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Abstract

Accurate lung nodule segmentation from computed tomography (CT) images is of great 

importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and 

the presence of similar visual characteristics between nodules and their surroundings make it 

difficult for robust nodule segmentation. In this study, we propose a data-driven model, termed the 

Central Focused Convolutional Neural Networks (CF-CNN), to segment lung nodules from 

heterogeneous CT images. Our approach combines two key insights: 1) the proposed model 

captures a diverse set of nodule-sensitive features from both 3-D and 2-D CT images 

simultaneously; 2) when classifying an image voxel, the effects of its neighbor voxels can vary 

according to their spatial locations. We describe this phenomenon by proposing a novel central 

pooling layer retaining much information on voxel patch center, followed by a multi-scale patch 

learning strategy. Moreover, we design a weighted sampling to facilitate the model training, where 

training samples are selected according to their degree of segmentation difficulty. The proposed 

method has been extensively evaluated on the public LIDC dataset including 893 nodules and an 

independent dataset with 74 nodules from Guangdong General Hospital (GDGH). We showed that 

CF-CNN achieved superior segmentation performance with average dice scores of 82.15% and 

80.02% for the two datasets respectively. Moreover, we compared our results with the inter-

radiologists consistency on LIDC dataset, showing a difference in average dice score of only 

1.98%.
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1. Introduction

Lung cancer is the leading cause for cancer related deaths and carrying a dismal prognosis 

with a 5-year survival rate at only 18% (Siegel et al., 2016). Treatment therapy monitoring 

and lung nodule analysis (Aerts et al., 2014) using computed tomography (CT) images are 

important strategies for early lung cancer diagnosis and survival time improvement. In these 

approaches, accurate lung nodule segmentation is necessary that can directly affect the 

subsequent analysis results. Specifically, given the fact of growing volumes of clinical 

imaging data, developing a data-driven segmentation model is of great clinical importance to 

avoid tedious manual processing and reduce inter-observer variability (Kubota et al., 2011).

Despite development of approaches for lung nodule segmentation in recent years (Farag et 

al., 2013; Kubota et al., 2011; Lassen et al., 2015), achieving accurate segmentation 

performance continues to require attention because of the heterogeneity of lung nodules as 

shown on CT images (Fig. 1). The presence of similar visual characteristics between nodules 

and their surroundings poses a technical challenge for developing robust segmentation 

models. For example, juxtapleural nodules (Fig. 1(b)) have an intensity similar to that of 

lung wall; thus, they are difficult to distinguish using intensity values only. In addition, 

cavitary nodules with black hole inside (Fig. 1(c)) and calcific nodules (Fig. 1(d)) are 

challenging cases because of the intensity dissimilarity within different part of nodules. 

Similarly, non-solid nodules such as ground-glass opacity (GGO, Fig. 1(e)) are also 

problematic because a simple morphological operation is not suitable for these cases due to 

the fact of low intensity contrast in CT data (Dehmeshki et al., 2008).

Intensity-based methods using morphological operation (Diciotti et al., 2011; Messay et al., 

2010) and region growing (Dehmeshki et al., 2008; Kubota et al., 2011) have been studied. 

Energy optimization methods including level set (Farag et al., 2013) and graph cut (Ye et al., 

2010) were also researched for lung nodule segmentation. However, the robustness is still 

problematic especially for segmenting juxtapleural nodules. For example, in morphology-

based methods, the morphological template size is difficult to generalize with nodules of 

various diameters (Kubota et al., 2011). Sophisticated methods can process juxtapleural 

nodules by applying a shape constraint (Farag et al., 2013; Keshani et al., 2013) or relying 

on user interactive parameter settings (Messay et al., 2015). However, it may not be 

applicable for irregular shaped nodules where the shape hypothesis can be violated. In 

addition, user interactive parameters such as well centralized seed point (Messay et al., 

2015) or stroke (Lassen et al., 2015) are difficult to tune for different types of nodules. The 

limitations of directly applying raw intensity value for segmentation suggest the need of 

novel solutions for capturing high-level, nodule-sensitive features from CT volumes.

Recently, convolutional neural networks (CNN) have been emerged as powerful tools for 

learning discriminative feature hierarchies adapted to different vision tasks (Havaei et al., 
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2016; Shen et al., 2016). Benefiting from the unique feature learning ability from 

hierarchical network layers, CNN models have shown encouraging results in medical image 

segmentation tasks (Moeskops et al., 2016; Valverde et al., 2017; Zhang et al., 2015), 

indicating the usefulness of CNN-based models for medical object segmentation. However, 

the applicability of developing CNN-based approaches to model heterogeneous lung nodule 

CT volumes (as seen in Fig. 1) has remained uncertain. In particular, the design of network 

hierarchy that is capable of capturing both 2-D and 3-D lung nodule features has not been 

explicitly addressed.

In this study, we investigate the problem of developing a deep hierarchy of convolutional 

neural networks in the context of lung nodule segmentation. We follow a voxel classification 

scheme that aims to distinguish nodule voxels from healthy voxels in CT images. In 

addressing the challenge of analyzing heterogeneous CT data, we propose a central focused 

convolutional neural networks (CF-CNN) that is adaptive to lung nodule segmentation for 

various types of nodules. Overall, our technical contributions in this work are four-fold:

1. The proposed CF-CNN model can achieve appealing segmentation performance 

for a variety of lung nodules especially for juxtapleural nodules without nodule 

shape hypothesis or user-interactive parameter setting (Fig. 1).

2. We present a two-branch CNN structure to leverage both 3-D features and multi-

scale 2-D features. The 3-D-patch branch learns multi-view features from 

multiple CT slices and the 2-D-patch branch learns multi-scale features through 

multiple 2-D patches. The multi-scale patch strategy enables the model to learn 

multi-scale features without involving multiple networks (Shen et al., 2015) 

(Section 2.1.2).

3. We design a novel central pooling layer to retain much patch-center features 

rather than patch edge features. This strategy reserves much target-voxel-focused 

information and thereby achieved improved performance as opposed to 

uniformly distributed max pooling (Section 2.1.3).

4. During model training, we propose a sampling method to process imbalanced 

training labels and extract challenging patches to allow efficient model training. 

In this strategy, voxels are sampled where each voxel is assigned a weight score 

denoting its difficulty for segmentation (Section 2.3).

1.1. Related work

Approaches for lung nodule segmentation involved the detection of a Volume of Interest 

(VOI) covering the nodule area and segmentation inside this VOI. These methods can be 

generally classified into morphology methods (Diciotti et al., 2011; Messay et al., 2010), 

region growing methods, (Kubota et al., 2011; Song et al., 2016), energy optimization 

methods (Farag et al., 2013; Lassen et al., 2015), and machine-learning methods (Lu et al., 

2013; Wu et al., 2010).

In morphology methods, morphological operations such as logic opening operation were 

applied for nodule-attached vessels removal (Kostis et al., 2003), then the connected 

component selection can separate lung nodules. However, the fixed-size morphological 
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template is difficult to separate nodules that usually have wide contact surfaces with other 

anatomical objects. Consequently, more complex morphological operations that combine 

shape hypothesis were introduced. For instance, Kuhnigk et al. (2006) showed that the 

radius of vessels decreases while the vessels evolve along the periphery of the lungs. In 

addition, rolling ball filters (Messay et al., 2010) combined with rule-based analysis was also 

proposed for juxtapleural nodules. One notable difficulty for morphology methods is the 

morphological template size selection (Kubota et al., 2011), because it is difficult to find a 

suitable morphology template for various size of nodules. Non-solid nodules in particular 

are challenging for morphology operation (Diciotti et al., 2011).

In region growing methods, segmentation starts with a user-specified seed point, and voxels 

are included into nodule set iteratively until the pre-defined converge criterion is satisfied. 

These methods work well for isolated nodules. However, when analyzing juxtapleural 

nodules, region growing algorithm is known to be difficult to converge. Therefore, 

Dehmeshki et al. (2008) introduced a shape hypothesis and proposed sphericity contrast 

based region growing method to detach nodule from lung wall. Instead of using the current 

voxel intensity only, Kubota et al. (2011) constructed a probability map to denote the 

likelihood of each voxel belonging to nodule according to the local intensity value, then a 

region growing method was used to separate the nodule from background area. The common 

challenge for region growing methods is the converge criteria. Although shape constraint can 

be considered, irregular-shaped nodules remain difficult to process because the shape 

hypothesis can be violated.

In energy optimization methods, nodule segmentation is converted into an energy 

minimization task. The level-set-based methods, for example, use a level set function to 

describe the image, and the function is minimized when the segmented contour matches the 

nodule boundary (Chan and Vese, 2001). To detach nodules from lung wall, Farag et al. 

(2013) combined level set with shape prior hypothesis. In addition, graph cut algorithm 

(Boykov and Kolmogorov, 2004) was developed for lung nodule segmentation by framing 

the problem into a maximum flow optimization task. Ye et al. (2010) used a modification of 

the graph cut method. Such algorithm built an intensity and shape mode map through non-

parametric mean shift clustering. Then, the graph cut algorithm was used for segmentation 

by using an energy formulation. However, similar to the region growing methods, the 

performance of these methods are typically adversely affected by juxtapleural nodules and 

low contrast nodules (e.g., GGO).

In machine-learning methods, researchers used classification models combined with high-

level features for nodule segmentation (Lu et al., 2008; 2011). For instance, Wu et al. (2010) 

designed a set of texture and shape features to represent voxels. Afterwards, a conditional 

random field (CRF) model was trained for voxel classification. In addition, Lu et al. (2013) 

designed the spatial image features such that voxels of different nodule types were mapped 

into the same universal space. These high-level features were shown to be translation and 

rotational invariant.

As one of the data-driven methods, CNNs are conceptually similar to the previous machine-

learning-based methods converting the segmentation task into voxel classification. A CNN 

Wang et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model (Gao and Zhou, 2016; Shen et al., 2017) is a multi-layer neural network that learns 

hierarchical mappings between raw image data and labels. In medical image analysis, 

Ciresan et al. (2012) applied a CNN to neuronal membranes segmentation in electron 

microscopy images, where the segmentation task is converted into pixel classification. Also, 

Zhang et al. (2015) used a CNN model to segment brain matter in a voxel patch 

classification manner. In addition, CNN models using multi-view image patches (Prasoon et 

al., 2013) or multiple branches (Havaei et al., 2016) have been designed to extract features 

that are adaptive to different medical objects. On the other hand, fully convolutional neural 

networks (FCN) (Long et al., 2015) have been another trend for image segmentation. The 

FCN model involves up-sampling layers to make the output of CNN having the same size 

with the input image, and therefore requires only one forward propagation to segment the 

input image. For instance, Ronneberger et al. (2015) and Çiçek et al. (2016) proposed the U-

Net model as a type of FCN approaches for biomedical image segmentation.

The major distinctions of the proposed CF-CNN model comparing to the previous 

approaches are three-fold: 1) we proposed a two-branch CNN architecture to learn both 

multi-view 3-D features and local texture features simultaneously; 2) we combined 

multiscale patches into a multi-channel patch that enables multi-scale feature extraction 

without involving multiple networks; 3) we proposed a novel central pooling layer to select 

features according to their spatial relevance to the target voxel (i.e., patch center voxel).

This paper is organized as follows. A detailed description of the proposed CF-CNN model is 

presented in Section 2. Experimental datasets and implementation details are introduced in 

Section 3. Section 4 provides the overall performance for the proposed method. Finally, 

Section 5 discusses the model design details and conclusion.

2. Methods

2.1. Model architecture

The proposed CF-CNN model utilizes 3-D and 2-D views of CT imaging for lung nodule 

segmentation (Fig. 2). Given one voxel in CT images, we extract a 3-D patch and a 2D 

multi-scale patch centered on this voxel as the input to the CNN model, and predict if this 

voxel belongs to the class of nodule or healthy tissues.

2.1.1. CNN structure—The network includes two deep branches sharing the identical 

structure but are trained using different image patches. Each branch of the proposed CNN 

architecture consists of six convolutional layers, two central pooling layers (see detailed 

description in Section 2.1.3), and one fully connected layer. The six convolutional layers in 

this CNN are divided into three blocks, where each block shares the exact same structure 

including two convolutional layers of kernel size 3 × 3. These layers perform convolution 

operations on all input feature maps to obtain the output feature map defined by

(1)
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where fi and fj are the ith input feature map and jth output feature map, respectively. We 

define cij as the convolutional kernel between fi and fj (* denotes the 2-D convolution 

operation). bj is the bias of the jth output feature map. To accelerate training process, every 

convolutional layer is followed by batch normalization operation to normalize the 

corresponding output (Ioffe and Szegedy, 2015).

After each convolutional layer, a parametric rectified linear unit (PReLU) (He et al., 2015) is 

used as nonlinear activation function expressed as

(2)

In this equation, aj is a trainable parameter and j represents the j-th feature map in this 

convolutional layer. In our experiment, aj is initialized to be 0.25. The PReLU incorporates a 

non-zero slope controlled by the trainable parameter aj for negative inputs and has been 

proven to be more effective than the conventional ReLU (Krizhevsky et al., 2012) in 

ImageNet classification tasks. Between each block, we formulate a novel pooling method, 

termed central pooling, to select feature subsets from convolutional layers (more detailed 

description is provided in Section 2.1.3).

After the last convolutional layer (Fig. 2, C6), a fully connected layer is applied where each 

output unit connects to all inputs. This layer can capture correlations between different 

features produced by convolutional layer. For the purpose of achieving nonlinearity, PReLU 

is also used as an activation function after the fully connected layer. At the end of the model, 

the two CNN branches are combined by concatenating their fully connected layers (Fig. 2, 

F7). Finally, another fully connected layer (Fig. 2, F8) is applied to capture the correlations 

between the features from two CNN branches.

In the case of the output layer consisting of two units, the activation values are fed into a 

binary softmax function that are converted into probability distributions over the class labels. 

Namely, suppose that ok is the kth output of the network for a given input, the probability 

assigned to the kth class is the output of the softmax function:

(3)

where k = 0 and k = 1 represent non-nodule and nodule voxels respectively.

The goal of network training is to maximize the probability of the correct class. This is 

achieved by minimizing the cross-entropy loss for each training sample. Suppose that y is 

the true label for a given input patch that belongs to {0,1}, the loss function is defined as:
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(4)

where  represents the predicted probability from CNN and N is the number of samples. To 

avoid over fitting, the 1 – norm regularization is used on the model weights W. λ controls 

the regularization strength, and is set to 5 × 10−4 in our model. The loss function is 

minimized during the model training process by computing the gradient of L over the 

network parameters W. During this process, the model weights W are initialized with the 

Xavier algorithm (Glorot and Bengio, 2010), and are updated using the stochastic gradient 

descent (SGD) algorithm (Havaei et al., 2016) as shown in Eq. (5).

(5)

In this equation, t represents the training iteration number, and V is the update value 

initialized at zero. When calculating the gradient ∇L(W), only a batch of 128 samples are 

used, because it is difficult to store millions of training samples at memory one time 

(Krizhevsky et al., 2012). μ is the momentum that is set to 0.9 in our model. α is the learning 

rate which is updated using Eq. (6), and α0 is the base learning rate which is initialized to 6 

× 10−5. γ and p are set to 0.0 0 01 and 0.75 respectively.

(6)

2.1.2. Two-branch architecture—The proposed two-branch network structure is 

designed to capture both 3-D and 2-D information simultaneously.

The 3-D-patch branch takes a 3-D volume of size 3 × 35 × 35 as input. Specifically, given 

one voxel, we extract a cuboid centered on this voxel that spreads the current, preceding and 

subsequent slices (see Fig. 2). This three-slice volume is treated as a three-channel image 

and is fed into the 3-D-patch CNN branch. Due to the large variance of CT image intensities, 

we normalize the three-channel patch using z-score that is defined as f(x) = (x – xmean)/xstd. 

In this equation, xmean and xstd represent the average and stand deviation of voxel intensities 

in the patch.

In parallel, we introduce a 2-D branch in attempt to focus on learning features from axial 

view images due to their high image resolution among all CT scans. We design the 2-D 

CNN branch to model the relationship between two scale patches jointly through 

convolutional layer. First, we extract two patches of size 65 × 65 and 35 × 35 on the target 

voxel. Then, we rescale them into the same size (35 × 35) using third-order spline 

interpolation to form a two-channel patch, and feed it into the 2-D CNN branch. The defined 

multi-scale patch strategy enables the model learning multiscale features within one network 

instead of training multiple separate networks.
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2.1.3. Central pooling—For a given image patch, it is intuitive that the voxels close to 

patch center are more relevant to the target voxel, whereas the patch edge voxels are less 

relevant. Therefore, we propose a central pooling operation to reserve many features around 

patch center as opposed to the traditional max pooling that has ignored the feature location 

information.

Fig. 3(a) is the traditional max pooling operation where pooling kernels share the same size 

and are uniformly distributed on input image, while Fig. 3(b) illustrates the proposed central 

pooling process where the pooling kernel size varies according to the pooling position. In 

our design, we adopt small pooling kernels around image center and large pooling kernels 

around image edge. Since we intend to predict the label of the patch center voxel, the 

proposed central pooling is helpful to largely eliminate irrelevant patch edge features while 

retain patch center features at the same time.

This central pooling involves two parameters: 1) the size for different pooling kernel; 2) the 

number for each type of pooling kernel. In our work, we introduce three types of max 

pooling kernels (kernel size s = 1, 2, 3). The number for each type of kernels can be 

determined combining with the following rules: 1) we follow that the central pooling 

normally reduces the input image size by half on each axis as widely used in traditional max 

pooling (Havaei et al., 2016; Zhang et al., 2015); 2) to avoid large distortion caused by the 

non-uniformly distributed pooling kernel, we let half amount of all pooling kernels be 2 

voxel size which is a common parameter used in traditional max pooling operation (Shen et 

al., 2017). After the number for three types of pooling kernels are determined, we 

symmetrically distribute all the kernels. For example, small pooling kernels (s = 1) are 

distributed around the image center, large kernels (s = 2, 3) are distributed close to the image 

edge symmetrically.

Given an input image of size O × O, the number n1, n2, and n3 for the three types of kernels 

can be determined using Eq. (7).

(7)

The first equation ensures that the total length of all pooling kernels equals the input image 

size. The second equation denotes that after central pooling, the output image size is half of 

the input image size. The third equation ensures that half amount of pooling kernels are 2 

voxel size. The unique solution of Eq. (7) is that n1 = O/8, n2 = O/4, and n3 = O/8. However, 

O may not be divisible by 8 or 4. We solve this problem in two steps: 1) first, we let n1 = 

⌊O/8⌋, n2 = ⌊O/4⌋, and n3 = ⌊O/8⌋, where ⌊ · ⌋ denotes the rounding down operation. After 

this operation, there is a residual r ∈ [0, 7] left (produced by O/8 – ⌊O/8⌋); 2) then, we build 

a look-up table L (Table 1) to assign the number for the three types of kernels to cover the r 
voxels. Finally, n1, n2, and n3 are determined using Eq. (8)
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(8)

In Eq. (8), L[i, r] represents the value at the ith row and the rth column of the look-up table. 

For instance, when the input image is 9 × 9, then n1 = 1 + 1 = 2, n2 = 2 + 0 = 2, n3 = 1 + 0 = 

1. Afterwards, these kernels are symmetrically distributed on the input image, which is in 

the kernel size order of {3, 2, 1, 1, 2} for this case. Since 2-D pooling kernels of different 

size cannot be distributed continuously on the input image, we use 1-D pooling kernel to do 

row pooling first and column pooling afterwards. This central pooling process is illustrated 

in Fig. 3(b).

For a better understanding of the difference between central pooling and traditional max 

pooling, Fig. 4 shows the pooling results for one convolutional feature map using these two 

pooling methods. The central pooling reserves more information around the feature map 

center compared with traditional max pooling.

2.2. 3-D processing

To initialize the proposed CF-CNN model, a bounding cuboid for the nodule is specified to 

enable voxel classification within such cuboid. Because a nodule is typically spread over 

multiple slices, the process of manually specifying bounding cuboid is tedious. We 

overcome this problem by only specifying a bounding box on one slice which is called the 

starting slice (S1 in Fig. 5).

The same bounding box is then applied to the preceding and subsequent slice repeatedly 

until at least one of the following two experimental conditions are satisfied: 1) no segmented 

nodule voxel exists in this slice (Fig. 5, slice S6) or 2) the nodule area in this slice is less 

than 30% of the nodule area in the preceding slice. For instance, slice S3 in Fig. 5 is 

eliminated because the segmented nodule only contains four voxels, which is only 10% of 

the size of the preceding slice (slice S2). To remove noisy voxels such as isolated tiny 

regions during 3-D process (blue R1 in slice S5), we made a simple connected component 

selection as following: 1) when the noise arises in the starting slice, we select the isolated 

region that is closest to the bounding box center. 2) when the noise arises in other slices, we 

select the isolated region whose massive center is closest to the massive center in the nodule 

of the preceding slice. For instance, two segmented candidate regions R1 and R2 are 

generated by the CF-CNN in slice S5. The distances between the massive center in these two 

regions and that of the preceding nodule (slice S4) are denoted as d1 and d2. Since d2 < d1, 

region R2 is reserved and R1(noise) is discarded.

2.3. Training sample selection

Since our method focuses on learning CNN-based features from images automatically, large 

amount of voxel patches (as training samples) are greatly needed to facilitate the model 

training. However, lung nodule segmentation is a highly data imbalanced problem where 
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nodule voxels usually counted less than 5% of the total voxels in one CT slice. Selecting 

training voxel patches randomly would easily cause model to be overwhelmed by non-

nodule features. Therefore, we propose a weighted sampling strategy to select only part of 

the whole voxel patches according to their degree of segmentation difficulty. First, we 

identify the nodule bounding box for each CT slice in training set, and expand eight voxels 

on each axis to get an expanded box (the green box in Fig. 6(a)). Then, for each voxel inside 

this expanded box, we assign them a weight score indicating their segmentation difficulty. 

Finally, 40% nodule voxel patches and the same amount of non-nodule voxel patches are 

sampled according to their corresponding weight score. In this process, we sample nodule 

and non-nodule voxel patches separately to balance the training labels.

When choosing nodule patches, we intend to sample more nodule edge patches rather than 

nodule center patches, because nodule edges typically contain more texture information for 

segmentation. Consequently, our goal of finding challenging nodule voxels is converted into 

finding nodule edge voxels. This process can be formulated by assigning each nodule voxel i 
a weight PWi using the distance function defined in Eq. (9).

(9)

In this equation, N is the non-nodule voxel set, and d (i, j) is the euclidean distance between 

nodule voxel i and non-nodule voxel j. Z is a normalization factor to make the weight of all 

voxels accumulated to 1. PWi is a number between [0, 1] which demonstrates the weight of 

the current nodule voxel being sampled. Fig. 6(b) visualizes the nodule voxel weight 

distribution of one nodule slice (Fig 6(a)) using this method.

When choosing non-nodule patches, the challenge voxels are from nodule-attached lung 

wall and vessels. We identify these voxels from two considerable aspects: 1) we utilize a 

distance function to assign each voxel a weight which decreases as the voxel apart from 

nodule area. 2) we intend to eliminate the dark lung field area, since they usually have very 

low intensity and can be easily distinguished from nodule voxels. This process is formulated 

by assigning each non-nodule voxel i a weight NWi using Eq. (10),

(10)

where P is the nodule voxel set, and d (i, j) is the euclidean distance between non-nodule 

voxel i and nodule voxel j. Since the dark lung field area can also get a high response similar 

to lung wall, we multiply the normalized CT image intensity Ii to the exp () function to 

eliminate the dark lung field area. Fig. 6(c) illustrates the weight distribution for non-nodule 

voxels.
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Finally, 40% nodule voxels were sampled according to PWi, and the same amount of non-

nodule voxels were sampled according NWi. Compared with random sampling (Fig. 6(d)), 

our strategy (Fig. 6(e)) selected more nodule edge and nodule-attached lung wall voxels 

which were particularly useful for training CNN models.

3. Data and experiment

3.1. Data

We used two datasets in our experimental evaluation. The first one is a publicly available 

dataset from the Lung Image Database Consortium and Image Database Resource Initiative 

(LIDC). The second dataset is independently collected from Guangdong General Hospital 

(GDGH).

LIDC dataset—The dataset contains CT images of 2610 lung nodules from seven 

academic centers and eight medical imaging companies around the world (Armato et al., 

2011; Setio et al., 2016). Nodule diameters in this dataset range from 2.03 mm to 38.12 mm, 

and the slice interval ranges from 0.45 mm to 5.0 mm. The axial plan resolution varies from 

0.46 mm × 0.46 mm to 0.98 mm × 0.98 mm. All the nodules are annotated by up to four 

board-certified radiologists. In this work, we studied nodule samples that are annotated with 

available four radiologists (a total of 893 nodules). Because of the inter-variability among 

four different radiologists, a 50% consensus criterion (Kubota et al., 2011) is adopted to 

generate a ground-truth boundary. For all the 893 selected nodules, each expert has been 

asked to independently assess multiple subjective clinical characteristics including 

sphericity, spiculation, and the likelihood of malignancy (Armato et al., 2011).

We randomly partitioned the 893 nodules into three subsets including training, validation 

and testing sets that are comprised of 350, 50 and 493 nodules respectively. As seen in Table 

2, the three subsets share similar statistical distributions of clinical characteristics. We train 

the CF-CNN model only on the training set, and the validation set is used for determining 

the CNN training epoch number. Finally, the testing set is used for performance evaluation.

GDGH dataset—The second dataset from Guangdong General Hospital consists of 74 

patients with single nodules. Nodule diameters range from 1.64 mm to 58.94 mm with the 

average diameters (mean ± standard deviation) of 25.79 ± 12.47 mm. The CT slice interval 

varies from 1.25 mm to 2.5 mm with the axial plan resolution ranging from 0.61 mm × 0.61 

mm to 0.88 mm × 0.88 mm. All nodules were annotated by an experienced radiologist and 

verified by another radiologist (10+ years experience) in thoracic imaging of lung lesions. 

To further validate the segmentation performance, after obtaining the trained CF-CNN 

model on LIDC dataset, we directly evaluate the segmentation results by testing on this 

independent nodule set.

3.2. Evaluation criteria

Given the ground truth segmentation Gt and automated segmentation result Auto, the dice 

similarity coefficient (DSC) and symmetric average surface distance (ASD) are used as the 

primary evaluation criteria for assessing the automatic segmentation accuracy. DSC is a 
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widely used metric for measuring the overlap between two segmentation results (Havaei et 

al., 2016; Valverde et al., 2017), and ASD measures the average boundary distance between 

surfaces of two segmentation results (Gao et al., 2016). In addition, we also use the 

sensitivity (SEN) and positive predictive value (PPV) to demonstrate the voxel classification 

accuracy (Gao et al., 2016). Full definitions are listed as in Eq. (11) to Eq. (13) :

(11)

(12)

(13)

where V is the volume size counted in voxels and d(i,j) denotes the Euclidean distance 

between voxel i and voxel j measured in millimeters.

3.3. Implementation details

In our experiment, we generated 0.41 million voxel patches on the LIDC training set using 

the weighted sampling method (Section 2.3). When each training epoch was completed, the 

CF-CNN model was tested on the validation set and evaluated by the DSC value. After 21 

epochs of training, the DSC on validation set became stable, therefore, we decided to train 

the CF-CNN model for 21 epochs. Finally, the model performance was evaluated on the 

independent testing set. Our method was implemented in Python 2.7 and all experiments 

were performed on a machine with an Intel Core i7-4790K CPU and 8GB memory. The 

CNN was implemented using CAFFE Toolkit (Jia et al., 2014) and was accelerated on an 

NVIDIA GTX-980Ti GPU (6GB on-board memory). The CF-CNN model converged after 9 

h of training on 0.41 million voxel patches.

Two widely used methods including level set with active contours (Chan and Vese, 2001) 

and graph cut (Boykov and Kolmogorov, 2004) were used as comparison with the proposed 

CF-CNN. The parameters in level set and graph cut were all optimized by a parameter grid 

searching using the Fiji software (Schindelin et al., 2012). In the level set method, fast 

marching was firstly used to generate the initial nodule contour. Then, active contours model 

was used for further contour refining. The parameters were set as: gray value threshold = 50, 

distance threshold = 0.1 for fast marching; and advection = 2.20, curvature = 1.00, gray scale 

tolerance = 30.00, convergence = 0.005 for active contours model. In the graph cut method, 

there were two parameters involved in Fiji software. These parameters were set as: data prior 

(foreground bias) = 0.86 and edge weights (smoothness) = 0.56. Both the level set and graph 
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cut methods were applied on 2-D image slices. Finally, the same slices were selected for 

measuring performance across all compared methods.

Furthermore, to compare the proposed CF-CNN with other deep-learning methods, we 

implemented a state-of-the-art FCN model, termed U-Net (Ronneberger et al., 2015). The 

network architecture we used was the same with the published paper. To make a fair 

comparison, all the training images were from the nodule ROI image instead of the whole 

CT scan. Since the input image size of U-Net was 572 × 572, we padded the nodule ROI 

image with “reflect padding” to fit the 572 × 572 size, meaning that the padded voxels were 

acquired by mirroring the existing image. In the testing phase, we used the ground-truth 

bounding box for initialization of all the compared methods (e.g., level set, graph cut and U-

Net) to ensure a fair experimental comparison, and they were all post-processed using the 

same way.

4. Results

4.1. Overall performance

From Table 3, we observed that the proposed CF-CNN model outperformed graph cut and 

level set on LIDC dataset. In addition, when testing on the independent GDGH dataset, the 

strong results of CF-CNN reaffirmed the competitive outcomes of segmenting different 

types of lung nodules. In particular, we demonstrated the advantage of the proposed central 

pooling layer by additionally comparing CF-CNN with CF-CNN-MP, where CF-CNN-MP 

represents the CF-CNN model with traditional max pooling. Table 3 illustrated that the 

proposed central pooling layer improved the average DSC value by around 2% on both 

datasets. In addition, the combination of 3-D-patch and 2-D-patch branches also improved 

the model performance. CF-CNN outperformed single 3-D-patch branch or single 2-D-patch 

branch as indicated in Table 3. To enable a full observation of all testing nodules, as seen in 

Fig. 7, we showed the overall distributions of the obtained DSC scores from the two 

datasets.

In Table 3, the ground truth was combined with the annotations by four radiologists using a 

50% consistency criterion. To have an intuition of the consistency between different 

individual human experts, we performed a pairwise DSC comparison between the CF-CNN 

and the four radiologists as demonstrated in Table 4. Our results showed that the DSC 

between CF-CNN and each radiologist is 81.66% on average, which compared favorably 

with the average inter-radiologist variability of 83.64%. Moreover, the CF-CNN also showed 

stability when compared with four different radiologists, since the average DSC between 

CF-CNN and each radiologist is stable at 81.57%–81.72%.

As mentioned in Section 1.1, Kubota et al. (2011), Messay et al. (2010) and other 

researchers also evaluated their methods on the LIDC dataset. Consequently, in Table 5, we 

listed the methods which required only a user initialization (e.g., a VOI or seed point) 

procedure without further user interaction. Since these methods used overlap O = V (Gt ∩ 
Auto)/V (Gt ∪ Auto) to measure the model performance, we additionally reported our 

results using the same measurement in this table. Of note, among all the listed methods, our 

Wang et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method is evaluated on a larger amount of testing set including different types of lung 

nodules as presented in Fig. 1.

4.2. Robustness of segmentation

We showed that CF-CNN can process various types of nodules with similar performance 

indicating potential segmentation robustness. The LIDC testing set includes various nodules 

reflecting different levels of segmentation difficulties. All the nodules in this dataset were 

given nine characteristics to represent their sphericity, the likelihood of malignancy, and 

other properties. We chose four representative characteristics and divided the testing set into 

different groups according to their characteristic scores. The average DSCs on different 

groups are shown in Table 6. All groups in this table have similar DSC values which 

highlighted that our approach was able to capture nodule shapes with regards to different 

clinical characteristics.

In Table 7, we further summarized results of challenging attached nodules (juxtapleural and 

juxtavascular nodules). The proposed CF-CNN presented appealing performance on these 

nodules. The outcomes indicated a potential robustness of CF-CNN segmentation that was 

irrespective of attached conditions of nodules.

4.3. Visualization

The segmentation results were visualized to allow comparison of different approaches. We 

demonstrated five representative nodules from the LIDC testing set (Fig. 8, L1-L5) and three 

challenging nodules from the GDGH dataset (Fig. 8, G1-G3).

For isolated solid nodules (L1), both our method and the state-of-the-art methods performed 

well. However, when examining nodules attached to surrounding tissues (L2), the level set 

and graph cut methods reduced performance because they were struggling to differentiate 

nodules from pleura. In contrast, the proposed CF-CNN remained robust when segmenting 

such nodules, showing the good feature learning ability of the CF-CNN model. For cavitary 

nodules (L3), the level set, graph cut, and U-Net methods falsely considered the cavity 

region as background; however, CF-CNN was able to reserve it correctly. Because of the 

heterogeneous intensity contrast between calcific and non-calcific tissues, the level set 

method identified only the calcific region whereas ignored the non-calcific part. In contrast, 

our CF-CNN was able to detect both parts and reserve the complete nodule (L4). When 

examining GGO nodules containing cavity structures inside (L5), level set and graph cut 

methods tended to show under segmentation, since they cannot distinguish nodule voxels 

from background because of the low intensity contrast. Affected by the cavity structure, 

outputs from U-Net identified only part of the nodule (L5).

When testing on the GDGH dataset, challenging nodules were mostly found to be 

juxtapleural and multi-cavitary. Fig. 8(G1-G3) showed the segmentation results of different 

methods on these challenging cases in the GDGH dataset. G1, G2, and G3 indicated 

juxtapleural, multi-cavitary, and GGO nodule attached to vessel respectively. When 

attachment happened between nodule and lung wall (G1) or vessel (G3), the level set and 

graph cut methods intended to show under segmentation, because they were unable to 

identify attached tissues from nodule. Similar to the L3 nodule in LIDC testing set, the 
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cavity structures also affected the U-Net performance (G2) in the GDGH dataset. Whereas 

CF-CNN performed reasonably well in capturing the complete nodule shape.

Fig. 9 further showed multiple segmented slices of two juxtapleural cases from the LIDC 

testing set and GDGH dataset when applying CF-CNN. This figure indicated that the 

segmentation results of CF-CNN showed much overlap with the ground truth contours.

5. Discussion and conclusion

In this study, we proposed a CF-CNN model for lung nodule segmentation that leveraged 

both 2-D and 3-D volumetric CT images. The approach demonstrated a strong ability to 

learn nodule-sensitive features automatically from large amounts of CT image patches (0.41 

million voxel patches). Our CF-CNN achieved encouraging segmentation accuracy on 

nodules with various clinical characteristics (Table 6). By comparing with several widely 

used lung nodule segmentation methods, our method showed superior performance in 

segmentation accuracy (DSC = 82.15% for LIDC and DSC = 80.02% for GDGH, Table 3). 

Especially, the CF-CNN model can successfully segment challenging cases where nodules 

were attached to pleura (Table 7). Moreover, we compared our results with the inter-

radiologists consistency on LIDC dataset, showing a difference in average dice score of only 

1.98% (Table 4).

The CF-CNN model specifically incorporated a two-branch structure for extracting both 3-D 

and 2-D features simultaneously. The 3-D-patch branch can learn features from different 

image views, while the 2-D branch extracted multi-scale features through a multi-scale patch 

strategy. For a given voxel patch, the patch center textures were more relevant to the target 

voxel. Consequently, we proposed a novel central pooling layer to reserve much patch center 

features while eliminate redundant patch edge features. This operation applied non-

uniformly distributed pooling kernels on the input image. Specifically, small pooling kernels 

(size s = 1) are distributed around patch center while large pooling kernels (s = 2, 3) are 

located around input patch edge.

In the design of convolutional architecture, we adopted deep stacked structure with small 

convolutional kernels (size 3 × 3) instead of a shallow structure with big convolutional 

kernels. In fact, a stack of two 3 × 3 convolutional kernels have an effective respective field 

of 5 × 5 (Simonyan and Zisserman, 2014). However, the stacked two-layer structure allows 

the extraction of stronger nonlinear deep features benefiting from the design of PReLU 

activation function after each layer (Lin et al., 2013). In addition, small convolutional 

kernels are known to be able to reduce the parameter numbers in the network, thereby 

making it less prone to over fitting (Simonyan and Zisserman, 2014).

During model training, the training voxel patch selection is difficult because of the 

imbalanced labels. Specifically, only less than 5% voxels belong to nodule while more than 

95% voxels are non-nodule tissues in training CT images. We solved this problem by 

proposing a weighted sampling method to select only the challenging voxels. In practice, 

nodule edge voxels and nodule-attached voxels are found to be challenging for various 

segmentation methods. Consequently, in the training set, we defined two distance functions 
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to find these voxels, and assigned them higher weight score than other voxels. Finally, 40% 

of all voxels were sampled according to their corresponding weight scores.

Since the proposed CF-CNN is particularly dealing with volumetric CT imaging data at 

scale, we incorporated a GPU accelerator to gain computational efficiency. When 

segmenting a nodule in a 50 × 50 image, the CF-CNN only required 6.92 seconds after GPU 

acceleration. Furthermore, the use of specified bounding box largely reduced the 

computational burden in searching the nodule space in CT. It is the only pre-procedure that 

allowed our CF-CNN to initialize the computation. Alternatively, dedicated lung nodule 

detection algorithms providing an estimated cuboid of nodule can be directly integrated into 

our method to construct a fully automatic system.

In conclusion, the proposed CF-CNN model highlighted the power of image-based deep 

learning architecture in finding discriminative features for lung nodule segmentation. Our 

approach presented a unique advantage in capturing nodule-sensitive information from CT 

imaging data. In the future work, we plan to integrate our proposed central pooling layer and 

two-branch architecture into the FCN network to seek potential improvement and reduce 

computational burdens.
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Fig. 1. 
Example images of lung nodules with different locations and shapes in CT: (a) common 

isolated nodule. (b) juxtapleural nodule. (c) cavitary nodule. (d) calcific nodule. (e) ground-

glass opacity (GGO) nodule.
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Fig. 2. 
Illustration of the proposed CF-CNN architecture. The network contains six convolutional 

layers (C1–C6), two central pooling layers (central pooling 1 and central pooling 2), and two 

fully connected layers (F7, F8). The convolutional kernel size is denoted as filter number @ 

filter width × filter height (i.e., 36@3 × 3 represents 36 filters of kernel size 3 × 3). The 

number below each layer indicates the feature map size after convolution. After feeding all 

voxels into this CNN model, a probability map assigning each voxel the probability of it 

belonging to nodule is obtained. The bottom figure illustrates 16 randomly selected feature 

maps of the first convolutional layer (the first row is from the 3-D-patch CNN branch, the 

second row is from the 2-D-patch CNN branch). The feature maps indicate that the learned 

convolutional kernels can respond to various types of image characteristics such as edge or 

lung wall.
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Fig. 3. 
Central pooling process. (a) Traditional max pooling using 2 × 2 kernel and 2 voxel step. 

The pooling kernels are of the same size and are uniformly distributed. (b) Central pooling. 

The pooling kernel size varies according to the pooling position, and are non-uniformly 

distributed on input image. The pooling operation is firstly applied among rows, where we 

use small pooling kernels around image center, while large pooling kernels near image edge. 

Afterwards, we use the same pooling operation among columns. For the pooling kernel of 

size 2 and 3, the maximum value in a pooling window is selected as output.
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Fig. 4. 
Traditional max pooling and central pooling comparison. (a) Data patch. (b) A feature map 

from the first convolutional layer in CF-CNN model (Fig 2). (c) Traditional max pooling of 

the feature map. (d) Central pooling of the feature map. The color in this figure represents 

the voxel values in the feature map. Red denotes big value and blue represents small value. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 5. 
Three-dimensional segmentation procedure. The bounding box is only specified on one slice 

designated the starting slice, and then applied to the preceding and following slices 

iteratively. The number on the right side of each slice is the area of the nodule counted in 

voxels. The column on the left displays the original CT slices and the middle column shows 

the outcome of the CF-CNN model, where the red and blue regions represent nodules and 

false positive noises, respectively (the latter one is earmarked for removal). The image on the 

right is the 3-D visualization of the ultimate segmentation outcome. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 6. 
Illustration of weighted sampling process. (a) A CT image in training set. The green box is 

acquired by expanding eight voxels on each axis of the nodule bounding box. (b) nodule 

voxel weight distribution. (c) non-nodule voxel weight distribution. (d) random sampling 

result. (e) weighted sampling result. Yellow and blue crosses denote sampled nodule and 

non-nodule voxels, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 7. 
DSC distributions of the LIDC testing set and GDGH dataset.
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Fig. 8. 
Segmentation results visualization. From top to bottom: nodule with ground truth, level set 

segmentation, graph cut segmentation, U-Net segmentation, and CF-CNN segmentation. L1-

L5 are nodules of different types from the LIDC testing set. G1-G3 are nodules from the 

GDGH dataset.

Wang et al. Page 26

Med Image Anal. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Segmentation results of CF-CNN on two juxtapleural nodules from the LIDC testing set 

(L1-L14) and GDGH dataset (G1-G14). The red and yellow contours denote the ground 

truth and the segmentation results of the CF-CNN method, respectively. The numbers in the 

upper left corner of each image represent the CT slice number of this nodule. The red and 

yellow 3-D renderings are from the ground truth and the CF-CNN results. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of 

this article.)
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Table 2

Characteristic distributions of the LIDC training, validation and testing sets. Values are shown in mean ± 

standard deviation.

Characteristics Training set (n = 350) Validation set (n = 50) Testing set (n = 493)

Diameter (mm) 9.48± 4.89 9.21± 5.03 9.35± 4.88

Spiculation 1.72± 0.86 1.65± 0.74 1.71± 0.87

Lobulation 1.87± 0.81 1.81± 0.69 1.82± 0.81

Sphericity 3.84± 0.62 3.79± 0.63 3.86± 0.59

Calcification 5.67± 0.78 5.57± 0.90 5.63± 0.87

Malignancy 3.05± 0.91 3.01± 1.04 4.15± 0.97

Note: All characteristic values except diameter and calcification are on ordinal scale of 1–5, while calcification value ranges from 2 to 6. 
Spiculation and lobulation represent the amount of these shapes that present in one nodule. Sphericity, calcification, and malignancy represent the 
likelihood of these characteristics in one nodule. The characteristics on three sets are without significant statistical difference.
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Table 3

Mean ± standard deviation of quantitative results for various segmentation methods. The best performance is 

indicated in bold font.

LIDC Set DSC (%) ASD (mm) SEN (%) PPV (%)

Level Set 60.63± 17.39 0.48± 0.25 64.38± 22.75 71.03± 24.35

Graph Cut 68.90± 16.03 0.48± 0.30 80.81± 15.25 65.09± 22.42

U-Net 79.50± 13.95 0.24± 0.23 86.81± 18.43 78.18± 16.13

3-D-Patch Branch 79.20± 11.88 0.21± 0.17 90.93± 14.72 72.91± 13.73

2-D-Patch Branch 80.47± 11.23 0.18± 0.15 91.36± 14.40 74.64± 13.16

CF-CNN-MP 80.39± 11.90 0.18± 0.15 91.33± 14.88 74.52± 13.54

CF-CNN 82.15± 10.76 0.17± 0.23 92.75± 12.83 75.84± 13.14

GDGH Set DSC (%) ASD (mm) SEN (%) PPV (%)

Level Set 66.02± 17.21 0.78± 0.65 60.83± 17.98 79.24± 21.38

Graph Cut 74.13± 13.32 0.83± 0.56 82.94± 13.66 69.24± 16.60

U-Net 75.26± 11.82 0.49 ± 0.48 76.65± 16.42 77.21± 11.57

3-D-Patch Branch 77.89± 10.64 0.40± 0.31 81.29± 15.60 76.95± 11.62

2-D-Patch Branch 78.98± 11.96 0.38± 0.39 81.42± 16.90 79.65± 12.20

CF-CNN-MP 78.61± 12.18 0.39± 0.38 80.93± 17.07 79.38± 12.03

CF-CNN 80.02± 11.09 0.35± 0.34 83.19± 15.22 79.30± 12.09

Note: 3-D-Patch Branch and 2-D-Patch Branch represent the 3-D and 2-D branches in CF-CNN model. CF-CNN-MP represents the CF-CNN 
model using traditional max pooling instead of central pooling.
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Table 5

Performance of various lung nodule segmentation methods on the LIDC-IDRI dataset.

Methods Year Nodule amount Overlap

Training Testing

Tachibana and Kido (2006) 2006 – 23 50.7 ± 21.9%

Wang et al. (2009) 2009 23 64 58%

Messay et al. (2010) 2010 – 68 63 ± 16%

Kubota et al. (2011) 2011 – 23 69 ± 18%

82 59 ± 19%

Tan et al. (2013) 2013 – 23 65%

Lassen et al. (2015) 2015 – 19 52 ± 7%

40 50 ± 14%

Messay et al. (2015) 2015 300 66 71.70 ± 19.89%

77 69.23 ± 13.82%

Proposed CF-CNN 2017 350 493 71.16± 12.22%
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Table 7

DSCs and ASDs for attached and non-attached nodules on the two testing sets.

LIDC testing set GDGH dataset

Attached (n = 113) Non-attached (n = 380) Attached (n = 18) Non-attached (n = 56)

DSC (%) 81.65 82.30 80.55 79.85

ASD (mm) 0.21 0.16 0.37 0.35
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