of maximum iterations after 
which the algorithm stops. In terms of complexity, finding an optimal configuration that 
minimises the overall distances of all data points to their respective centroids is NP-hard. 
This is another reason to run a version of the algorithm with a parameter max for the maxi-
mum number of iterations. When limiting the number of iterations, the complexity of the 
algorithm is O(max ⋅ m ⋅ n ⋅ d) , where d is the dimension of the data points.

6 � Evaluation methodology

We evaluated the different variants of our similarity measure experimentally, cluster-
ing a data set containing 1600 textiles and comparing the outcome to the correct clas-
sification. Additionally, we run queries on our data set, measuring the retrieval per-
formance. We also look at the linear complexity, presenting numbers on the execution 
time of the algorithm.
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6.1 � Experiment setup

The algorithms were implemented using Java 1.8.0_171 running under Windows 10 
(64-bit). All experiments were run on a computer with an Intel Core i7 CPU (2.40 
GHz) and 16 GB memory.

We evaluate the retrieval performance by using each of the textile objects as a query 
qi ∈ Q and then ranking all the other textiles according to their similarity to the query. 
All mi textiles {h1, h2,… , hmi

} that are in the same category �i as qi are considered to be 
relevant, while those from other categories are not relevant.

Testing the effectiveness of our similarity measure for clustering boils down to 
the following. We use our approach to divide up a collection of n textile hypergraphs 
S = {H1,H2,… , Hn} into m clusters L = {�1, �2, … , �m} and then compare the result to 
the correct classification A = {�1, �2,… , �m}.

6.2 � Quality measures

We now take a closer look at how we measure the quality of the clustering and retrieval 
performance.

6.2.1 � Retrieval performance

We measure the quality of the resulting ranked lists using mean average precision 
(MAP), mean precision at 100 (MeanP@100), average Precision-Recall (PR), and aver-
age F-measure-Recall (FR) (Manning et  al. 2009). Essentially, MAP aggregates the 
quality across all recall levels into a single number:

where Rij is a ranked list (from the first textile down to hj , which belongs to the returned 
relevant textiles {h1, h2,… , hmi

} of the query qi ∈ Q ) and Precision(Rij) is the precision of 
Rij.

In many cases, users are not interested in going through all the returned results, 
which makes the precision at k documents (P@k) a useful metric. In our data set, each 
query has 100 related textiles, so we use P@100 to evaluate the precision of each query 
qi ∈ Q for the first 100 results. We compute the mean precision MeanP@100 for all que-
ries in Q as follows:

A PR curve plots the precision against the recall; we use the the standard 11-point interpo-
lated average precision here. The interpolated precision of query qi at the standard recall 
level rl , 0 ≤ l ≤ 10 , is defined as the highest precision found for any recall level r ≥ rl : 
Pi(rl) = max

r≥rl

Pi(r) , where P(r) is the precision at recall level r. Thus, the average precision 
of Q at the standard recall level rl is equal to:

MAP(Q) =
1

|Q|
|Q|∑
i=1

1

mi

mi∑
j=1

Precision(Rij)

MeanP@100(Q) =
1

|Q|
|Q|∑
i=1

P@100(qi)
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Similarly, the average F-measure of Q at the standard recall level rl is defined as:

where Fi(rl) =
2P(rl)rl
P(rl)+rl

 is the interpolated F-measure of query qi at rl.

6.2.2 � Clustering

For the purpose of measuring the quality of the clustering L compared to the correct 
classification A, we apply purity, normalised mutual information (NMI), Rand index, 
precision, recall, and F-measure (Manning et al. 2009).

Purity is a simple and transparent evaluation measure counting the number of correctly 
classified textiles. To do so, we assign each cluster �i ∈ L to the class �j ∈ A that has the 
largest overlap with �i and count the number of shared elements. We normalise the result 
by dividing by the total number of textiles:

The larger the number of clusters, the easier it is to achieve high purity. In the extreme case 
of creating n clusters (one for each textile), we would achieve a purity of 1. This makes it 
difficult to compare the quality of clusterings that have a different number of clusters.

This has led to the utilisation of normalised mutual information (NMI), which is based 
on concepts from information theory, such as entropy. Given two random variables, the 
mutual information tells us how the uncertainty of one of them decreases by being aware of 
the other one. For clustering this means: how much knowledge do we gain about the clas-
sification A knowing the clustering L? NMI is defined as:

where I(L; A) is the mutual information shared by L and A:

and H(L) and H(A) measure the entropy of L and A, respectively:

P̄(rl) =

∑�Q�
i=1

Pi(rl)

�Q�

F̄(rl) =

∑�Q�
i=1

Fi(rl)

�Q�

purity =
1

n

∑
�i∈L

max
�j∈A

|�i ∩ �j|

NMI =
I(L;A)

(H(L) + H(A))∕2

I(L;A) =
∑
�i∈L

∑
�j∈A

|�i ∩ �j|
n

log2
n|�i ∩ �j|
|�i||�j|

H(L) = −
∑
�i∈L

|�i|
n

log2
|�i|
n

H(A) = −
∑
�j∈A

|�j|
n

log2
|�j|
n
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Last, but not least, the Rand index categorises every pair of hypergraphs Hi,Hj ∈ S, i > j 
as either a true positive (TP), a true negative (TN), a false positive (FP), or a false negative 
(FN). The categorisation depends on which condition a pair satisfies:

•	 TP: Hi and Hj are in the same cluster in L and in the same class in A.
•	 TN: Hi and Hj are in different clusters in L and in different classes in A.
•	 FP: Hi and Hj are in the same cluster in L and in different classes in A.
•	 FN: Hi and Hj are in different clusters in L and in the same class in A.

Basically, the Rand index (RI) determines the ratio of textiles placed into the correct 
cluster:

The Rand index puts the same emphasis on all these factors. However, when categorising 
pairs, there is usually a bias: it is much easier to identify true negatives correctly, due to 

RI =
TP + TN

TP + FP + TN + FN
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(d) Twill 3/1 (e) Twill 3/1-Inverted (f) Twill 4/4

gnivaewesemanteiVgnivaewnaednAnitaS(g) (h) (i)

Fig. 10   Examples of weaving patterns
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4  Warp threads are longitudinal threads held in place by a frame, while the weft thread is led through the 
warp threads.

their large number. That is why we also look at the standard quality measures of precision 
P = TP

TP+FP
 , recall R = TP

TP+FN
 , and F-measure F = 2PR

P+R
.

6.3 � Data set

In an earlier project, we developed a textile editor called SAWU that allows a user to enter 
textile patterns via a graphical user interface by creating thread crossings and connecting 
the ends of the crossings with each other. Additionally, a user can cut, copy, and paste sub-
patterns and reconnect them to other parts of a textile. Complex and irregular patterns have 
to be constructed manually, while simple recurring patterns can be automatically generated 
and then modified if need be. More details on the editor can be found in (Martins et al. 
2013; Győry 2014). Essentially, a user can construct large complex textile patterns from 
simple building blocks. We use the output of the textile editor, consisting of text files, to 
generate the corresponding hypergraphs.

With the help of domain experts we selected sixteen important categories of textiles, 
each with 100 specimens, resulting in a data set containing a total of 1600 fabrics.  We 
made the data freely available at Harvard Dataverse (Ngo 2020). This data set is used to 
evaluate the clustering performance over the sixteen categories and the retrieval perfor-
mance by utilising each of the 1600 fabrics as a query. On average, each textile consists 
of 20,916 vertices, 5229 hyperedges, 152 terminal nodes, 5229 regular edges and 10,534 
connected edges. Each textile is represented by a fingerprint based on the k-neighbourhood 
of the crossings in its hypergraph. Figure 9 gives an overview of the number of different 
k-neighbourhoods found in the data set for different values of k. It also shows the aver-
age number of different k-neighbourhoods per textile. Clearly, increasing the value for k 
leads to a considerable increase in the number of different patterns found in a textile. While 
raising the value for k results in slower processing speed, it helps in distinguishing tex-
tiles more accurately. Later on, we show how to balance the trade-off between speed and 
accuracy.

In the following, we give an overview of the different kinds of textiles found in each 
group. One of the simplest weaving patterns is plain weave, in which a weft thread alter-
nates between going over and under a warp thread.4 In each row, this pattern is shifted 
by one position (see Fig.  10a). The next five groups of patterns consist of twills, in 
which more than one warp thread is crossed over or under. Fig.  10b–f show example 
patterns, ranging from 2/1 twill to 4/4 twill. In the satin (also known as sateen) weave 
structure (see Fig. 10g), four or even more weft threads float over a warp thread or vice-
versa. The most complex patterns in our collection are taken from a collection of weav-
ings originating in the Andes (South America) and Vietnam (Southeast Asia). Since 
they were created manually, they can exhibit a great variety of different styles in a single 
textile. The Andean pattern depicted in Fig. 10h and the Vietnamese weaving pattern, 
describing elephants, depicted in Fig.  10i indicate this, as the warp and weft threads 
cross a different number of threads in different parts of the textile. For more examples, 
please see http://www.weavi​ngcom​munit​ies.org/ for Andean weavings and Fig.  18 in 
"Vietnamese textile patterns" section in Appendix  for Vietnamese weavings.

http://www.weavingcommunities.org/
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For the remaining groups of textiles, shown in Fig. 11 we have chosen patterns that are 
not actually woven to see how our textile recognition would cope with non-weaving patterns. 
Triaxial weave, although called a weave, is a hybrid structure between weaving and braid-
ing. The resulting structure, an example of which can be seen in Fig. 11a, does not follow a 
rectilinear pattern. In knitting, multiple loops of yarn in a line or tube are formed by connect-
ing a row of new loops to a row of already existing loops. When done manually, this usually 
involves needles holding the thread. The two basic varieties of knitting are weft knitting (see 
Fig. 11b) and warp knitting (see Fig. 11c). In weft knitting, the more common technique, the 
wales5 are perpendicular to the course of the yarn and the fabric can be produced from a sin-
gle yarn. By contrast, in warp knitting, the wales run roughly parallel and one yarn is required 
for every wale. Chain mail, shown in Fig. 11d), is made of small rings linked together to form 
a mesh, which can slide against each other to create a flexible fabric. Braids are created by 
intertwining three or more threads as shown in Fig. 11e. In the warp above weave pattern 
all the threads of one type are always located above the other (see Fig. 11f). For the most 
complex non-weaving patterns we have chosen Vietnamese mix-fabrics, which are hybrid 
structures combining two or more types of techniques, such as chain mail, braiding, and knit-
ting. For an example, see the textile shown in Fig. 11g, in which chain mail is combined with 
complex weaving to define a window. Further examples of Vietnamese mix-fabric patterns 
can be found in Fig. 18 and Fig. 19 in the "Vietnamese textile patterns" section in Appendix.

We have also introduced imperfections into some of the textiles in each group to test 
the similarity measure’s capability to deal with errors in a pattern. Additionally, we also 
rotated and mirrored some of the textile samples to check that our similarity measure can 
cope with differently oriented versions of the same weaving pattern. For that purpose, we 
randomly modified 1% of the crossings in the data set; 85% of the patterns were rotated in 
some way and 35% mirrored (this adds up to more than 100%, because textile patterns can 
be rotated and mirrored).

7 � Experimental results

Basically, two parameters are crucial for the calibration of our model: the size k of the 
neighbourhoods and the distance metric used for comparing two fingerprints (the Euclid-
ean, frequency cosine, TF-IDF cosine, Boolean Hamming, frequency Hamming, Jaccard 
and Overlap distances; see also Sect. 4.5). In the following we investigate the impact of 

(a) Triaxial weave (b) Weft Knitting (c) Warp knitting (d) Chain mail

(e) Braid (f) Warp above weave (g) Vietnamese mix-fabric

Fig. 11   More examples of textile patterns

5  A wale is a column of loops produced by the same needle.
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both parameters on the execution time and on the retrieval and cluster performance of our 
algorithms. Additionally, for the cluster performance, we investigate the impact of the 
unsupervised learning model (hierarchical agglomerative clustering and K-means; see also 
Sect. 5).

7.1 � Execution time

Figure 12 illustrates how the execution time varies with increasing neighbourhood sizes for 
the different distance metrics. Every data point in Fig. 12 averages the execution time of 
nine runs each generating a complete distance matrix including the results for the pairwise 
comparisons of all textiles. In general, the execution time of each variant of our algorithm 
increases linearly with the neighbourhood size k, which is a highly desirable property, as it 
leads to a scalable solution.

When implementing the multisets, we refrained from using an explicit vector rep-
resentation because of the sparsity of the vectors. For instance (as shown in Fig.  9), 
although there are 129,225 different (potential) neighbourhoods for k = 9 , on average 
only 674 appear in a given textile structure. As a consequence, we only need to store 
and look up the values not equal to zero. In our case we implemented the vectors using 
a HashMap.

Unsurprisingly, the Boolean Hamming distance (HamBoo), being the simplest for-
mula, is fastest. The other distance measures are divided into two groups. Both cosine 
(CosFre and CosTfI) and the Overlap measures are easier to compute, as we only need 
to consider non-zero entries for both vectors and some additional computations for the 
normalisation. For the Euclidean (Eucli) and the frequency Hamming (HamFre) dis-
tances, the calculation of the differences between vector components takes more effort, 
while for Jaccard the normalisation is more costly.
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Fig. 12   Execution Time
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7.2 � Retrieval performance

Figure 13a depicts the mean average precision (MAP) of the different techniques and 
indicates the overall utility of our similarity measure. There is no significant gain in 
using neighbourhoods with a size greater than four. The Jaccard, frequency cosine (Cos-
Fre), TF-IDF cosine (CosTfI), and Overlap variants are clearly on top (except TF-IDF 
cosine and Overlap for k equal to one), with Jaccard being slightly better than CosFre, 
CosTfI and Overlap. At the other end, the Boolean Hamming (HamBoo) distance is 
always lagging behind. In the middle group, Euclidean (Eucli) and frequency Hamming 
(HamFre) are roughly comparable and trade places at k equal to three. For k = 4 , sorting 
the measures in decreasing order of precision yields: Jaccard (0.91), frequency cosine 
(0.897), TF-IDF cosine (0.889), Overlap (0.887), Euclidean (0.814), frequency Ham-
ming (0.805), and Boolean Hamming (0.661).

Figure  13b displays the mean precision for the first 100 retrieved textile patterns 
(MeanP@100). The results are very similar to the ones for MAP. Jaccard is leading 
the pack with frequency cosine, Overlap and TF-IDF cosine being not far behind. The 
other three distance measures are worse and show a very similar relative positioning 
as for MAP. Euclidean and frequency Hamming are very close to each other and trade 
places for k = 4 . For k = 4 , sorting the measures in decreasing order of precision yields: 
Jaccard (0.881), frequency cosine (0.864), Overlap (0.863), TF-IDF cosine (0.855), fre-
quency Hamming (0.777), Euclidean (0.772), and Boolean Hamming (0.597).

Figure  14 shows the average Precision Recall (PR) and average F-measure Recall 
(FR) curves for neighbourhoods of size four. Again, the Jaccard distance shows excel-
lent results, being on top in the PR and FR curves. In the PR curve, its precision stays 
above 90% for recall values up to 60%, above or equal 85% for recall values from 70 to 
90% and then drops to around 68%. In the FR curve, it achieves a maximum F-measure 
of 87.2 for a recall value of 90%. The frequency cosine, Overlap, and TF-IDF cosine 
distances exhibit the second-best results (except at recall level 100%). Boolean Ham-
ming steadily loses ground, while frequency Hamming is able to keep up with Euclid-
ean. The frequency Hamming crosses Euclidean at recall level 60% in both the PR and 
FR curves.
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Fig. 13   Mean Average Precision and Mean Precision at 100
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Overall, in terms of retrieval performance, the results we get are roughly comparable to 
those we obtained previously (Helmer and Ngo 2015). The main differences are a larger 
data set, giving the new results more weight, and an improvement for the TF-IDF cosine 
measure, which is due to fixing a bug in its implementation. As we will see in the follow-
ing section, though, in terms of cluster performance, we were able to improve considerably.

7.3 � Clustering performance

In order to keep the diagrams readable, we restrict ourselves to the following similarity 
measures in this section: Jaccard, Overlap, and cosine (both TF-IDF and frequency). Simi-
lar to their performance in the retrieval case, the cluster performance of the other measures, 
Hamming (both Boolean and frequency) and Euclidean, is clearly inferior. We make one 
exception for Ward’s criterion, which relies on the Euclidean distance.

However, before comparing the two clustering techniques, HAC and K-means, we need 
to calibrate their parameters. As already done for the retrieval performance, we have to 
determine the size of the neighbourhoods for which the clustering algorithms perform well. 
Additionally, for K-means we need to set a value for max, the maximum number of itera-
tions: it turns out that max = 5 is a good value. In contrast to the retrieval performance, 
the best value for k for the clustering algorithms is not as clear-cut, but depends on the 
employed similarity measure. For TF-IDF cosine, k = 2 performs well, for frequency 
cosine k should be set to 3, while for Jaccard and Overlap, k = 4 is the best value. This 
holds for both clustering approaches, HAC and K-means. For Ward’s criterion with the 
Euclidean distance as used in HAC, k = 3 is a good value. For more details on the param-
eter setup, see "Parameter setup" section in Appendix.

In Figs.  15,   16 and   17, we look at purity, NMI, Rand index, precision, recall, and 
F-measure values for the clustering algorithms using different similarity measures and 
cluster distance criteria (for HAC). We use the values for k as mentioned above: k = 3 for 
Ward’s criterion and for the other cases of HAC and K-means, we set k to 2 for the TF-IDF 
cosine, to k to 3 for the frequency cosine and to 4 for all other distance measures.

For purity and NMI (Fig. 15), we see a very similar behaviour, the main difference being 
the larger values for NMI. We make a couple of interesting observations here. Comparing 
single-linkage (Sing), complete-linkage (Comp), and average-linkage (Aver), we see that 
overall single-linkage is inferior to the others, mainly due to the weak performance of the 
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Fig. 15   Purity and NMI for HAC and K-means

overlap coefficient. This does not come as a surprise, as single-linkage, which only looks 
at the minimal distance between objects in clusters, has a tendency to create long drawn-
out chains. Complete-linkage, considering the maximum distance between objects, avoids 
this, producing compact clusters of approximately equal diameters. It can be susceptible 
to outliers, that is why average-linkage is usually preferred. However, in our scenario, this 
does not seem to be the case, as it outperforms average-linkage. On average, K-means can 
keep up with single-linkage and average-linkage, but there is a clear winner in the form of 
HAC using complete-linkage with the TF-IDF cosine measure. It has a purity of 0.842 and 
an NMI of 0.912. Ward’s criterion is only able to outperform single-linkage with Overlap.
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Fig. 16   Rand index and Precision for HAC and K-means
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Fig. 17   Recall and F-measure for HAC and K-means
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Although the values for the Rand index are all very high for the different combinations 
(see Fig. 16a), the relative positions do not change compared to the numbers for purity and 
NMI. The winner is HAC with complete-linkage and the TF-IDF cosine measure again, 
reaching a value of 0.976. However, given the high number of true negatives, it is not too 
difficult to achieve a good performance for the Rand index. Thus, we look at the more 
meaningful measures precision, recall, and F-measure next.

For precision, which is displayed in Fig. 16b, there are no significant changes in terms 
of relative positioning. Nevertheless, the differences between the various methods become 
much more distinct. HAC using single-linkage with Overlap and TF-IDF cosine drops to a 
rather low level of around 0.3, whereas Ward’s criterion performs slightly better. HAC with 
complete-linkage and TF-IDF cosine still shows the strongest performance with a precision 
of 0.755. The other variants can be found somewhere in between (Fig. 17).

For the first time, we see a significant change in the relative positioning of the different 
methods for recall (see Fig. 17a). Overall, HAC with complete-linkage is slightly outper-
formed by HAC with single-linkage and average-linkage, although it still holds its ground 
against K-means. However, the higher numbers for the recall come at a price: lower num-
bers for precision, meaning that clusters with a larger number of false positives are created.

This is actually the motivation for the F-measure, which considers the performance for 
precision and recall in a balanced way. The results for the F-measure are shown in Fig. 17b, 
in which a familiar picture re-emerges. The variant of HAC combining complete-linkage 
with TF-IDF cosine is back on top undoubtedly with an F-measure of 0.819. The relative 
positioning of the other variants also looks very similar to the one for precision.

In summary, HAC with complete-linkage and the TF-IDF cosine measure shows the strongest 
performance. Even though it is not the top performer for recall, the differences are rather small 
and it compensates this with a much better showing for precision. Compared to the previous 
results (Helmer and Ngo 2015), overall we were able to improve the performance. The Rand 
index went up from 0.938 to 0.976 (purity and NMI were not used in (Helmer and Ngo 2015)). 
Although the recall dipped slightly from 0.922 to 0.894, this is still a high value and was more 
than compensated for by a jump in precision from 0.577 to 0.755 and a subsequent increase in 
the F-measure from 0.71 to 0.819. The clusters we find with the improved techniques are much 
more accurate and balanced. Nevertheless, due to the limitations of the current dataset – it is 
relatively small and balanced – we think further investigations are needed to confirm the results.

8 � Conclusion and future work

We developed a technique based on hypergraphs to represent textiles using a crossing of 
two threads as the basic building block. Decomposing such a graph into substructures called 
k-neighbourhoods allows us to determine the similarity of the patterns created by the inter-
woven threads. In turn, this makes it possible to search a collection of textile patterns given a 
query pattern. We implemented our approach using different distance measures for computing 
the similarity between multisets of k-neighbourhoods. In an experimental evaluation using a 
data set consisting of 1600 textile samples, we show that our structural similarity measure 
can be implemented efficiently and shows very good retrieval and excellent clustering perfor-
mance. For retrieval, the combination of k-neighbourhoods with the TF-IDF cosine and Jac-
card distance measure showed very good results, while for clustering, hierarchical agglomera-
tive clustering (HAC) and the TD-IDF cosine measure gave the best results. We note that the 
experimental results are not so much about improving on an existing approach, but validating 
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the results of our previous work with an extended evaluation, utilising a larger and more 
diverse data set. We are able to show that the earlier conclusions and insights still hold up, 
even under different scenarios with new distance and quality measures. As already indicated 
in the previous section, further evaluation with (very) large and diverse datasets is still needed 
to gather conclusive evidence. This motivated the automatic or at least semi-automatic genera-
tion of datasets as an important task for future work (see below).

For future work, we would like to pursue several goals. First, we would like to investigate 
further distance measures and variations of k-neighbourhoods to identify ways to improve our 
textile similarity measure. At the moment the modelling of the textiles used for the hyper-
graph representation has to largely be done manually. In order to automate this process, image-
processing techniques for extracting a thread structure and mapping it to graphs would be an 
interesting topic to look into. This would facilitate the construction of a gold standard data 
set that can be used to stress-test the behaviour, accuracy, and robustness of the proposed 
approach using many different textile patterns. The application of deep learning algorithms 
may also be a promising direction to take, followed by a comparison of such a technique to our 
similarity measure.

Appendix

Vietnamese textile patterns

See Figs. 18 and 19.

(a) Stylised fish (b) Double happiness (c) The heart

(d) Snow flower (e) Gerbera flower (f) Leaf

Fig. 18   More examples of Vietnam weaving patterns

(a) Paving tile (b) Swirl & Star (c) Arrow & circle

(d) Lotus flower (e) Braid chain

Fig. 19   More examples of Vietnam mix-fabric patterns
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Parameter setup

Maximum number of iterations for K‑means

Figure 20 shows the performance for K-means (for different quality measures) when vary-
ing the maximum number of iterations. Here we have included the Euclidean and Ham-
ming distances as well to verify their weaker performance. The size of the neighbourhood, 
k, was set to 2 for TF-IDF cosine, to 3 for frequency cosine, and to 4 for all other distance 
measures. (We will look at the impact of k in just a moment in the following section.) As 
can be seen in Fig. 20, K-means stabilises quite quickly. There are no significant improve-
ments beyond max = 5 . On the contrary, some distance measures are even slightly worse 
for higher values.

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Rand Index

2 4 6 8
0

0.2

0.4

0.6

0.8

1

F-measure

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Values of max

NMI

Eucli
CosFre CosTfI
HamBoo HamFre
Jaccard Overlap

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Values of max

Purity

Fig. 20   Determining the maximum number of iterations for K-means
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Size of neighbourhood

Figure 21 shows the performance for K-means for different similarity measures and neigh-
bourhood sizes (the maximum number of iterations, max, is set to 5). The Euclidean and 
Hamming distances are included for the sake of completeness, their performance is clearly 
inferior to the other distance measures. The TF-IDF cosine measure has a clear peak for 
k = 2 for all the different quality measures. For frequency cosine, the peak is shifted by one 
position, moving to k = 3 . In the case of Overlap, the peak is shifted even further to k = 4 . 
For Jaccard, k = 4 is the best value on average, only its recall performance is fractionally 
better for k = 5.
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For the figures describing the performance of HAC, we drop the Euclidean and Hamming 
distances (except for Ward’s criterion, which uses Euclidean) to make them more readable. 
Figure 22 shows the results for the cosine measures when varying the size k of the neighbour-
hood. The superiority of complete-linkage with TF-IDF cosine can be clearly seen, even for 
values different from k = 2 . Nevertheless, it performs best for k = 2 ; this is also the case for 
average-linkage with TF-IDF cosine. Single-linkage looks slightly different, but as it is outper-
formed by all the other combinations, it is not relevant anyway. On average, frequency cosine 
performs best for k = 3.
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Fig. 22   Determining k for HAC using the cosine measures
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Fig. 23   Determining k for HAC using other distance measures

Finally, we come to the remaining distance measures for HAC, Jaccard and Overlap, whose 
performance, along with that for Ward’s criterion, is shown in Fig. 23. Complete-linkage with 
Jaccard and Overlap exhibits the strongest performance, peaking at k = 4 . Average-linkage 
shows a similar picture, although at a lower level of performance. As in the previous figure, 
the behaviour of single-linkage is not that clear, but as it brings up the rear with Ward’s crite-
rion, it should not be chosen anyway.
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