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Abstract: Many real-world networks have a natural tripartite structure. Investigating the structure
and the behavior of actors in these networks is useful to gain a deeper understanding of their behavior
and dynamics. In our paper, we describe an evolving tripartite network using a network model
with preferential growth mechanisms and different rules for changing the strength of nodes and the
weights of edges. We analyze the characteristics of the strength distribution and behavior of selected
nodes and selected actors in this tripartite network. The distributions of these analyzed characteristics
follow the power-law under different modeled conditions. Performed simulations have confirmed all
these results. Despite its simplicity, the model expresses well the basic properties of the modeled
network. It can provide further insights into the behavior of systems with more complex behaviors,
such as the multi-actor e-commerce system that we have used as a real basis for the validation of
our model.
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1. Introduction

Complex network structures can be detected in many systems that can be found in the field like
biology, ecology, social sciences, or large information infrastructures. Many empirical findings have
uncovered the general occurrence of complex topological structures underlying many of these networks.
For example, online systems based on Internet technology have mostly complex arrangement and
different relationships between the entities, which affects their properties.

These topological functions of networks prove to be extremely important as they have a strong
impact on the characteristics of networks such as robustness or vulnerability [1,2] and others. In various
contexts, the development of a complex network topology was considered as an output of a dynamic
system with state variables associated with edges and nodes; see [3–5]. The dynamics of these actors
(nodes and edges) and their connection patterns influence evolution of networks, their structure
and processes ongoing on affected networks. However, the macroscopic behavior of these complex
systems can often be reproduced using a suitable network model, with very few assumptions about
the components themselves, as also shown herein.

1.1. Related Works

Various network models have been formulated in order to describe the network architecture of
these systems and to analyze dynamic processes that take place on their structure [6–15]. One example
of such model is a bipartite network. It is widely applied in the modeling of various online platforms,
such as online services where users view or purchase products [16–18] and listen to music [19],
and also in biology [20–22], in medical science [23,24], and in other areas [25–30]. For example,
Saavedra et al. have introduced two mechanisms, specialization and interaction, that lead to the
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exponential distribution of degrees for both parts of the bipartite network [31]. They found out that
bipartite network can effectively characterize the structure of ecological and organizational networks.
Further empirical analyses of some models of bipartite networks describing online services [32–35] have
shown that user-level distributions truly follow a shifted power-law, while the distribution of an object’s
level always follows the power law. Zhang et al. [36] suggested an evolutionary model of unweighted
online bipartite networks. Their theoretical analysis has not only shown that the model can effectively
reproduce two different degree distributions but has demonstrated its results on two real data sets,
Delicious and CiteULike. The above studies deal with unweighted bipartite networks. However,
weighted networks are more appropriate for modeling of online systems. Therefore, Zhang et al. [37]
developed this work and proposed a model to describe distribution characteristics for weighted
bipartite evolving networks.

Generally, the network system is defined by patterns of different links between agents or various
entities. The research on social networks has greatly advanced in understanding how features such as
links, paths, position, and other structural parameters determine the possibilities of a group of agents
to influence other agents within the network [33]. For example, taking a central position is generally
considered to be beneficial because of the relative simplicity of controlling the information distribution
and a possibility of influencing other agents. Likewise, the central position can form an information
broker who accesses and integrates information through social links [38–40].

1.2. Contribution

In this paper, we deal with a situation where intermediaries enter relationships modeled initially
by a bipartite network and take a central position between the two parts of this formerly bipartite
network. They affect relationships and change the network topology into a tripartite network. Their aim
is to take the most significant position within the network and to have benefits from this position [38].
In our paper, we study how this addition of intermediaries will affect the properties of this tripartite
network. We not only consider the increasing mechanism in the corresponding sets of nodes, but we
also take into consideration the decline in strength of some objects and intermediaries. Then, we study
the properties of the studied network, changes in strength of objects and intermediaries over time,
and their distribution using the mean field method according to [41]. We performed simulations that
confirmed the results of our analysis.

Detailed studies of the structural properties and dynamics of tripartite networks are not widely
found in the literature. Most papers are concerned with the problem of a detection of communities in
tripartite networks [42,43]. Our work is one of the first to discuss the characteristics and evolution of
the tripartite network whereby it builds on the past research on bipartite networks [36,37].

Our research is motivated in real life, in an online business environment. Users can purchase
some product directly in a specific e-shop (corresponding model is a bipartite network, see Figure 1a)
or they can use an intermediary (price comparison website) to get through this website to some e-shops
where they can purchase products (see Figure 1b). A tripartite network can represent relationships in
this environment, and the dynamic aspects of this network can be explored. The tripartite network
model could be used to study a situation where a traditional political structure with two main parties
is questioned by the presence of a new candidate; a detailed analysis of the problem can be found, e.g.,
in [44].

1.3. Paper Structure

Next paper chapters are structured as follows. Section 2 describes in detail our network model
and corresponding mechanisms. In Section 3, we present our experiments, the results of analyses and
simulations. Section 4 follows and contains a discussion of the results. Conclusions are introduced in
Section 5.
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2. The Model

In this section, we propose a model to find out characteristics of a network originally bipartite
after inserting new nodes (and edges) between both parties (users and objects) of the original network
(see Figure 1a,b). Our model is based on three associated dynamical mechanisms: topological growth,
weight dynamics, and nodes strength dynamics:

(i) Growth. Initially, we assume only relationships among users and objects (Figure 1a).
Their relationship can be described using a bipartite graph G (U, V and E). We assume the existence
of initial sets of nodes U0 and V0 and edges E0. Beginning with these nodes’ seeds, new nodes are
being added:

1. At the beginning, a node of a new type, the intermediary r ∈ R (R denotes the set of these
entities) enters the existing relations between U and V. The original bipartite network becomes tripartite
one with edges between sets U and V, U and R, and R and V (see Figure 1b,c).

2. In the next time steps, new nodes vi ∈ V, ri ∈ R, or ui ∈ U are gradually added to the evolving
tripartite network. Each new node will be connected to n already existing nodes, with high strength
nodes being preferred; i.e., we assume preferential connections [6].

(ii) Dynamics of weights. The weight of each new edge is initially set to ω0, ε0, µ0 (see
Figure 1c). Creating this new edge represents changes in network traffic. For the sake of simplicity,
we limit ourselves to the case where the introduction of a new edge on node i will trigger only local
rearrangements of weights (see Appendix A, Figure 1A). The weights between nodes i and j in the time
step t is denoted by ωij(t) (or εij, µij). We suppose that ωij(t) = ωji(t) (or εij = εji , µij = µji), see Figure 1c.

The edges mean the interaction between users and objects (or intermediaries). The weights of
edges indicate the amount of usage between users and objects (or intermediaries) in the sets U, V,
and R of their respective nodes. We consider not only the mechanism for increasing the weights
of the edges in the two relevant sets of nodes, but also the possibility of edges removing if the
intermediary service is refused. Initial values of weights may correspond in real case of e-commerce,
for example, to the average value of transactions. In our case, these values correspond to the ratio of
the number of accomplished transactions to the number of visited objects (e-shops or intermediaries)
(see Appendix C).
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(iii) Node dynamics. In this paper, we use the node strength that is a generalization of a
node degree [45]. Node dynamics is based on the following mechanisms that affect node strength:
The strength of some nodes may decrease, or some edges may disappear (e.g., an object v rejects
connection to an intermediary r). The strength of node i ∈ V (new object) that is added in the time
step t is denoted as sV

i (t) and is defined as sV
i (t) =

∑
i∈Υ(i) ωi j, where Υ(i) denotes a set of the

new neighbors of node i [45,46] (also the number of new edges). The initial strength of this node is
sV

i (0) = kiωi, where ki is the number of the neighbors of node i. The same is true for the strength sU
i (t)

of nodes i ∈ U (users) and the strength sR
i (t) of nodes i ∈ R (intermediaries).
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The strength of a node combines the information about its connectivity and the intensity of the
weights of its edges. In the case of electronic business, the strength si of the node i corresponds to the
size of the achieved transactions with this node. Another example might be airports network where
the strength of the node i corresponds to the total traffic passing through this node, indicating the
importance of the airport i. In the case of a scientific collaboration network, strength indicates the
number of articles created by a chosen scientist including IF, see, e.g., [47].

However, it should be emphasized that the correlations between mass and topological properties
are encoded in statistical relationships between these quantities. In fact, si, which is the sum over all
neighbors i, is correlated with its degree ki. In the simplest case of random, uncorrelated masses wij
with an average 〈w〉, the strength is s ~ 〈w〉k. In the presence of a correlation between weights and
topology, it is possible to observe more complex behavior with s ~ Akβ with β , 1 or with β = 1 and
A , 〈w〉 [48]. We use the term “strength of nodes” rather than “degree of nodes” here. The aim is to
give an idea of possible dynamics of nodes and edges that can exist in various context. However, in
this paper we focus rather on the mechanisms that drive the development of the entire network. In the
following sections, we describe these network evolution mechanisms in detail:

2.1. Growth of the Network

2.1.1. The Addition of a New User

A new user is added in the time t with the probability p1, and the weights are reset locally [37,45].
We assume that this new user establishes a relationship only with an intermediary in this phase.
This new user selects an intermediary based on preferential connection (n1 edges are created among
this new user and intermediaries):

Π
(
sR

j

)
=

sR
j (t)∑

i∈R sR
i (t)

(1)

We assign an initial strength sU
j (0) to the new user. If this new object node connects to the

intermediary (node) j, it triggers variations of the existing weights across the network. We focus on
the case where the addition of a new edge with weight ε0 induces the local rearrangements [37,45] of
weight between j and its other neighbors i ∈ Υ( j) according to the rule (see Figure A1 in Appendix A):

εi j(t) = ε0 + δ1
εi j(t− 1)

sR
j (t− 1)

, (2)

where ε0 is an initial weight of the new edge and δ1 is a parameter of increasing the weight of relevant
existing edges influenced by creation of a new edge from a new user to an intermediary, see also
Appendix C.

2.1.2. The Addition of a New Object

A new object is added in the time t with the probability p2, and the weights are reset locally [37,45].
We also assume here that a new object establishes a relationship only with an intermediary in this initial
phase (we do not assume the creation of edges between this object and users at this stage). This new
object selects an intermediary based on preferential connection (n2 edges are created among new object
and intermediaries):

Π
(
sR

j

)
=

sR
j (t)∑

i∈R sR
i (t)

. (3)

We assign an initial strength sV
j (0) to the new object. If this new object connects to the intermediary

j, it triggers variations of the existing weights across the network. We focus on the case where the
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addition of a new edge with weight µ0 induces the local rearrangements [37,45] of weight between i
and its other neighbors i ∈ Υ( j) according to the rule (see Figure A1 in Appendix A):

µi j(t) = µ0 + δ2
µi j(t− 1)

sR
j (t− 1)

, (4)

where µ0 is an initial weight of the new edge and δ2 is a parameter.

2.1.3. The Addition of a New Intermediary

A new intermediary is added in the time step t with the probability p3. The initial strength sr
i (0) is

assigned to it. This intermediary will form connections to objects based on the preferential connection
(n3 edges are created):

Π
(
sO

j

)
=

sO
j (t)∑

i∈R sO
i (t)

. (5)

This transaction will affect the weight of the edges through the relationship (a new edge with
weight µ0 induces the local rearrangements of weight between i and its other neighbors i ∈ Υ( j)):

µi j(t) = µ0 + δ3
µi j(t− 1)

sV
j (t− 1)

. (6)

2.2. The Changes of Edges’ Weight

At the time step t, a certain number of already existing users selected based on the preferential
connection (Equation (7))

Π
(
sU

j

)
=

sU
j (t)∑

i∈U sU
i (t)

(7)

that will connect with nodes already existing in V (objects) or in R (intermediaries) using one of the
following mechanisms:

(i) with n4 nodes already existing in V (objects) and with the probability p4 (n4 edges are created) based
on the preferential attachment:

Π
(
sV

j

)
=

sV
j (t)∑

i∈V sV
i (t)

. (8)

This transaction will affect the weight ωij of the edge between the user and objects; we can express
this change as follows:

ωi j(t) = ω0 +ωi j(t− 1) + δ4
ωi j(t− 1)

sV
j (t− 1)

+ δ4
ωi j(t− 1)

sU
i (t− 1)

, (9)

where ω0 is an initial weight of the new edge.

(ii) users choose an intermediary with the probability p5 based on the preferential connection (n5 edges
are created) according to Equation (1). This transaction will affect the edge weight between a user and
an intermediary through the relationship:

εi j(t) = ε0 + δ5
εi j(t− 1)

sR
j (t− 1)

+ δ5
εi j(t− 1)

sU
i (t− 1)

. (10)

where ε0 is the initial weight of the new edge.
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At the same time, selected intermediaries will make connection with m existing nodes in V based
on the preferential connection according to Equation (8). This transaction will affect the weight of the
edges that we express by the equation (we only consider the local shifts of the weight):

µi j(t) = µ0 + δ
µi j(t− 1)

sV
j (t− 1)

+ δ
µi j(t− 1)

sR
i (t− 1)

(11)

2.3. The Changes of the Strength of Nodes

2.3.1. The Decreasing of the Strength of an Object

At a certain time, the strength of object i will decrease with the probability p6. The relevant object
i will be selected by the anti-preferential probability:

P
(
sV

i

)
=

1−
sV
i (t)∑

j∈V sV
j (t)

µ0 + t·p2 − 1
(12)

The decrease of the strength of node i can be formulated [37,45]:

sV
i (t) = (1− γ1)sV

i (t− 1). (13)

2.3.2. The Refusal of Intermediary Service

We suppose that large objects can reject with the probability p7 connection to an intermediary j
(see example of the real situation in [49]). The probability that refusal will be realized by the node i
with the greatest strength sV

i can be expressed by Equation (5). The strength of this object i is reduced
by the weight value of the edge µi j that disappears:

sV
i (t) = sV

i (t− 1) − µi j(t− 1) (14)

This refusal will have an impact on intermediary whose service the object i has used. At the same
time, the strength of this intermediary will be reduced by the weight of the respective edge to the
intermediary j that no longer exists. This reduction also affects the surroundings of the intermediary j,
thus reducing the weight of the node edges k, for which k ∈ Υ( j), by the relation:

sR
j (t) = sR

j (t− 1) − µi j(t− 1) −
∑

k∈Υ( j)

δ
µkj(t− 1)

sV
k (t− 1)

(15)

The decreasing of the strength of an intermediary j with the probability p8 with the anti-
preferential probability:

P
(
sR

i

)
=

1−
sR
i (t)∑

j∈R sR
j (t)

µ0 + t · p3 − 1
(16)

If we select node i, then the weight of the edge µij is reduced for all nodes j with which i has a common
edge, i.e., for j ∈ Υ(i), by the relation:

sR
i (t) = (1− γ2)sR

i (t− 1). (17)

3. Simulations and Results

At each time step, one and only one of these described mechanisms is at work, and which one is
at work is controlled by its probability parameter pi. These probability parameters are the regulatory
parameters that control the increasing number of objects, users, and intermediaries. The parameters ni
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are the control parameters that control the addition of edges. Other parameters δi and ri are the control
parameters that control the increase or decrease of edge weight.

Topology properties of this evolving network can be derived from the strength distributions.
The node strengths varying at the time t are intermediate variables to obtain strength probability
distributions for objects and intermediaries. In the performed simulations, we investigated the effect of
the probability of the choice of an object directly or using intermediary on distribution characteristics
of objects and intermediaries. We also analyzed changes of these characteristics in a situation when
the strength of some intermediaries was decreasing, or when some objects decided not to refuse the
connections to (services of) intermediaries. The results of the analytical solution of these strength
distributions are described in the next sections together with simulation results. The procedure for
obtaining data for our model validation and their values used in simulations are given in Appendix C
and Table A1.

3.1. Analytical Solution

The analytical solution of the object’s strength distribution is described in detail in Appendix A.
The change of the strength of objects over time t is given by the equation:

sV
j (t) ≈ n2µ0

(
t
t j

)Γ3

(18)

The strength distribution P
(
sV

)
of objects in dependence on strength sV:

P
(
sV

)
= H

(
sV

)−ξ
(19)

where Γ3, H, and ξ are formulated by Equations (A15), (A20) and (A21), respectively.
The analytical solution of the strength distribution of intermediaries is described in detail in

Appendix B. The change of the strength over time t is given by the equation:

sR
j (t) ≈ n3µ0

(
t
t j

)Γ′3
(20)

The strength distribution P
(
sR

)
of intermediaries in dependence on strength sR:

P
(
sR

)
= H′

(
sR

)−ξ′
(21)

where Γ′3, resp. H’, and resp. ξ’ are formulated by Equation (A30), resp. (A33), and resp. (A34), respectively.
The scaling exponents Γ3 and Γ′3 of strength distribution as a function of parameters have been

derived by using the rate equation and mean-field method [41] (see Appendices A and B). The results of
analytical solution show that the strength distributions of intermediaries and of objects in our tripartite
network follow the power-law distribution.

3.2. Distribution Characteristics and Users’ Choice of Connection to Objects

Figures 2 and 3 show the example of the effect of the way the users use to come to objects on the
strength characteristics of chosen objects and intermediaries. Figure 2a shows how the strength of an
object that was added at time tj = 2 changes over time. Figure 2b,c shows similarly how the strength of
an intermediary, which was also added at time tj = 2, changes over time. A blue line indicates a greater
probability that users will come to the objects through an intermediary.
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Although the probability values p4 and p5 are quite different in these cases, the impact of the
way users come to some objects on the strength of the object and its distribution function is not very
significant (under the other fixed values of parameters given in Table A1 in Appendix C, and various
p4 and p5). This fact is confirmed in Figures 2a and 3a.

Figure 3b,c show the distribution characteristics of intermediaries for various p4 and p5.
Intermediaries added to the system later also have a chance of gaining more strength under given model
conditions. The number of intermediaries with great strength is increasing with greater probability p5

as shown in Figure 3c. Great intermediaries can gain a key position throughout the analyzed network.
This result and the course of the distribution characteristics was confirmed by our simulation

calculations (red (∗) mark lower p5 and blue (4) mark for higher p5).

3.3. The Effect of Canceling a Connection to Some Intermediary

Figures 4 and 5 show the example of the effect when an object cancels the connection to an
intermediary (they refuse to continue in the use of the service of an intermediary). Users must only
access this object directly. In the real situation, large e-shops may refuse to use services of some
intermediary (certain real situation is described in [49]). This decision may have a well-founded basis,
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as shown in Figure 3a. There is no big difference between the distribution function of objects that users
access more directly (p4 = 0.630, red line) and the distribution function of objects where users access
objects rather through an intermediary (p5 = 0.630, blue line). In the previous section, we mentioned
that the intermediator function does not have a major influence on the strength of an object, especially a
large one, under given conditions. This is also reflected in Figures 4 and 5. Conversely, this decision of
some objects can have a significant effect on the intermediary. Their strength distribution characteristics
under higher probability of rejection of connection to intermediary (rejection of its services) are shown
in Figure 5b,c. It means that in a real situation, an intermediary must attract all objects, especially the
big ones.
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(b, in the middle, and c on the right) for different values p7 (probability that the object will refuse to
use the service of an intermediary) with other fixed parameters given in the Table A1 in Appendix C.
The lines correspond to the theoretical results, red line is for value p7 = 0, blue line is for value p7 = 0.01
in (a,b), and the corresponding marks for simulation results are red (∗) and blue (4). In (c), the results
are shown for the values p7 = 0 (red line) and p7 = 0.05 (blue line), and the corresponding marks for
simulation results are red (∗) and blue (4). The comparison between simulation and analytic results for
weight distributions with system sizes t = 4000.

These conclusions were also confirmed by our simulation calculations. Here, the impact of
the cessation of the use of intermediary services by objects was even more evident, especially for
intermediaries with high strength, as it is seen in Figure 5b,c (blue triangles). Big objects attract many
users who often use intermediaries to access these big objects. If intermediaries lose large objects, they
consequently lose many edges. Their strength will decrease.

3.4. Effect of Decreasing the Strength of An Intermediary

Figure 6a–c show the example of the effect of reducing the strength of intermediaries. The strength
of intermediaries with low strength continues to decline. This strength reduction process mainly
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affects new intermediaries at the beginning when they enter the system, and their strength is still
low compared to other intermediaries who are already working in the system. This is evident in
Figure 6b and in particular in Figure 6c. The results of the simulations confirm these conclusions.
The distribution characteristics of intermediaries are more inclined in the case of a non-zero probability
of decreasing intermediaries’ strength. In this case, the low-strength intermediaries even tend to
disappear (Figure 6c). The decreasing of the strength of intermediators does not affect distribution
characteristics of objects (hence no graphs for objects are shown here).
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4. Discussion

As part of our work, we conducted a series of simulations and analyses. They demonstrate
correlations between structural parameters and the shape of the strength distributions of individual
network actors. We found out that the evolving parameters pi, γ1, and γ2 r can be used to control the
change in node strength in time step t. The exponents of the scaling ξ and ξ’ (or Γ and Γ’) of strength
distribution as a function of parameters were derived using the speed equation and middle-field
methods. We have shown that the strength distribution of intermediaries and objects is governed by the
power law distribution. The results of our analysis and simulation also show that different quantities
such as strength, degree, and weights are distributed according to power laws with exponents that
are not universal and depend on the specific parameters that control the local microscopic weights’
dynamics. This result is in line with the conclusions set out in [39]. It hints to a simple explanation of
the lack of any universality observed in real-world networks.

Despite its simplicity, the model captures the basic characteristics of the modeled real network,
the results of the numerical simulations correspond to the theoretical analyses. Furthermore,
the performed analyses and simulations showed that the distribution characteristics of objects do
not differ greatly under the changing conditions (see previous sections). According to these results
(Figure 2a, Figure 3a, Figure 4a), it seems that users and objects can function without an intermediary.
Especially at the beginning, intermediaries must, in some way, persuade or compel the users to connect
them when accessing the objects. In the real case of Internet platforms, intermediaries (e.g., price
comparison sites) may offer some services, for example, it is easier to find information, the mediation
of additional services, the mediation of trust, etc. In general, Internet intermediaries (e.g., price
comparison sites) are important actors as their services create network externalities. The benefits of
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using their services increase with the expansion. Therefore, building a critical mass of users is a key
factor for them.

Simulations also have shown the key position of intermediaries and indicated the dynamics of
their position. For example, Figure 4c shows that as the strength of small intermediaries decreases,
the number of intermediaries with great strength increase. Small intermediaries can even disappear.
However, this may have the effect that the high-strength objects will not want to be fully dependent
on intermediaries [49] and may reject the connection with a high-strength intermediary (Figure 5b,c).
It may then experience a phenomenon that is referred to in connection with Internet platforms as
disintermediation, the declination in the use of intermediaries and efforts to circumvent them [50].

Our analyses and simulations confirm that the key role of the intermediary consists in the possibility
to control interactions in respective networks. However, this control derived from “structural holes” is
uncertain and the power of the intermediary only gives him “chances of success” depending on the
tensions between relationships [51,52].

A typical application of our model may be a real situation where a new entity (an intermediary)
enters central position between the two groups of entities. It enters relationships between two entities
(which can be modeled by a bipartite network). This intermediary affects existing relationships and
changes the network topology. As aforementioned, the motivation for this paper was the situation
where a price comparison website enters into the relationships between customers and e-shops in B2C
system [53].

Another example where our model can be used is the modeling of the intermediary’s activity
in the electricity market [54] or the Pinterest tripartite network [55]. This network consists of users,
boards, pins, and relationships. This network can be analyzed as described in this paper. Credit risk
sharing in a multi-stakeholder network (insurance companies, banks, firms) [56] can be also modeled
by tripartite network. Described approach can be used in modeling of the emergence of a tripartite
structure in a policy created, for example, by two main parties and the presence of a new contender [44]
as mentioned in Section Introduction. Many examples of relationships with intermediaries can be
found in social relationships [57], ecology [58], citation networks [59], economics [60], and others.

In modeling such a network, data acquisition for model validation is an important problem.
For our model, we tried to estimate network parameters that would approximate the real data (see
Appendix C). In most cases, data can be elicited with the help of interviews with respondents (to reveal
social and economic relations) or various forms of exploration or measurement. In most cases, however,
only approximate parameters for modeling can be obtained. Accurate measurement of relationships
and their evolution is not usually achievable.

5. Conclusions

Complex networks play an essential role in a wide range of disciplines such as social and
behavioral sciences, biology, economics, industrial engineering, information technology, and more.
By analyzing the structure and behavior of a given network, we can draw useful conclusions when
studying various complex systems. In this paper, we use a model of evolving weighted tripartite
network with preferential growth mechanisms and different rules for changing the strength of nodes
and edge weights. Our goal was to create and to analyze a model of a weighted tripartite network
to gain an overview of the role of the single types of nodes (objects and intermediaries). Despite its
simplicity, the model captures the essential characteristics of the modeled real network, the distribution
of node strength then corresponds to the distribution characteristic of the power law under defined
conditions. This weighted tripartite evolving network provides another idea about the behavior of
complex systems with more complicated behavior, such as the multi-actor e-commerce system.

In order to create our model more realistic, we are considering further work in the future. First,
simulation experiments with different parameter conditions can reveal some more interesting features
of modeled complex system based on tripartite network. Secondly, we also want in our future work to
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refine some parameters expressing the behavior of individual actors in order to model the described
system more accurately.
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Appendix A. The Distribution of Strength of Objects

In this section, we derive the distribution of strength of objects. We assume that strength of an i-th
object sV

i (t) is continuous. The corresponding change sV
i (t) in each step is:

A. The addition of a new object, that joins an intermediary (Figure A1), n1 edges are created with the
probability p1:

dsV
j (t)

dt
= p2n2

µ0 +
∑

i∈Υ(j)

δ2
µi j(t)

sR
i (t)

 Π
(
sR

i

)
(A1)

We assume that such an addition of a new object will not affect other objects.

B. The addition of a new intermediary that makes connection with n2 objects.

dsV
j (t)

dt
= p3n3(µ0 + δ3)Π

(
sV

i

)
. (A2)

We assume that the addition of a new intermediary will affect strength of the object that this intermediary
join, as well as its surroundings (Figure A1).
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C.i. The addition of n3 edges between existing objects and existing users with the probability p3:

dsV
j

dt
= p4n4(ω0 + δ4)Π

(
sU

j

)
+ p4n4

∑
j∈Υ(i)

δ4
ωi j(t)

sR
i (t)

Π
(
sV

i

)
(A3)

On the right-hand side of Equation (A3), the first element represents an increase of sV
i (t), in which

the change in edge weight is caused only by the node i in the time step t. The second element denotes
an increase of sV

i (t) caused by a change in the weight of the node j that is a neighbor of node i.

C.ii. The addition of n4 edges between object and intermediary.

dsV
j

dt
= p5n5m(µ0 + δ)Π

(
sR

j

)
+ p5n5m

∑
j∈Υ(i)

δ
µi j(t)

sR
i (t)

Π
(
sV

i

)
(A4)

Similar equation but between object and intermediary. On the right-hand side of Equation (A4),
the first element represents an increase of sV

i (t), in which the change in edge weight is caused only by
the node i in the time step t. The second element denotes an increase of sV

i (t) caused by the change of
the weight of the node j that is a neighbor of the node i.

D. The decrease the strength of the object.

dsV
i (t)

dt
= −p6γ1sV

i (t)P
(
sV

j

)
(A5)

E. The rejection of the services of an intermediary by objects.

dsV
i (t)

dt
= −n7p7(µ0 + δ3)Π

(
sV

i

)
(A6)

In order to get the solution of Equations (A1)–(A7), we will make appropriate adjustments and
approximations. In time step t, the total strength of nodes belonging to V (when neglecting the initial
edge weight ε0 and ω0, and for t→∞ ) is approximately:∑

j∈V
sV

j (t) ≈ p2n2(µ0 + δ2)t + p3n3(µ0 + δ3)t + p4n4(ω0 + 2δ4)t

+p5n5m(µ0 + 2δ)t− p7n7(µ0 + δ3) − p6γ1
t∑

l = 1
sV

l (l)
(A7)

where sV
l (l) is the node strength that goes down in time step l. Since the node strength would decrease

r times at each time step, we can suppose the strength of this node will fall r times with probability p5

when t→∞ . Hereby, we can write the previous equation in approximate form:∑
j∈V

sV
j (t) ≈ p2n2(µ0 + δ2)t + p3n3(µ0 + δ3)t + p4n4(ω0 + 2δ4)t

+p5n5m(µ0 + 2δ)t− p7n7(µ0 + δ3) − p6γ1
∑
j∈V

sV
j (t)

(A8)

We simplify this equation and get it in the form:∑
j∈V

sV
j (t) ≈

p2n2(µ0 + δ2)t + p3n3(µ0 + δ3)t + p4n4(ω0 + 2δ4)t + p5n5m(µ0 + 2δ)t − p7n7(µ0 + δ3)
1 + p6γ1

(A9)
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We denote

Γ1 =
p2n2(µ0 + δ2) + p3n3(µ0 + δ3) + p4n4(ω0 + 2δ4) + p5n5(µ0 + 2δ) − p7n7(µ0 + δ3)

1 + p6γ1
(A10)

where p6γ1 > 0.
When t→∞ , we can write: ∑

j∈V

sV
j (t) ≈ Γ1t (A11)

Now, we combine Equations (A8) to (A12) into one equation:

dsV
i (t)
dt ≈

p2n2(µ0 + δ2)sV
i (t)

Γ1t +
p3n3(µ0 + δ3)sV

i (t)
Γ1t +

p4n4(ω0 + 2δ4)sV
i (t)

Γ1t +
p5n5m(µ0 + 2δ)sV

i (t)
Γ1t

−
p7n7(µ0 + δ3)sV

i (t)
Γ1t −

p6γ1sV
i (t)

p2t +
p4γ1sV

i (t)

p2
2t2 +

p4γ1sV
i (t)

p2
2t2

(A12)

Assuming t→∞ , equation (A13) can be simplified:

dsV
i (t)
dt ≈

(p2n2(µ0 + δ2) + p3n3(µ0 + δ3) + p4n4(ω0 + 2δ4) + p5n5m(µ0 + 2δ) − p7n7(µ0 + δ3))sV
i (t)

Γ1t −
p6γ1sV

i (t)
p2t (A13)

The solution of this equation has a form:

sV
i (t) ≈ C · t

p2n2(µ0 + δ2) + p3n3(µ0 + δ3) + p4n4(ω0 + 2δ4) + p5n5m(µ0+2δ) − p7n7(µ0 + δ3)
Γ1t −

p6γ1
p2t (A14)

where Γ1 > 0.
We can denote the exponent in this equation as:

Γ3 =
p2n2(µ0 + δ2) + p3n3(µ0 + δ3) + p4n4(ω0 + 2δ4) + p5n5m(µ0 + 2δ)−p7n7(µ0 + δ3)

Γ1
−

p6γ1
p2

(A15)

If we assume that we add the node j in time tj, then it holds for its strength sV
j = n2µ0 when t→∞:

sV
j (t) ≈ n2µ0

(
t
t j

)Γ3

(A16)

To get the node strength distribution, we use the mean-field method described in detail in [41].
Let P(s) denote the strength distribution that measures the strength probability of a node.

P
(
sV

j (t) < sV
)
≈ P

(
n2µ0

(
t
t j

)Γ3
< s

)
= P

(
t j > t

(
sV

n2µ0

)−1
Γ3

)
= 1− P

(
t j ≤ t

(
sV

n2µ0

)−1
Γ3

)
= 1−

(
sV

n2µ0

)−1
Γ3 (A17)

P
(
sV

)
=

∂P(sV
j (t) < s

∂sV ≈
1
Γ3

(n2µ0)
1

Γ3 s
−1
Γ3
−1 (A18)

Thus, it is possible to write

P
(
sV

)
= H

(
sV

)−ξ
(A19)

where
H =

1
Γ3

(n2µ0)
1

Γ3 (A20)

ξ =
1
Γ3

+ 1 (A21)
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Appendix B. The Distribution of Strength of Intermediaries

In this section, we derive the distribution of strength of intermediaries. We assume that the strength
of i-th intermediary sR

i (t) is continuous. The corresponding change in sR
i (t) for each mechanism is:

A. The addition of a new user that join intermediaries, n1 new edges are created:

dsR
j (t)

dt
= p1n1(ε0 + δ1)Π

(
sR

i

)
(A22)

B. The addition of a new object that join intermediaries, n2 new edges are created:

dsR
j (t)

dt
= p2n2(µ0 + δ2)Π

(
sR

i

)
. (A23)

C. The addition of a new intermediary:

dsR
j (t)

dt
= p3n3

µ0 +
∑

i∈Υ(j)

δ3
µi j(t)

sV
i (t)

 Π
(
sV

i

)
(A24)

D.i. The addition of n4 new edges between existing users and existing intermediaries with the
probability p4.

dsR
j

dt
= p4n4(ε0 + δ4)Π

(
sU

j

)
+ p4n4

∑
j∈Υ(i)

δ4
εi j(t)

sR
i (t)

Π
(
sR

i

)
(A25)

On the right side of the Equation (A25), the first element represents an increase of sR
i (t), in which

the change in the weight of the edge is caused only by the node i in the time step t. The second element
denotes an increase of sR

i (t) caused by a change in the weight of the node j that is a neighbor of node i.

D.ii. The addition of n4 new edges between the object and intermediary.

dsR
j

dt
= p5n5m(µ0 + δ)Π

(
sR

j

)
+ p5n5m

∑
j∈Υ(i)

δ
µi j(t)

sR
i (t)

Π
(
sV

i

)
(A26)

On the right side of the Equation (A25), the first element represents an increase of sR
i (t), in which

the change in the weight of the edge is caused only by the node i in the time step t. The second element
denotes an increase of sR

i (t) caused by a change in the weight of the node j that is a neighbor of node i
(Figure 4b).

E. The rejection of an intermediary service by a certain object

dsR
i (t)

dt
= −p7n7(µ0 + δ3) −

∑
j∈Υ(i)

δ
µi j(t)

sR
i (t)

Π
(
sV

i

)
(A27)

F. Decreasing of the strength of an intermediary

dsR
i (t)

dt
= −p8γ2sR

i (t)P
(
sR

j

)
(A28)



Entropy 2020, 22, 263 16 of 20

To solve Equations (A22)–(A28), we use the same procedures as for solving equations of objects
(see (A7) to (A18)). We get similar equations:

sR
j (t) ≈ n2µ0

(
t
t j

)Γ′3
(A29)

where

Γ′3 =
p1n1(ε0 + δ1) + p2n2(µ0 + δ2) + p3n3µ0 + p4n4(ε0 + 2δ4) + p5n5m(µ0 + 2δ) − p7n7(µ0 + 2δ3)

Γ′1
−

p8γ2
p3

(A30)

and

Γ′1 =
p1n1(ε0 + δ1) + p2n2(µ0 + δ2) + p3n3µ0 + p4n4(ε0 + 2δ4) + p5n5m(µ0 + 2δ) − p7n7(µ0+δ3)

1 + p8γ2
(A31)

where p8γ2 > 0 and Γ′1 > 0.
We get for distribution sR

j :

P
(
sR

)
= H′

(
sR

)−ξ′
(A32)

where

H′ =
1
Γ′3

(n2µ0)
1

Γ
′

3 (A33)

ξ′ =
1
Γ′3

+ 1 (A34)

Appendix C. Data for the Model Validation

Our goal was to perform simulations [61] with data that would approach some real tripartite
network. Although tripartite networks can be found in social, biology, and information as well as
in other areas, the only available way for us to obtain approximate parameter values for our model
validation was to conduct a study on the tripartite network that appears in e-commerce. This tripartite
network consists of users (users), price comparison sites (intermediaries), and e-shops (objects).
Participants of the study were students. They were to write down when they used a price comparison
site, or when they went directly to some e-shops. They were supposed to do it for more than two
months. To find out the data concerning e-shops, we also addressed 32 e-shops. The questions we
asked were about the number of user accesses, directly or through the price comparison websites,
and how a price comparison site affects their revenue and more.

We processed the acquired data, and estimated values of the parameters of our model (Table A1).
For example, one of the conclusions stated that almost 50% of respondents regularly used price
comparison websites for their purchases, and 33% used them irregularly. Altogether 83% of respondents
used price comparison websites because it helped them to navigate in the extensive offers of e-shops.
From these data, we have estimated p4 and p5. We have proceeded similarly when estimating the
values of other parameters. The δi parameters mean how the respective actors on the site interact.
For example, δ1 means a parameter for local weight shift if a new e-shop is created. This will also
affect existing e-shops. They must somehow react on a new competitor, for example, to adjust the
price of the product, of the shipping or to respond in similar way. Based on this research and previous
works [62–64], we estimated the parameters values as described in Table A1.
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Table A1. List of the parameter’s values used for analytical calculations and simulations.

Parameter Assigned Value

The probabilities of
an entity formation

p1 = 0.020 the probability of new user formation
p2 = 0.010 the probability of new object formation

p3 = 0.001 the probability of a new intermediary formation
p4 = 0.630 the probability of a creating a new edge between the existing user and an existing object

p5 = 0.309 the probability that users will choose an intermediary which they use to go the object
p6 = 0.005 the probability of decreasing the strength of an object

p7 = 0 probability that the object will refuse to use the service of an intermediary
p8 = 0 the probability of decreasing the strength of an intermediary

The number
of newly

generated edges

n1 = 2 new user generates n1 edges to intermediaries
n2 = 2 new object generates n2 edges to intermediaries

n3 = 5 new intermediary generates n3 edges from intermediary to object
n4 = 1 n4 existing users will join existing objects

n5 = 1 user choose n5 intermediariesm = number of objects that the user will contact after he the
chooses them on this intermediary

n6 = 2 the reduction in the strength of n6 objects
n7 = 1 the number of edges removed after an object will not want further to use services of

intermediaries
n8 = 1 the reduction in the strength of n8 intermediaries

The weights of
new edges

ω0 = 0.3 the weight of a new edge from user to object
µ0 = 0.2 the weight of a new edge from intermediary to object

ε0 = 0.3 the weight of a new edge strength from a user to an intermediary

Local shifts of
weight of edges

δ1 = 0.0020 parameter of increasing of weight of relevant existing edges influenced by creation of a
new edge from a new user to an intermediary

δ2 = 0.0020 parameter of increasing of weight of relevant existing edges influenced by creation of a
new edge from a new object to an intermediary

δ3 = 0.0010 parameter of increasing of weight of relevant existing edges influenced by creation of a
new edge from intermediary to object

δ4 = 0.0010 parameter of increasing of weight of relevant existing edges influenced by creation of a
new edge from a user to an intermediary

δ = 0.0001 parameter of increasing of weight of relevant existing edges influenced by creation of a
new edge from the intermediary to the object

Parameter of
relevant node

strength decreasing

γ1 = 0.01 parameter of object strength decreasing
γ2 = 0.01 parameter of intermediary strength decreasing

Initial values for
simulations U0 = 50, V0 = 5, E0 = 10
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