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Abstract 

The most prevalent histological type of non-small cell lung cancer (NSCLC) is adenocarcinoma. The WHO classifies this tumor into 

subtypes according to the predominant growth pattern such as lepidic, acinar, papillar y, solid or micropapillar y, each harboring specific 
molecular features. NSCLC adenocarcinoma heterogeneity is discussed to be a reason for therapy failure using targeted therapy or 
immune checkpoint inhibitors. For successful therapy of immune checkpoint inhibitors the expression and distribution of the involved 

immune checkpoint proteins is essential. Therefore, we aimed to investigate the distribution of five prominent immune checkpoint 
proteins in regard of the histological growth patterns of lung adenocarcinoma. We performed immunohistochemical staining of 84 

tumor segments from 22 resected tumor samples to evaluate the expression of PD-L1, PD-1, Nectin-2, PVR, and TIGIT in distinct 
growth patterns of lung adenocarcinoma. We determined a distinct heterogeneity between and within different tumor segments 
regarding morphological growth patterns. Furthermore, expression of immune checkpoint proteins varied between different growth 

pattern areas as well as within one distinct growth pattern. Expression of PVR was significantly higher in solid compared to acinar 
growth pattern (p = 0.00736). Of note, we detected TIGIT not only on tumor infiltrating lymphocytes but also on tumor cells, whereas 
non-neoplastic lung tissue was consistently TIGIT-negative. The immune checkpoint protein distribution in histologic subtypes 
of pulmonary adenocarcinoma displays an considerable intra- and intertumoral heterogeneity implying the requirement of either a 
multiregion or an adjusted analysis when determining the expression status of PD-1:PD-L1 and the TIGIT:PVR/Nectin-2 checkpoint 
proteins as predictive markers. 
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Introduction 

Lung cancer is the leading cause in cancer related death worldwide [1] ,
with non-small cell lung cancer (NSCLC) being the most frequent subtype
[2] , of which in turn adenocarcinoma is the most prevalent [3] . As lung
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denocarcinoma is intrinsically very heterogenic, the WHO Classification of 
015 is classifying this tumor into subtypes according to the predominant 
rowth pattern, which can be lepidic, acinar, papillary, solid or micropapillary 
2] . These histological subtypes were shown to correlate with prognosis 
4–6] . Tumors of various entities, including NSCLC, are able to evade 
he immune system via upregulation of immune checkpoint molecules, 
epresenting one of multiple mechanisms circumventing immunosurveillance 
nd promoting survival of tumor cells [7] . A prominent example of such
 tumor-mediated attenuation of immune surveillance is the interaction of 
he inducible ligand PD-L1 (B7-H1, CD274) to its receptor PD-1, which 
s expressed on tumor infiltrating lymphocytes (TILs) and also tumor cells. 
he PD-1:PD-L1 interaction results in a bidirectional inhibitory signal 
hich leads to an exhausted state of immune cells expressing these molecules 

8] . This dysfunctional state is hallmarked by the loss of effector function,
ncluding proliferation, release of cytokines, and secretion of cytolytic factors. 
n return, the tumor cells themselves also show resistance towards T- 
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cell mediated cytotoxicity [9] . To block these co-inhibitory signals and
prevent inactivation of T-cells, the FDA approved the antagonistic PD-
1 antibodies nivolumab (Opdivo, 2015) and pembrolizumab (Keytruda,
2015) as well as PD-L1 antibody atezolizumab (Tecentriq, 2017) as second-
line therapy for advanced NSCLC with progression after platinum-based
chemotherapy. Further, pembrolizumab is also approved as first-line therapy
for advanced NSCLS patients with > 50% PD-L1 expressing tumor cells
[10] . However, response rates remain quite low, as only 20% of all patients
primarily respond to therapy [11–13] . Clinical trials also revealed conflicting
results regarding PD-L1 status as a biomarker, which is not consistently
associated with therapy response [13] . Furthermore, adaptive or acquired
resistance is observed in many patients who initially exhibit effective response
to PD-1/PD-L1 antibody treatment [14] . One reason for this treatment
failure may be additional inhibitory immune checkpoint pathways used
by the tumor as a redundancy system to control anti-tumoral immune
responses [15] . These alternative pathways need to be co-targeted in order
to provide a full and sustained clinical response. Recently, one of these
additional immune checkpoint pathways moved into the spotlight i.e.,T
cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT,
Vstm3, WUCAM, VSIG9) [16] . In several tumor entities, including lung
adenocarcinoma, the expression of this regulatory receptor was found to be
increased on TILs, giving tumor cells an additional option to escape the
immune system in suppressing the functions of the TILs, when TIGIT
binds one of its ligands Nectin-2 or PVR [17] . Moreover, this aberrant
overexpression was correlated with poor clinical outcome [18] . So far six anti-
TIGIT antibodies are being tested, either investigating the eligibility for a
mono-anti-TIGIT-therapy or as part of combination therapies to synergize
with either PD-1, PD-L1 or CTLA-4 blockade [16] . It was demonstrated
that dual PD-1/TIGIT blockade potently increases tumor antigen-specific
CD8 + T cell expansion and function in vitro and promotes tumor rejection
in mouse tumor models leading to a cure rate up to 100% [16] . 

Given the pivotal role of the immune checkpoints PD-L1:PD-1 and
TIGIT:PVR/Nectin-2 for the immune evasion of NSCLC adenocarcinoma
and for the treatment success using immune checkpoint inhibitors, our aim
was to dissect the heterogeneity of the expression of these immune checkpoint
proteins in NSCLC adenocarcinoma. Here, we focused especially on the
heterogeneity in conjunction with the different NSCLC adenocarcinoma
growth patterns. 

Material & methods 

Patient and tumor characteristics 

22 patients were enrolled in this study. All patients were required to
meet the criteria: (A) the patients had to be diagnosed with NSCLC
adenocarcinoma, (B) tumor resection was performed and (C) archived FFPE
tissue of the resected tumor with sufficient tumor tissue was available. This
results in 84 tumor segments derived from this cohort. Resected human
tumor tissue used in the current study were collected and stored by the
Institute of Pathology of the University Medical Centre Ulm. Pathologists
assessed all samples before use. The study was approved by the ethics
committee of the University of Ulm (ethic code 180/19) and is in line with
the declaration of Helsinki. 

Immunohistochemistry 

Immunohistochemistry was performed on serial 2 μm-thick tissue
sections cut from formalin-fixed, paraffin-embedded tissue blocks. Staining
was performed according to standardized protocols using the commercially
available Dako REAL detection system (Dako, Santa Clara, USA) and the
Vectastain Elite Kit (Vector Laboratories, Burlingame, USA). Briefly, all
slides were deparaffinized in xylene and underwent a series of incubations
n decreasing ethanol concentrations for rehydration. Antigen retrieval was 
erformed using different treatments specific for each antibody, including 
teaming (PD-L1, Nectin-2) and microwaving (PVR, PD1 and TIGIT) in
ifferent buffer solutions, EDTA buffer pH 9.0 (PD-L1, Nectin-2), citrate
uffer pH 6.0 (PD-1, PVR) or TRIS-based buffer pH 9.0 (TIGIT) for 20
in. Incubation with the primary antibody was carried out for 30 min at

oom temperature (PD-L1, Nectin-2, PVR, PD-1) or overnight for at least
6h at 4 °C (TIGIT). Further, sections were counterstained with hematoxylin.

ntibodies 

The following antibodies were used: monoclonal antibody against PD- 
1 (Quartett, Berlin, Germany, 1:200, QR1), PD-1 (Dianova, Hamburg, 
ermany, 1:50, JAD1), Nectin-2 (Cell Signaling, Danvers, USA, 1:50, 
8D3F), PVR (Cell Signaling, Danvers, USA, 1:50, D8A5G), and TIGIT

Dianova, Hamburg, Germany, 1:25, TG1). 

ransfection of HEK-293 cells 

To test the specificity of the anti-TIGIT antibody immunohistochemistry 
taining s were carried out using human embryonic kidney cells 293 (HEK-
93) which ectopically express human TIGIT. For this purpose HEK-293
ells were grown in IMDM/RPMI (4:1) supplemented with 10% fetal bovine
erum, glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin at
7 °C in a humified atmosphere with 5% CO 2 , reagents were purchased
rom Lonza (Basel, Switzerland) and Biochrom (Harvard Bioscience, Hill 
oad Holliston, USA). HEK-293 cells were transfected via the calcium-
hosphate method as described previously [19] . HEK293-TIGIT cells 
ere generated by transfecting a TIGIT expression vector pcDNA3.1 + /C-

K)DYK (concentration 0.1 μg/ μL, GenEZ 

TM ORF clone, GenScript, 
ew Jersey, USA) and the pcDNA3.1 empty vector (eV) serving as a

ontrol. After transfection, cells were pelleted and fixed in buffered 4%
ormalin solution (Langenbrinck, Emmendingen, Germany) for 24 hours, 
ehydrated and embedded in paraffin. Subsequently, 2 μm-thick paraffin 
ections of the cellblocks were subjected to immunocytological staining (see
Immunohistochemistry”). 

valuation of immunohistochemical staining 

The distinct histological growth patterns in each segment were 
etermined by an experienced pathologist on consecutive H&E-stained 
ections; the pathologist himself was blinded from clinical information. In
ach segment the available histological growth patterns were determined 
s lepidic, acinar, papillary, solid, and micropapillary, with up to 4
ifferent growth patterns in one segment. Subsequently, molecular and 
istopathological examinations were carried out separately for each growth 
attern. To validate the immune staining, external control slides were stained
long with the lung carcinoma slides. Positive controls for PD-1, Nectin-2,
nd TIGIT were tonsil or other lymphatic tissue and tissue placental tissue
or PD-L1 and PVR. 

In order to standardize the staining, the H-Score was used [20] , allowing
he evaluation and comparison of the expression of each immune marker
PD-L1, PD-1, Nectin-2, PVR, and TIGIT). This score combines the
ntensity of staining, with values of one for weak, two for intermediate and
hree for strong staining intensity, and the area of positive staining which
epresents the tumor proportion score (TPS) of a particular section. These
wo variables are multiplied, resulting in a score-range from 0 to 300. 

H − Score = st ai ni ng i nt ensi t y × T P S 

As the TPS applies for evaluating tumor cells we transferred this method
n immune cells, reporting the proportion of positive stained immune cells
n all available immune cells. 
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Table 1 

Baseline characteristics of patient cohort 

Age At Diagnosis gender grading TNM-classification 

Patient 1 42 f I T1a, Nx, L0,V0, R0, M0 

Patient 2 48 f II-III n.a. 

Patient 3 48 f II T2a, N2(10/12), Mx, L1, R1 

Patient 4 54 f I-II T2b, N2 (N1 3/4; N2 3/15) M1a, R0 

Patient 5 54 f II-III T2b, N1(7/7 N2), Mx, L1, V1, n0 

Patient 6 58 f II T3, L0, V0, Pn0, Rx, M1b 

Patient 7 59 m II T2a, N0, R0, M0 

Patient 8 60 m II T4, N2 (N1 2/6, N2 17/34), L1, V0, Pn0, Mx, R0 

Patient 9 59 f III T2a, N2 (N1 2/5, N2 2/11), L0, V1, Pn0, Mx, R0 

Patient 10 60 m II T2, N0 (0/7), Mx, L0, V0, Pn0, R0 

Patient 11 60 m III T2a, N2 (N1 2/9; N2 3/5), Mx, L1, V0, R0 

Patient 12 62 m I T1a, N1 (N1 8/11; 0/2), Mx, L0, V0, R0 

Patient 13 64 m II T4, V0, L0, N0 (N1 0/13; N2 0/15), Mx, R0 

Patient 14 67 m II T1b, V0, L0, N0 (0/2), Mx, R0 

Patient 15 66 m I-II T1b, V0, L0, N1 (hilar 1/4; N1 0/13; N2 0/3) Mx, R0 

Patient 16 71 m II T1b, N2 (N1 3/7; N2 6/23), Mx, L1, V0, R0 

Patient 17 74 f II T1b, N2, (N1 4/6; N2 2/3), Mx, R0, L0, V1, Pn0 

Patient 18 75 f II T3, N0 (0/18), Mx, L0, V0, Pn0, R1 

Patient 19 74 f I T2a, N2 (7/28), L0, V0, R0, M0 

Patient 20 77 f III T1b, M0, R0, M0 

Patient 21 78 f I-II T2, Nx, Mx, L0, V1, Pn0, Rx 

Patient 22 79 f II n.a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Venn diagram showing the occurrence of different growth patterns. 
Occurrence and combinations of lepidic, acinar, papillary, solid, and 
micropapillary growth patterns within all analysed tumour segments. The 
overall numbers are shown. 
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Statistics 

For statistical analyses of protein expression between the histological
subtypes Mann-Whitney-U-Test was used, with a P -value of ≤ 0.05
considered statistically significant. Statistical analysis of correlation between
different growth patterns and immunohistochemistry was performed by
using R software and ‘ggcorrplot’ package (version 0.1.3) were exploited
to figure out the data. Spearman correlation was used to compare protein
expression. Venn diagram was calculated using R package ‘VennDiagram’
(version 1.6.20). 

Results 

Patients and tumor characteristics 

Tumor samples from 22 lung adenocarcinoma patients resected at the
University Medical Center Ulm were collected. All patients were diagnosed
with NSCLC adenocarcinoma with a grading of I to III. The cohort included
9 male and 13 female patients, the age ranged from 42 to 79 years. For all
patients staging was performed according to the IASLC UICC TNM (seventh
edition) classification ( Table 1 ). 

To examine the spatial distribution of the histological growth patterns
and immune checkpoint proteins, up to 8 different tumor segments of each
patient were assessed, with 20 patients providing 2 or more segments (min = 1,
max = 8, mean = 4), leading to a total of 84 segments ( Table 2 ). Subsequently,
immunohistochemical and histopathological examination were carried out
separately for each of the 84 segments. 

Intra-heterogeneous spatial distribution of histopathological growth 
patterns 

Each of the 84 tumor segments was examined histologically according to
the World Health Organization classification guidelines for lung cancer 2015
[2] , at which up to four different growth pattern areas per tumor segment were
etermined. This resulted in a total of 177 different growth pattern areas of
hich 73 (41%) were acinar, 55 (31%) solid, 16 (9%) papillary, 16 (9%)

epidic, and 17 (10%) micropapillary ( Fig. 1 ). 
Hence, 41 tumor segments harbored two different growth pattern areas, 

ith acinar and solid being the most frequent combination ( n = 29). Further,
0 tumor segments harbored one exclusive growth pattern, with acinar being 
he most prominent (n = 13). Moreover, 17 tumor segments harbored 3 
ifferent growth patterns and only six tumor segments harbored four different 
rowth pattern areas, whereas in none of the segments all 5 growth patterns
ere observed ( Fig. 1 ). 
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Table 2 

Number of tumour segments per patient and register of every distinct growth pattern in each tumour segment 

Growth Patterns 

Number of 

Segments segment 1 segment 2 segment 3 segment 4 segment 5 segment 6 segment 7 segment 8 

Patient 1 3 a, p, s l l, a, s 

Patient 2 4 a a a, s a, s 

Patient 3 1 a 

Patient 4 5 l, a a, p a, p, s l, a, p, s l, a, p, s 

Patient 5 4 a a, s a, s a, p, s, mp 

Patient 6 3 a, s a, s a, s 

Patient 7 4 a, s a, s a, s a, s 

Patient 8 8 a, s, mp p, s, mp a, p, s a, p, mp a a a a 

Patient 9 2 l, s s 

Patient 10 4 a, s a, s a, s a, s 

Patient 11 2 l, a, s l, a, s 

Patient 12 4 a, mp a, p, s, mp a, p, mp a, p, s 

Patient 13 1 a, s 

Patient 14 5 a, s s s s s, mp 

Patient 15 3 p p, mp a, p, s, mp 

Patient 16 6 a, s a, s a, s a, s a, s a, s 

Patient 17 5 a, s a, s a, s a, s s 

Patient 18 5 a a a a a 

Patient 19 4 l, a l, a l, a l, a 

Patient 20 5 a, s a, s a, s, mp a, s, mp a, s, mp 

Patient 21 4 l, a, mp l, a, mp l, a l, a 

Patient 22 2 a, p, s, mp a, s, mp 

total 84 l = lepidic, a = acinar, p = papillary, s = solid, mp = micropapillary 
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Two out of 22 patients (patient 3 and 18) had only one growth pattern,
whereas nine had two (patient 2, 6, 7, 9, 10, 13, 16, 17, 19), four had three
(11, 14, 20, 21) and seven had four (1, 4, 5, 8, 12, 15, 22) distinct growth
patterns ( Table 2 ). 

Furthermore, in 20 patients more than two tumor segments were
available. In 13 of those patients (65%) we observed single or multiple
changes of growth patterns between the different segments ( Table 2 ).
However, only in seven patients (35%) the growth patterns did not vary
between different segments. 

Heterogeneous spatial distribution of immune checkpoint protein 

expression 

After histological examination of the present growth patterns, immune
checkpoint protein expression of PD-L1, PD-1, Nectin-2, PVR, and TIGIT
was determined for all segments and growth pattern areas using IHC ( Fig. 2 ,
Fig. 3 ). We observed a high intra- and inter-tumoral heterogeneity of protein
expression, regarding staining intensity and tumor proportion score (TPS)
of the immune checkpoint ligands Nectin-2, PVR and PD-L1, as well as
receptors PD-1 and TIGIT on tumor cells varied within one tumor segment,
as well as between different tumor segments and growth pattern areas ( Fig. 2
and 3 ). Therefore, this heterogeneity in marker expression was seen within
single segments with areas of high expression in close proximity to areas with
no or very low expression of the marker. Of note, the heterogenous expression
was even observed on the level of single cells ( Fig. 2 ). 

Similar to the situation on tumor cells, we also observed a pronounced
intra-tumoral heterogeneity of PD-1 and TIGIT on TILs ( Fig. 3 ).
Additionally, there was no expression of TIGIT in healthy bronchial tissue,
but in the corresponding malignant tissue ( Fig. 3 C). Besides, an increase of
TIGIT expression with further progression of dysplasia of the tumor cells
was observed (Supplement 4). Furthermore, an adenocarcinoma pre-stage,
.e., the atypical adenomatous hyperplasia (AAH), was noticed to be TIGIT
ositive (Supplement 5). 

istribution of immune checkpoint proteins in different growth patterns 

Comparing the expression of the analyzed immune checkpoint ligands 
nd receptors, we observed a notable variation of the expression within one
rowth pattern, within one tissue segment as well as between the individual
umor patients ( Fig. 4 , Fig. 5 ). 

Except the situation in the lepidic growth pattern, in which no statistical
ifference in the expression of the immune checkpoint proteins emerged,
ll other growth patterns displayed significant differences in the expression
f the analyzed immune checkpoint proteins. In the acinar, solid, papillary,
nd micropapillary growth patterns, for instance, Nectin-2 and PVR were
ignificantly higher expressed compared to PD-L1 ( Fig. 4 ). Furthermore, the
xpression level of PVR exceeded the one of Nectin-2 in the solid growth
attern ( Fig. 4 C). PVR was also significantly higher expressed in papillary,
olid and micropapillary growth patterns compared to the acinar and lepidic
rowth pattern ( Fig. 4 F). 

We detected PD-1 and TIGIT expression on tumor cells in all
orphological growth patterns, whilst in the acinar and solid growth patterns
IGIT expression on tumor cells was much higher than PD-1 expression
n tumor cells ( P = 0.00374 and P = 0.0012). In contrast, in none of
he growth patterns a statistical difference was observed between PD-1 and
IGIT expression on TILS ( Fig. 4 ). 

Regarding the portion of immune checkpoint protein positive growth 
attern areas, we observed a high variability. As an example, PD-L1
ositive areas were more common in the lepidic (72,7%) and solid (61,8%)
ubtype than in acinar (53,6%), papillary (42,9%) or micropapillary (41,7%)
Supplement 2A). 
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Fig. 2. Representative images of immunohistochemical staining of lung adenocarcinoma with Nectin-2, PVR and PD-L1 (A) An area of micropapillary 
subtype weakly positive for Nectin-2 (see insert with higher magnification corresponding to marked area with thick lines) next to a Nectin-2 negative acinar 
growth pattern is shown. (B) Strong anti-Nectin-2 staining of acinar and solid growing tumour cells. (C) Solid subtype with weak anti-PVR staining and visible 
heterogeneity of protein expression on cell-level, aside negative/weaker acinar tumour cells and negative lymphangiosis cells (black arrows). (D) Strong positive 
PVR staining of solid growing tumour cells ( right ) whilst non-neoplastic tissue is negative ( left ). (E) Weak expression of PD-L1 on solid growing tumour cells 
(black arrows, continuous line) with groups of strongly PD-L1 positive TILs (black arrows, broken line). (F) Strong positive anti-PD-L1 staining of almost all 
tumour cells (solid growth pattern). 
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Co-occurrence of immune checkpoint protein expression within one 
patient 

As co-occurrence of PD-1 and TIGIT expression was reported in NSCLC
specimens, we analyzed the co-occurrence of the markers in the different
growth pattern areas. As shown in Fig. 5 , we observed a heterogenous picture
regarding the co-occurrence of the analyzed immune checkpoint proteins. 

All investigated immune checkpoint proteins (PD-L1, PD-1, Nectin-
2, PVR, TIGIT) were expressed in 18 patients, whereas in 4 patients all
mmune checkpoint proteins except PD-L1 were expressed, suggesting a 
ather redundant than exclusive expression of the TIGIT:PVR/Nectin-2 
ystem to the PD-1:PD-L1 axis. PD-1 and TIGIT on lymphocytes were 
xpressed in all patients. Except for one patient (patient 3), TIGIT expression
n tumor cells was observed in every patient and in 14 patients additionally 
D-1 expression on tumor cells was examined ( Fig. 5 A). 

In contrast, expression of PD-L1 was independent of PD-1 expression 
ither on lymphoid cells or on tumor cells. Furthermore, in tumor segments 
f patients with a combination of solid and acinar morphological growth 
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Fig. 3. Representative images of immunohistochemical staining with PD-1 and TIGIT (A) Several strong PD-1 positive TILs (left, black arrows, broken line) 
next to single weakly stained tumour cells (right, black arrows, continuous line). (B) Weak PD-1 positive solid growing tumour cells (upper half of picture, 
black arrows, continuous line) and strong PD-1 positive TILs (lower half of picture, black arrows, broken line). (C) Non-neoplastic, TIGIT negative bronchial 
tissue cells (left) and strong TIGIT positive lung adenocarcinoma tumour cells with lepidic growth pattern (right). (D) Numerous strong TIGIT positive TILs 
(black arrows, broken line) infiltrating TIGIT negative highly differentiated acinar growing lung adenocarcinoma tumour (black arrows, continuous line). 
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patterns, PVR was higher expressed in solid growth pattern compared to
acinar growth pattern ( P = 0.00736, Fig. 5 B). Further, regarding difference
between H-Score obtained in acinar growth pattern and solid growth pattern
of each patient, PVR is higher expressed in solid growth pattern compared to
the acinar growth pattern of the same patient ( Fig. 5 C). 

Moreover, we found no correlation between expression of different
immune checkpoint proteins in general. However, when acinar and solid
growth patterns were analysed separately, we obtained a positive correlation
between Nectin-2 and PD-L1 expression ( P = 0.516; P = 0.02) in the solid
growth pattern ( Fig. 6 A). In contrast, no significant correlation of the Nectin-
2 and PD-L1 expression was observed in the acinar growth pattern ( Fig. 6 B).
However, in the acinar growth pattern negative correlation between PVR and
PD-L1 ( P = -0.327) was determined, though not being statistically significant
( P = 0.114). 

Discussion 

Immune checkpoint inhibitors represent a game changer in fighting
cancer. Especially with the development of antibodies interrupting the PD-
1:PD-L1 interaction, recent advancement of treatment for many tumor
entities were obtained [21–27] . However, what dampens the enthusiasm for
his approach is the high rate of non-responders, which is up to 80% [28–30] .
ardari Nia suggests that growth pattern classification represents a significant
rognostic factor in NSCLC and therefore provides a possible explanation for
urvival differences [31 , 32] . In line with previous reports [4] , we identified
istological intra-tumoral heterogeneity in form of multiple growth patterns 

n almost every analyzed specimen. Only two out of 22 tumor specimens
patient 3 and 18) harbored one exclusive growth pattern, of which patient
 contributed only one segment, suggesting this patient would also exhibit
ore growth patterns if more segments were available. Moreover, the ratio

etween the growth patterns in a given NSCLC tumor (specimen) is not
xed, as we observed a change in the growth pattern ratio between different
egments of the same specimen. Furthermore, protein levels of PD-L1 and
D-1 varied immensely within and between individual segments, which 

s in accordance with previous reports, as they determined heterogeneous
olecular profiles between different growth patterns [33–36] . Moreover, 
ai et al. demonstrated intra-tumoral heterogeneity of EGFR and ALK

tatus not only between different growth patterns, but also within growth
atterns [36] . 

Another major cause for the failure in treatment response is discussed
o be other existing immune checkpoint-pathways in the tumor 
icroenvironment, probably being redundant to the PD-1:PD-L1 system. 
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Fig. 4. Immune checkpoint proteins display a high variety in different growth patterns. Expression of different immune checkpoint proteins in (A) lepidic, (B) 
acinar, (C) papillary, (D) solid, and (E) micropapillary growth patterns assessed using H-score. (F) Distribution of PVR in different growth patterns. Statistical 
significance: ∗ = P ≤ 0.05, ∗∗ = P ≤ 0.01, ∗∗∗ = P ≤ 0.001. T = tumour, L = lymphocytes/TILs. 

Fig. 5. Immune checkpoint protein expression in different growth patterns of each patient. (A) Heatmap showing immune checkpoint protein expression in 
different growth pattern areas of each patient. H scores are given. (B) Comparison of immune checkpoint proteins in patients with acinar and solid growth 
patterns. Mean values and standard deviation are shown. Statistical significance: ∗∗ = P ≤ 0.01. (C) Difference of immune checkpoint protein expression 
between acinar and solid growth patterns in each patient. TU = tumour, LY = lymphocytes/TILs. 
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Hung et al. observed that overall survival in glioblastoma can be improved
using a combination of anti-PD-1 treatment with other checkpoint
inhibitors, for example anti-TIGIT [37] . Therefore, we investigated the
protein levels of PD-L1, PD-1, Nectin-2, PVR, and TIGIT. We found a
vast heterogeneity regarding these markers between different growth patterns
and also within a given growth pattern. Furthermore, we demonstrated PVR
being higher expressed in solid, papillary, and micropapillary growth pattern
ompared to lepidic and acinar growth pattern. Of note, up-regulation of 
VR has been reported on a variety of different tumor cells, which leads to
umor invasion and progression and is known to be associated with worse 
utcome [38] . This is in line with lepidic growth pattern being prevalent
n very early lesions and associated with favourable prognosis, whereas 
he solid growth pattern is preferentially present in higher tumor stages 
nd is associated with recurrence and worse outcome [2 , 4 , 6] . Moreover,
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Fig. 6. Correlation of protein expression within different growth patterns. (A) Correlation of immune checkpoint proteins in solid growth pattern. (B) 
Correlation of immune checkpoint proteins in acinar growth pattern. Blue colour marks a negative correlation, red colour marks a positive correlation. 
TU = tumour, LY = lymphocytes/TILs. 
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Sun et al. reported that CD155/PVR and TIGIT overexpression in lung
adenocarcinoma is closely correlated with poor clinical outcome [18] . We
examined both functionally redundant immune checkpoint proteins PVR
and Nectin-2, as interactions between different ligands and receptors are
possible, displaying the complexity of the TIGIT:PVR/Nectin-2 axis. Gorvel
et al. suggested Nectin-2, which has a lower affinity to TIGIT compared to
binding affinity of PVR to TIGIT, to be an interesting target in cases where
PVR is weakly expressed [38] . However, our results show expression of PVR
to be more common compared to Nectin-2. 

When analysing immune checkpoint protein expression separately in solid
growth pattern, a significant positive correlation between Nectin-2 and PD-
L1 arose. This is in contrast to other findings, e.g., Lee et al. demonstrated a
co-expression of Nectin-2 and PVR as well as an inverse correlation between
PVR/Nectin-2 and PD-L1 using RNA sequencing and microarray data [39] .

Further, we detected TIGIT and PD-1 expression on immune cells as
well as on tumor cells. However, we observed no expression of TIGIT in
non-neoplastic bronchial tissue, but in the corresponding malignant tissue
nearby. This suggests that TIGIT expression is induced specifically in the
tumor by yet unknown mechanisms. This notion is supported by the finding
that AAH as a preinvasive early lesion of lung adenocarcinoma was also
TIGIT positive. Similarly, an increased anti-TIGIT staining with progressive
dysplasia of bronchial mucosa was observed. It is known that PD-1 is also
expressed on tumor cells [40] , however, TIGIT expression on tumor cells is
only described on murine cell lines but not on human cells by now [41] .
Therefore, to our best knowledge, our study is the first one to show the
expression of TIGIT on human lung adenocarcinoma tumor cells. 

With our findings we further illustrate the molecular and morphological
inter- and intratumoral heterogeneity of lung adenocarcinoma. This
systematic analysis confirms and expands the knowledge of heterogeneous
spatial distribution of immune checkpoint proteins. Collectively, our results
strongly imply that the situation in a small biopsy might not reflect the
expression of the immune checkpoint proteins in the entire tumor. Thus,
either a multiregion analysis of immune checkpoint proteins or an adjustment
according to the given growth pattern is required in order to obtain a more
realistic picture of the PD-1:PD-L1 and the TIGIT:PVR/Nectin-2 status as
predictive markers for immune checkpoint inhibitor therapy. 
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