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a b s t r a c t 

Norm curves for the head circumference, height, and weight of newborns and infants are widely known examples 

of percentile curves over age, and early accounts date back 50 years. The advent of the Agatston score for 

coronary calcification based on coronary computed tomography in 1990 heralded the era of a new marker in 

preventive medicine, in addition to well-known cardiovascular risk factors. A peculiarity of the nonnegative 

Agatston score in populations that are free of coronary artery disease is the overexpression of zeros. In a case 

study, we have demonstrated a nonparametric approach for percentile curve estimation using markers such as the 

Agatston score. This method is based on lowess smoothing of marker-positive scores on age, and the resulting 

percentile curves are subsequently transposed according to the estimated proportions of zeros. The approach 

does not involve any parametric assumptions, is robust against outliers, and fulfills the noncrossing property for 

percentile curves. A simulation study using samples of N = 1,0 0 0, 2,0 0 0, 5,0 0 0, and 10,0 0 0 subjects illuminates 

the closeness of the estimated 50 th , 75 th , and 90 th percentile curves to the respective true curves, assuming an 

exponentially distributed marker and a proportion of zero scores that increase with age. 

• The method is applicable to highly skewed data and exemplified here with subgroup data of the referenced 

procedure. 
• The consistency and general performance of the method is shown by means of simulation. 
• The method is an explicit, transferable, and reproducible procedure that is applicable to a wide spectrum of 

markers and scores across various scientific disciplines, far beyond cardiovascular medicine. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

a r t i c l e i n f o 

Method name: Nonparametric percentile curve estimation for a nonnegative marker with excessive zeros 

Keywords: Centile, Non-normal, Non-parametric, Norm-curve, Overdispersion, Smoothing 

Article history: Received 6 April 2022; Accepted 9 June 2022; Available online 15 June 2022 

∗ Corresponding author. 

E-mail address: oke.gerke@rsyd.dk (O. Gerke). 

https://doi.org/10.1016/j.mex.2022.101757 

2215-0161/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.mex.2022.101757
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2022.101757&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:oke.gerke@rsyd.dk
https://doi.org/10.1016/j.mex.2022.101757
http://creativecommons.org/licenses/by/4.0/


2 O. Gerke and R.L. McClelland / MethodsX 9 (2022) 101757 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specifications table 

Subject Area; Medicine and Dentistry 

More specific subject area; Biostatistics 

Method name; Nonparametric percentile curve estimation for a nonnegative marker with 

excessive zeros 

Name and reference of original 

method; 

O. Gerke, J. S. Lindholt, B. H. Abdo, J. Lambrechtsen, L. Frost, F. H. Steffensen, M. 

Karon, K. Egstrup, G. Urbonaviciene, M. Busk, H. Mickley, A. C. P. Diederichsen, 

Prevalence and extent of coronary artery calcification in the middle-aged and 

elderly population, Eur. J. Prev. Cardiol. 28 (2021) 2048–2055, doi: 

10.1093/eurjpc/zwab111 . 

R. L. McClelland, H. Chung, R. Detrano, W. Post, R. A. Kronmal, Distribution of 

coronary artery calcium by race, gender, and age: Results from the Multi-Ethnic 

Study of Atherosclerosis (MESA), Circulation 113 (2006) 30–37, doi: 

10.1161/CIRCULATIONAHA.105.580696 . 

Resource availability; Not applicable. 

Method details 

This MethodsX paper provides a detailed description and exemplification of a nonparametric 

approach to percentile curve estimation for a nonnegative marker with overexpressed zeros. Gerke 

et al. and McClelland et al. previously employed the technique in the context of coronary artery

calcification (CAC), and a subgroup of participants of the former publication was used as a worked

example [ 1 , 2 ]. 

In the following, the Agatston score for CAC and the data source are briefly described, followed by

a step-by-step illustration of the method. The section on method validation investigates the closeness 

of the estimated curves for the 50 th , 75 th , and 90 th percentile in a simulation study to illuminate

their convergence behavior for sample sizes of N = 1,0 0 0, 2,0 0 0, 5,0 0 0, and 10,0 0 0. Comments on the

generalizability of norm curves based on sampled data to a wider population and concluding remarks

close this paper. 

Data 

The Agatston score, which is based on a coronary computed tomography (CT) scan, is the total

calcium score across all calcific lesions that are detected on slices obtained from the proximal

coronary arteries [3] . The CAC score has manifested itself in preventive medicine, in addition to well-

known cardiovascular risk factors [4] . Its values are nonnegative integer values. 

The CAC score was measured in participants of two population-based cardiac CT screening cohorts 

[5–7] . These Danish samples comprised 17,252 participants aged 50 to 75 years, among which

14,614 did not have a history of cardiovascular disease [1] . The subgroup of women without prior

cardiovascular disease (N = 1,810) represents the data for our worked example. 

Nonparametric percentile curve estimation 

The CAC score exhibited high inter-patient variability across the entire age range ( Figure 1 , left).

Moreover, it followed a highly skewed distribution ( Figure 1 , right), as it often occurs in cohorts

that are free of clinical cardiovascular disease [2] . Likewise, half of the women had a zero CAC score

( Table 1 ). 

In contrast, the log-transformed positive CAC scores followed a roughly normal distribution 

( Figure 2 , top left). 

We applied the following six-step procedure to obtain the desired percentile curves across age for

all women: 

(1) We restricted the dataset to observations with positive CAC scores and modelled the mean

of the log-transformed CAC distribution nonparametrically as a function of age. To this end, 

we performed a locally weighted regression of the log-transformed CAC scores on age with 

https://doi.org/10.1093/eurjpc/zwab111
https://doi.org/10.1161/CIRCULATIONAHA.105.580696
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Fig. 1. Scatterplot of CAC score and age (left). Histogram of CAC score including an approximating normal distribution (right). 

Table 1 

Distribution of CAC scores categorized to classes used in clinical practice. 

CAC score class Frequency Percentage Cumulated percentage 

0 961 53.1 53.1 

1 to 9 203 11.2 64.3 

10 to 99 355 19.6 83.9 

100 to 399 196 10.8 94.7 

400 and above 95 5.3 100 

Total 1,810 100 

 

 

 

 

 

 

 

 

 

 

lowess smoothing and applied a bandwidth of 0.8 [8] . Note that McClelland et al. employed a

bandwidth of 0.75 [2] , the final choice of which is dependent on the data at hand and decided

after visual comparison of different bandwidth choices. The scatterplot reflects the large spread

of the data around the regression line ( Figure 2 , top right). 

(2) For each observation with a positive CAC score on the original scale, we subtracted the

estimated mean value on the log-scale of the regression in step 1 from the log-transformed

CAC score. The distribution of these residuals roughly followed a normal distribution ( Figure 2 ,

bottom left). 

(3) We ranked the residuals and calculated their jth percentiles for all j = 1,…,99. 

(4) The addition of these percentiles to the model-based mean value for a particular age (in whole

years) led to the respective estimated percentiles for the log-transformed CAC scores that were

positive on the original scale [9] . 

(5) Taking the exponential of the percentiles transformed these back into the original scale for the

CAC score and yielded the jth percentile of the distribution of participants with a positive CAC

score. 
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Fig. 2. Histogram of log-transformed positive CAC scores (top left). Nonparametric regression of log-transformed CAC score on 

age (top right). Histogram of residuals from nonparametric regression of log-transformed positive CAC scores on age (bottom 

left). Nonparametric regression of CAC-freeness on age (bottom right). 

 

 

 

 

 

 

 

 

 

 

 

 

(6) The final step resulted in the proportion of participants with CAC scores of zero by shifting the

percentiles of the positive CAC score distribution downwards. 
• First, we performed a locally weighted regression of CAC-freeness (1: CAC score of zero; 0:

positive CAC score) on age with a bandwidth of 0.8 ( Figure 2 , bottom right). This resulted in

the estimated proportions of CAC-freeness for 50-, 51-, 52-,…,75-year-old participants. 
• Subsequently, for a certain proportion p with a CAC score of zero at a given age, the jth

percentile calculated above was the 100( p + 

( 1 −p ) j 
100 ) th percentile of the overall distribution. 

• For example, if the median CAC score in CAC-positive, 70-year-old women is 70 and the

proportion p is 0.36 in that group ( Figure 2 , bottom right), the CAC score of 70 is the

100( 0 . 36 + 

( 1 −0 . 36 )50 
100 ) = 68th percentile of the overall distribution for women aged 70. The 

median of 64% of women with a positive CAC score “moves” on top of 36% of participants

with a CAC score of zero and becomes the 68th percentile of the overall distribution. Owing

to the proportion of women with CAC scores of zero, the percentile curves for all women are

flatter than those for women with positive CAC scores ( Figure 3 ). 

All analyses were performed using Stata/MP 17.0 (StataCorp, College Station, Texas 77845, USA). 

We have attached our Stata codes and the data as Supplementary Material. 

Method validation 

To give an indication of the general performance of the method, we compared the closeness of the

estimated curves for the 50 th , 75 th , and 90 th percentile to the respective true curves in a simulation

study. We assumed for 50-, 51-, 52-,…,75-year-old participants exponentially distributed CAC scores, 

with a scale parameter of 2 and multiplied by 100. The proportion of CAC-free participants was
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Fig. 3. Selected percentile curves for CAC score in CAC-positive women (left) and in all women; i.e., after adjusting for CAC-free 

proportions (right; [1] , Supplemental Material 2, Figure D, with permission of Oxford University Press). 
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ssumed to decrease linearly from 0.5 for 50-year old to 0.25 for 75-year-old participants. Sample

izes were N = 1,0 0 0, 2,0 0 0, 5,0 0 0, and 10,0 0 0. The number of simulated trials for each sample size

as 1,0 0 0. 

For each sample size, we get the empirical distribution of the jth percentile for all j = 1,…,99. We

ocused on the estimated 5 th and 95 th percentiles of the 50 th , 75 th , and 90 th percentile curves of the

AC scores and assessed these pointwise by age. Figure 4 shows the true values (dashed lines) and the

stimated 5 th and 95 th percentile curves (solid lines) for the 50 th , 75 th , and 90 th percentile of the CAC

core for sample sizes of N = 1,0 0 0 (top left) to N = 10,0 0 0 (bottom right). The 5 th and 95 th percentile

urves were closest around the true curves for the 50 th percentile of the CAC score and widest for the

0 th percentile of the CAC score. With increasing sample size, the 5 th and 95 th percentile curves close

n on the true curves for each of the three considered percentiles, the most so for the 50 th percentile

f the CAC score. 

We have attached our Stata codes for these simulations as Supplementary Material. 

omments on the generalizability of norm curves 

A common approach in the literature is to categorize the age and thereafter simply calculate the

mpirical percentiles for each age in whole years or the age range [10] . This may lead to an untoward

rossing of the percentile curves. In contrast, the nonparametric modelling approach described in this

aper considers age as a continuous variable, enables the estimation of the percentiles of the whole

istribution as a function of the percentiles of the positive CAC scores, and secures the noncrossing

roperty of the percentile curves. The avoidance of the assumption of a normal distribution in the

bove calculations is important, especially because the upper percentiles are of primary interest and

stimated percentiles that are derived based on a normal assumption are much better in the central

ortion of the distribution than in the tails [2] . 
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Fig. 4. True percentile curves (dashed lines) and estimated 5 th and 95 th percentile curves (solid lines) for the 50 th , 75 th , and 

90 th percentile of the CAC score, from bottom to top within each graph and for sample sizes of N = 1,0 0 0 (top left), N = 2,0 0 0 

(top right), N = 5,0 0 0 (bottom left), and N = 10,0 0 0 (bottom right). 

 

 

 

 

 

 

 

 

 

 

 

Two landmark studies that published respective CAC score percentile curves in 2006 were the 

American Multi-Ethnic Study of Atherosclerosis (MESA) and the German Heinz-Nixdorf-Recall study 

(HNR) study [ 2 , 10 ]. The former provided percentile curves for the CAC score stratified by age, gender,

and race (black, Chinese, Hispanic, and white), whereas the latter sampled data from a Caucasian,

urban population in Germany. In the MESA, 6,110 non-diabetic subjects (53% female, average age: 62

years) comprised 41% white, 11.8% Chinese, 26.4% black, and 20.9% Hispanic. The smallest stratum of

Chinese comprised 371 women and 348 men on whose data the respective percentile curves were

based. In the HNR, 2,248 women and 2,027 men contributed to the CAC score data. Both studies

also provided online calculators for clinical use; https://www.mesa-nhlbi.org/Calcium/input.aspx and 

https://www.uni- due.de/recall- studie/research/cac/ , respectively. 

A recent meta-analysis of 12 studies included the HNR study, but not the MESA [11] . De

Ronde et al. pooled 134,336 Western subjects (mixed USA and other Caucasians) and 33,488 Asians

separately. The included individuals comprised self-referred or physician-referred participants and 

were not necessarily part of a screening program in the general population alone. Moreover, most

participants were from the American studies, and the CAC scores were obtained with electron 

beam CT scans, which prevailed until 2010. De Ronde et al. provided an online calculator ( https:

//www.calciumscorecalculator.com/ ) and highlighted that their weighted percentiles differed by up 

to 24% from the nomograms that were generated from the MESA [11] . They aimed to develop

more generalizable age and gender nomograms; however, the extent to which they have succeeded 

appears to be disputable, considering the heterogeneous composition of their samples. To this end, 

continentally restricted samples that are drawn by an objective sampling mechanism and investigated 

with a comparable CT scanner generation appear to be favorable and more appropriate. 

https://www.mesa-nhlbi.org/Calcium/input.aspx
https://www.uni-due.de/recall-studie/research/cac/
https://www.calciumscorecalculator.com/
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onclusions 

The estimation of nonparametric percentile curves for a nonnegative marker with excessive zeros,

escribed here and exemplified by the CAC score, is based on the estimation of the percentiles of the

ositive CAC scores, which are subsequently transposed according to the proportion of zero scores by

ge. The process does not involve any parametric assumptions, is robust against outliers, and fulfills

he noncrossing property. The method is applicable to a wide spectrum of markers and scores across

arious scientific disciplines, far beyond cardiovascular medicine. 

dditional information: Background 

The estimation and application of nonparametric percentile curves have a long history, dating

ack to the 1970s. Sher and Brown reported 43 preterm infants with birth weights between 1,0 0 0

nd 2,0 0 0 g, in which the head circumference was measured repeatedly until 16 weeks of age

nd compared to the respective norm curves [12] . Benedetti et al. determined the 10th, 50th, and

0th percentiles of the fetal weight, placental weight, and placental index from the 23rd to 43rd

eek of amenorrhea in 1,515 normal pregnancies in a hospital population [13] . Angers proposed

 nonparametric iterative method for the simultaneous estimation of percentile curves with an

pplication to salary data [14] . 

Cole described a general method for fitting smooth percentile curves to reference data based on

he power transformation family of Box and Cox [ 15 , 16 ]. The purpose of this method is to normalize

he data by stretching one tail of the distribution and shrinking the other, thereby removing the

kewness. The best-fitting power λ for obtaining normality for each age group results in a trend that

s summarized by a smooth (L) curve. Likewise, trends in the mean (M) and coefficient of variation (S)

re smoothed. The resulting L, M, and S curves contain the information that is required to draw any

entile curve. Cole and Green extended the LMS method using penalized likelihood to fit the three

urves as cubic splines with nonlinear regression [17] . 

Wei et al. compared estimated reference curves for height using the penalized likelihood approach

f Cole and Green with quantile regression curves, thereby offering a complementary strategy for

stimating conditional quantile functions [ 17 , 18 ]. Rigby and Stasinopoulos developed a generalization

f the LMS method of centile estimation for data that exhibit both skewness and kurtosis as

pposed to a normal distribution [19] . This generalization is based on a Box–Cox power exponential

istribution with four parameters that may be interpreted as relating to the location (median), scale

approximate coefficient of variation), skewness (transformation to symmetry), and kurtosis (power

xponential parameter). 

Bondell et al. proposed a simple constrained version of quantile regression to avoid the issue of

otential crossing for both linear and nonparametric quantile curves [20] . Racette et al. suggested

 graphical tool to present population weight status data; that is, BMI-for-age graphs, ranging from

nderweight to severe obesity class 3 [21] . They provided the implementations in SAS and R.

obayashi et al. and Tong et al. presented Bayesian approaches to quantile curve fitting using shape

estrictions and conditional medians, respectively [ 22 , 23 ]. Recently, Cole provided guidance on the

ample size and composition for the construction of growth reference centiles [24] . 
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Supplementary material associated with this article can be found, in the online version, at doi: 10.

1016/j.mex.2022.101757 . 

References 

[1] O. Gerke, J.S. Lindholt, B.H. Abdo, J. Lambrechtsen, L. Frost, F.H. Steffensen, M. Karon, K. Egstrup, G. Urbonaviciene, M. Busk,
H. Mickley, A.C.P. Diederichsen, Prevalence and extent of coronary artery calcification in the middle-aged and elderly

population, Eur. J. Prev. Cardiol. 28 (2021) 2048–2055, doi: 10.1093/eurjpc/zwab111 . 
[2] R.L. McClelland, H. Chung, R. Detrano, W. Post, R.A. Kronmal, Distribution of coronary artery calcium by race, gender,

and age: results from the multi-ethnic study of atherosclerosis (MESA), Circulation 113 (2006) 30–37, doi: 10.1161/

CIRCULATIONAHA.105.580696 . 
[3] A.S. Agatston, W.R. Janowitz, F.J. Hildner, N.R. Zusmer, M. Viamonte Jr., R. Detrano, Quantification of coronary artery calcium

using ultrafast computed tomography, J. Am. Coll. Cardiol. 15 (1990) 827–832, doi: 10.1016/0735-1097(90)90282-t . 
[4] A. Schmermund, The Agatston calcium score: a milestone in the history of cardiac CT, J. Cardiovasc. Comput. Tomogr. 8

(2014) 414–417, doi: 10.1016/j.jcct.2014.09.008 . 
[5] A.C. Diederichsen, N.P. Sand, B. Nørgaard, J. Lambrechtsen, J.M. Jensen, H. Munkholm, A. Aziz, O. Gerke, K. Egstrup,

M.L. Larsen, H. Petersen, P.F. Høilund-Carlsen, H. Mickley, Discrepancy between coronary artery calcium score 

and HeartScore in middle-aged Danes: the DanRisk study, Eur. J. Prev. Cardiol. 19 (2012) 558–564, doi: 10.1177/
1741826711409172 . 

[6] A.C. Diederichsen, L.M. Rasmussen, R. Søgaard, J. Lambrechtsen, F.H. Steffensen, L. Frost, K. Egstrup, G. Urbonaviciene,
M. Busk, M.H. Olsen, H. Mickley, J. Hallas, J.S. Lindholt, The Danish Cardiovascular Screening Trial (DANCAVAS): study

protocol for a randomized controlled trial, Trials 16 (2015) 554, doi: 10.1186/s13063- 015- 1082- 6 . 
[7] J.S. Lindholt, L.M. Rasmussen, R. Søgaard, J. Lambrechtsen, F.H. Steffensen, L. Frost, K. Egstrup, G. Urbonaviciene, M. Busk,

M.H. Olsen, J. Hallas, A.C. Diederichsen, Baseline findings of the population-based, randomized, multifaceted Danish 

cardiovascular screening trial (DANCAVAS) of men aged 65-74 years, Br. J. Surg. 106 (2019) 862–871, doi: 10.1002/bjs.11135 .
[8] W.S. Cleveland, Robust locally weighted regression and smoothing scatterplots, J. Am. Stat. Assoc. 74 (1979) 829–836,

doi: 10.1080/01621459.1979.10481038 . 
[9] P.C. O’Brien, P.J. Dyck, Procedures for setting normal values, Neurology 45 (1995) 17–23, doi: 10.1212/wnl.45.1.17 . 

[10] A. Schmermund, S. Möhlenkamp, S. Berenbein, H. Pump, S. Moebus, U. Roggenbuck, A. Stang, R. Seibel, D. Grönemeyer,
K.H. Jöckel, R. Erbel, Population-based assessment of subclinical coronary atherosclerosis using electron-beam computed 

tomography, Atherosclerosis 185 (2006) 177–182, doi: 10.1016/j.atherosclerosis.20 05.06.0 03 . 

[11] M.W.J. de Ronde, A. Khoshiwal, R.N. Planken, S.M. Boekholdt, M. Biemond, M.J. Budoff, B. Cooil, P.A. Lotufo, I.M. Bensenor,
Y. Ohmoto-Sekine, V. Gudnason, T. Aspelund, E.F. Gudmundsson, A.H. Zwinderman, P. Raggi, S.J. Pinto-Sietsma, A pooled-

analysis of age and sex based coronary artery calcium scores percentiles, J. Cardiovas. Comput. Tomogr. 14 (2021) 414–420,
doi: 10.1016/j.jcct.2020.01.006 . 

[12] P.K. Sher, S.B. Brown, A longitudinal study of head growth in pre-term infants, I: Normal rates of head growth, Dev. Med.
Child Neurol. 17 (1975) 705–710, doi: 10.1111/j.1469-8749.1975.tb04692.x . 

[13] W.L. Benedetti , F. Nieto , M.A. Sala , H. Alvarez , Human fetal and placental weight gain. Estimation of the 10th, 50th and

90th percentiles in a hospital population, Obstet. Ginecol. Lat. Am. 33 (1975) 251–255 . 
[14] C. Angers, Simultaneous estimation of percentile curves with application to salary data, J. Am. Stat. Assoc. 74 (1979) 621–

625, doi: 10.1080/01621459.1979.10481658 . 
[15] T.J. Cole , Fitting smoothed centile curves to reference data, J. R. Stat. Soc. Ser. A 151 (1988) 385–418 . 

[16] T.J. Cole , The LMS method for constructing normalized growth standards, Eur. J. Clin. Nutr. 44 (1990) 45–60 . 
[17] T.J. Cole, P.J. Green, Smoothing reference centile curves: The LMS method and penalized likelihood, Stat. Med. 11 (1992)

1305–1319, doi: 10.1002/sim.4780111005 . 
[18] Y. Wei, A. Pere, R. Koenker, X. He, Quantile regression methods for reference growth charts, Stat. Med. 25 (2006) 1369–

1382, doi: 10.1002/sim.2271 . 

[19] R.A. Rigby, D.M. Stasinopoulos, Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power
exponential distribution, Stat. Med. 23 (2004) 3053–3076, doi: 10.1002/sim.1861 . 

[20] H.D. Bondell, B.J. Reich, H. Wang, Noncrossing quantile regression curve estimation, Biometrika 97 (2010) 825–838, doi: 10.
1093/biomet/asq048 . 

[21] S.B. Racette, L. Yu, N.C. DuPont, B.R. Clark, BMI-for-age graphs with severe obesity percentile curves: tools for plotting
cross-sectional and longitudinal youth BMI data, BMC Pediatr 17 (2017) 130, doi: 10.1186/s12887- 017- 0885- x . 

[22] G. Kobayashi, T. Roh, J. Lee, T. Choi, Flexible Bayesian quantile curve fitting with shape restrictions under the Dirichlet

process mixture of the generalized asymmetric Laplace distribution, Can. J. Stat. 49 (2021) 698–730, doi: 10.1002/cjs.11582 .
[23] X. Tong, T. Zhang, J. Zhou, Robust Bayesian growth curve modelling using conditional medians, Br. J. Math. Stat. Psychol.

74 (2021) 286–312, doi: 10.1111/bmsp.12216 . 
[24] T.J. Cole, Sample size and sample composition for constructing growth reference centiles, Stat. Methods Med. Res. 30

(2021) 488–507, doi: 10.1177/0962280220958438 . 

https://doi.org/10.1016/j.mex.2022.101757
https://doi.org/10.1093/eurjpc/zwab111
https://doi.org/10.1161/CIRCULATIONAHA.105.580696
https://doi.org/10.1016/0735-1097(90)90282-t
https://doi.org/10.1016/j.jcct.2014.09.008
https://doi.org/10.1177/1741826711409172
https://doi.org/10.1186/s13063-015-1082-6
https://doi.org/10.1002/bjs.11135
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1212/wnl.45.1.17
https://doi.org/10.1016/j.atherosclerosis.2005.06.003
https://doi.org/10.1016/j.jcct.2020.01.006
https://doi.org/10.1111/j.1469-8749.1975.tb04692.x
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0013
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0013
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0013
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0013
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0013
https://doi.org/10.1080/01621459.1979.10481658
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0015
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0015
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0016
http://refhub.elsevier.com/S2215-0161(22)00137-6/sbref0016
https://doi.org/10.1002/sim.4780111005
https://doi.org/10.1002/sim.2271
https://doi.org/10.1002/sim.1861
https://doi.org/10.1093/biomet/asq048
https://doi.org/10.1186/s12887-017-0885-x
https://doi.org/10.1002/cjs.11582
https://doi.org/10.1111/bmsp.12216
https://doi.org/10.1177/0962280220958438

	Nonparametric percentile curve estimation for a nonnegative marker with excessive zeros
	Method details
	Data
	Nonparametric percentile curve estimation
	Method validation
	Comments on the generalizability of norm curves

	Conclusions
	Additional information: Background
	Declaration of Competing Interests
	Acknowledgements
	Supplementary materials
	References


