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Abstract

The timely diagnosis of active tuberculosis disease (TB) is crucial to interrupt the transmission and 

combat the spread of Mycobacterium tuberculosis (Mtb), the causative agent for TB. Here, we 

demonstrate the development of a specimen-direct rapid diagnostic method for TB which consists 

of an isothermal amplification device, Tiny Isothermal Nucleic acid quantification sYstem 

(TINY), coupled with helicase-dependent amplification (HDA). HDA, an isothermal amplification 

technique is established over TINY using pUCIDT-AMP vector carrying IS6110, the target DNA 

sequence for Mtb. The limit of detection of this technique for detecting the IS6110 within a 

threshold time of 50 min is 2.5 × 105 copies of IS6110. HDA in TINY for TB detection was 

evaluated using three IS6110-positive Mtb strains – H37Rv, CDC 1551, and Erdman wild-type and 

one IS6110-negative Mycobacterium avium. For spiked oral swabs, HDA in TINY detects IS6110 
without any non-specificity in relatively short turnaround time (<1.5 h), highlighting its potential 

utility as a specimen-direct point-of-care diagnostic for TB. TINY does not require an 

uninterrupted power supply and its lightweight and small footprint offers portability and easier 

operation in clinical settings with poor infrastructure. Overall, HDA in TINY could serve as an 

efficient rapid, and portable platform for the qualitative detection of TB at the point-of-care.
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1. Introduction

Active Tuberculosis Disease (TB) is a major health problem globally and continues to exact 

a high toll of mortality (Khan et al., 2019). The World Health Organization (WHO) 

estimated that about 10 million people were afflicted with TB in 2018 (WHO, 2020). 

Accurate and timely diagnosis of TB is essential to initiate treatment and implement 

infection control measures. However, not all the TB cases are successfully identified, and 

about 40% of TB cases are estimated to be undiag-nosed (Lawn, 2015; Walzl et al., 2018). 

These critical shortcomings of TB diagnosis impede the global efforts to combat TB 

imposing a large human and economic burden (Laxminarayan et al., 2009; Xin et al., 2019).

Smear sputum microscopy is the most commonly used diagnostic method for TB in clinical 

laboratories. Although it is very simple and easy to perform at a very low cost, it can have 

high inter-operator variability and consequently low sensitivity (Kik et al., 2014; 

Ngabonziza et al., 2016). Furthermore, it is difficult to use for TB diagnosis in children and 

patients who have difficulty in producing enough sputum. Moreover, sputum poses a high 

risk to the health care workers who collect the specimens.

After the introduction of polymerase chain reaction (PCR), several amplification-based 

molecular diagnostics were developed and evaluated for the diagnosis of TB (Lanzas et al., 

2016; Nguyen et al., 2018; Rakotosamimanana et al., 2019; Singpanomchai et al., 2019). 

The WHO recommended Xpert® MTB/RIF (Cepheid, Inc., USA), a PCR-based real-time 

detection system for TB showed better sensitivity and specificity than smear sputum 

microscopy along with a turnaround time of ~2 h (Rasheed et al., 2019; Steingart et al., 

2014). The Xpert® MTB/RIF however is relatively expensive, requires infrastructure, 

uninterrupted power supply, and maintenance which altogether limits its point-of-care 

(POC) applicability (Hsiang et al., 2016; Puri et al., 2016; Singpanomchai et al., 2019; 

Vassall et al., 2017) in many high-burden settings.

Different isothermal amplification techniques such as loop-mediated isothermal 

amplification, nucleic acid sequence-based amplification, and recombinase polymerase 

amplification are also employed in TB diagnostics (Bicmen et al., 2011; Sharma et al., 2019; 

Singpanomchai et al., 2019). Compared to conventional PCR, isothermal amplification 

techniques can provide the results rapidly without the requirement of a thermal cycler (Deng 

and Gao, 2015; McNerney and Daley, 2011). However, several limitations such as 

specificity, portability, the requirement of uninterrupted power supply, automated or semi-

automated result interpretation preclude their applicability at the POC, especially in LMICs. 

Therefore, a TB detection system that possesses all the characteristics of an efficient 

diagnostic such as high sensitivity and specificity, speed, clinical specimen compatibility, 

inexpensive, simplicity, and no need for continuous maintenance and expertise to operate is 

needed for POC use. Compatibility with non-sputum samples is also desirable.
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In this study, we describe a rapid and portable isothermal amplification-based platform for 

the qualitative POC diagnosis of TB. We exploit the helicase-dependent amplification 

(HDA), an isothermal amplification technique in which the helicase enzyme unwinds the 

double-stranded DNA eliminating the heat denaturation and thermal cycling steps as 

required in conventional PCR (Vincent et al., 2004). Compared to other isothermal 

amplification techniques, which use more than two primers or require the formation of 

complex DNA structures, HDA requires only two primers for amplification and forms only 

one double-stranded amplicon. This yields a more specific amplification while also 

facilitates the interpretation of the results. The utility of HDA for TB diagnosis has been 

reported in other studies (Barreda-Garcia et al., 2015; Barreda-Garcia et al., 2016; Shetty et 

al., 2017; Torres-Chavolla and Alocilja, 2011), in which the result interpretation was 

performed with agarose gel electrophoresis, electrochemical detection, or genomagnetic 

assays. However, the requirement of uninterrupted power supply, expertise, and equipment 

for result interpretation preclude the application of these techniques at the POC. Recently, 

we reported the development of Tiny Isothermal Nucleic acid quantification sYstem (TINY), 

an isothermal amplification device that could be used as a POC diagnostic in austere settings 

(Snodgrass et al., 2018). TINY consists of a temperature-regulation unit with a measurement 

unit placed at its center. Most of the temperature-regulation and measurement units are made 

with aluminium which offers a lightweight to the equipment. TINY has been designed to run 

the amplification reaction simultaneously for six samples. TINY can be run with a battery 

which can power it for 24 h. Furthermore, TINY can store the excess solar energy collected 

from sunlight as latent heat which can be used to run the equipment at times of interrupted 

power supply or no sunlight (Snodgrass et al., 2018). The low weight of 1.1 kg and its 

operation over battery or solar power offers POC utility. Furthermore, the results can be 

interpreted instantly, and the data can be transferred to the laboratory information system 

easily. Here, we report the development and evaluation of HDA over the TINY as a POC 

diagnostic platform for the qualitative detection of TB.

2. Materials and methods

2.1. Reaction conditions for HDA for the detection of Mtb

The construction of optimal HDA reaction condition commences with the primer designing 

for IS6110, an insertion sequence present in multiple copies exclusively within the Mtb 

complex genome (Millan-Lou et al., 2013). Different primer sets were designed using 

Primer3web version 4.1.0 (http://primer3.ut.ee/) according to the HDA reaction 

specifications such as primer length, product length, GC%, and melting temperature 

described in the IsoAmp® III Universal tHDA kit (Quidel, USA). The pUCIDT-AMP vector 

carrying the IS6110 sequence and the designed primer sets were purchased from Integrated 

DNA Technologies. Inc., USA. For the establishment of optimal amplification conditions 

such as primer, amplification time, temperature, and concentration of reaction ingredients, 

HDA was performed using IsoAmp® III Universal tHDA kit in the ViiA7 real-time PCR 

system (Applied Biosystems, USA). A total of 10 primer sets including the one previously 

reported (Barreda-Garcia et al., 2016) were examined (Supplementary Table S1) for their 

specific amplification and threshold time. Based on the specific amplification and a shorter 

threshold time, the IS6110–10F (5′-caacaagaaggcgtactcgacctga-3′) and IS6110–10R (5′-

Shanmugakani et al. Page 3

Curr Res Biotechnol. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://primer3.ut.ee/


ctcgctgaaccggatcgatgtgtact-3′) primer set that amplifies an 84 bp amplicon was chosen 

finally for the detection of IS6110 by HDA (Barreda-Garcia et al., 2016). Further, the 

previous studies for this primer set against the isolated genomic DNA from non-Mtb strains 

showed that it is highly specific for IS6110 in Mtb (Barreda-Garcia et al., 2015; Barreda-

Garcia et al., 2016; Motre et al., 2011). The optimal reaction mixture (50 μL) for HDA that 

could provide an amplification without any non-specificity, contained 25 μL sterile water, 5 

μL 10x annealing buffer II, 2 μL MgSO4 (100 mM), 4 μL NaCl (500 mM), 3.5 μL IsoAmp® 

dNTP Solution, 1.5 μL primer mix comprising 5 μM forward and reverse primer each, 2 μL 

IsoAmp® enzyme mix, 2.5 μL EvaGreen (Thermo Fisher Scientific, USA), 2 μL ROX 

(Thermo Fisher Scientific), and 1 μL template. The optimal HDA reaction temperature was 

found to be between 67 and 68 °C.

2.2. Establishment of HDA over the TINY platform

After determining the optimal HDA reaction conditions for the detection of IS6110 using 

ViiA7, HDA was examined for its compatibility with TINY. The HDA reaction mixture was 

prepared as described above and mixed well. Since TINY does not have a heated lid as in 

ViiA7, 30 μL of mineral oil (VWR International, USA) was overlaid on the reaction mixture 

to prevent evaporation. Then, TINY was operated under electric power and the results were 

interpreted by following the protocol as described previously (Snodgrass et al., 2018). HDA 

was performed in TINY using 2.5 × 109 copies of pUCIDT-AMP vector carrying the IS6110 
in triplicates under the same temperature as mentioned above. For negative control, sterile 

water is used instead of template DNA in the reaction mixture. The reactions that showed a 

threshold time of less than 50 min were considered as positive. The threshold time is the 

time at which the relative fluorescence significantly increases above the baseline signal.

2.3. Limit of detection of HDA in TINY for the detection of IS6110

To determine the limit of detection of HDA, the pUCIDT-AMP vector carrying the IS6110 
was serially diluted 10-fold with sterile water from 2.5 × 109 copies/μL to lower 

concentrations. Then, 1 μL of the diluted suspensions were subjected to HDA in TINY in 

triplicates and the respective threshold times were determined. The least concentration that 

had a threshold time of less than 50 min was determined as the limit of detection of HDA in 

TINY for IS6110 detection.

2.4. Evaluation of HDA in TINY for mycobacterial strains

For evaluating the established HDA in TINY to detect the presence of IS6110 in the Mtb 

pathogen, three IS6110-positive Mtb strains – H37Rv, CDC 1551, and Erdman wild-type 

and one IS6110-negative Mycobacterium avium strain were used. The genomic DNA was 

isolated from these strains using the procedure described before with slight modifications 

(van Helden et al., 2001). The isolated genomic DNA from the four strains was diluted with 

sterile water to a final concentration of 1 ng/μL and subjected to HDA in TINY in triplicate.

2.5. HDA in TINY for spiked oral swabs

To examine the utility of HDA in TINY for detecting Mtb directly from oral specimens, 

spiked oral swabs were used. Oral swabs were collected from a healthy volunteer and mixed 
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with 1 mL sterile water. The pUCIDT-AMP vector carrying IS6110 is mixed with the oral 

swab suspension at two different concentrations to reach a final concentration of 2.5 × 108 

copies/μL and 2.5 × 105 copies/μL. Then, 1 μL of the oral swab suspension was subjected to 

HDA over the TINY platform. The unspiked orals swab suspension was used as a negative 

control and the results were evaluated. For repetition, different spiked oral swabs from the 

same person were used.

3. Results

3.1. Establishment of HDA in TINY for the qualitative detection of Mtb

Using 1 ng/μL pUCIDT-AMP vector carrying IS6110 as positive control and sterile water as 

the negative control, HDA was performed in TINY in triplicates to examine its utility for the 

detection of Mtb. The threshold time for the detection of 2.5 × 109 copies of IS6110 
template was found to be 23.25 ± 0.21 min. However, no amplification was observed in the 

negative control reaction with sterile water.

3.2. Limit of detection of HDA in TINY for the detection of IS6110

The 10-fold serially diluted pUCIDT-AMP vector carrying the IS6110 ranging from 2.5 × 

109 copies were subjected to HDA in TINY in triplicates. The lowest copy number of 

IS6110 that could be detected by the HDA in TINY platform is 2.5 × 105 copies/μl in 46. 45 

± 1.2 min (<50 min) threshold time. Fig. 1a shows the real-time fluorescence curves for the 

different copy numbers of IS6110 and the blank. Furthermore, an increasing linear trend of 

threshold time was observed with the corresponding reduction in IS6110 copy number (Fig. 

1b).

3.3. HDA in TINY for mycobacterial strains

HDA was examined for the detection of IS6110 in three IS6110-positive and one IS6110-

negative mycobacterial strains. All three IS6110-positive strains showed positive for HDA 

with a threshold time ranging from ~28.36 ± 0.75 to 33.58 ± 0.79 min. The IS6110-negative 

strain (M. avium) showed no amplification in <50 min. In other words, the HDA in TINY 

platform can detect the Mtb pathogens without any non-specificity (Fig. 2).

3.4. HDA in TINY for spiked oral swabs

The diagnostic system was then examined for spiked oral swabs. The oral swabs spiked with 

2.5 × 108 and 2.5 × 105 copies of pUCIDT-AMP vector carrying the IS6110 showed 

amplification with a threshold time of <50 min. The oral swab spiked with sterile water 

(negative control) showed no amplification. Fig. 3 shows the compiled results of HDA in 

TINY for spiked oral swabs.

4. Discussion

In this manuscript, we report the utility of HDA over the TINY platform for the rapid 

diagnosis of Mtb directly from oral specimens. Our results showed that HDA in TINY could 

qualitatively detect the presence of Mtb by targeting the IS6110 sequence in the Mtb 

genome. HDA in TINY could detect the presence of IS6110 in Mtb strains without any non-
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specific identification of the negative control strain. Furthermore, it could detect the IS6110 
directly from the spiked oral swabs without any non-specific amplification demonstrating its 

utility for oral specimens. As it does not require any specialized sample preparation process 

for DNA isolation from oral swabs, it can be a more reliable diagnostic for TB. The 

specimen and HDA reaction mixture preparation took ~30 min. HDA reaction over the 

TINY platform and result interpretation took less than 1 h. Therefore, from specimen 

preparation to result interpretation, HDA in TINY requires less than 1.5 h to detect the 

presence of Mtb in oral swabs. The schematic for the detection of Mtb in oral swabs using 

HDA in TINY is described in Fig. 4.

TB is a major global health issue due to its high rate of morbidity and mortality. With the 

“End TB Strategy” by WHO, many health care programs are being implemented to control 

TB spread and infection. The timely and accurate diagnosis of TB is the cornerstone to 

initiate relevant treatment in the affected individuals as well as prevent the transmission of 

Mtb. The currently available diagnostics are often unable to be used for childhood TB as 

children have difficulty producing sputum. Further, a non-sputum-based diagnostic for TB 

particularly for children is also needed for the efficient control of TB.

Apart from the utility of HDA in TINY for oral swabs, our diagnostic platform can be 

applied in resource-limited clinical settings with limited infrastructure. TINY can be 

installed for routine clinical examination or can be used in the community setting. In 

addition to the electrical power supply, TINY also works on battery and solar power 

(Snodgrass et al., 2018). Moreover, it does not require any continuous maintenance or a 

major footprint which is required for other TB diagnostics like Xpert® MTB/RIF. The limit 

of detection of TINY for the detection of IS6110 in Mtb is found to be 2.5 × 105 copies/μl. 

The GeneXpert Assay has a limit of detection of 131 CFU/ml of clinical specimen (Marlowe 

et al., 2011). As this is a proof-of-concept study, performing the limit of detection with Mtb-

positive clinical specimens is out of the scope due to funding, ethical approval, patient 

enrollment, and other related issues. It has been planned to perform a separate study for 

evaluating the limit of detection of TINY in terms of CFU/ml of the specimen and its 

validation such as sensitivity/specificity with real clinical specimens. As the primer set used 

in this study is already proved to have high selectivity for IS6110 in Mtb by HDA (Barreda-

Garcia et al., 2015; Barreda-Garcia et al., 2016; Motre et al., 2011), we have not performed a 

selectivity study here. The non-requirement of specimen preprocessing; the ability to use 

non-sputum samples; simplicity in operating the TINY system; and easier interpretation of 

results altogether positions the HDA in TINY as an efficient diagnostic platform for TB.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Limit of detection of HDA in TINY for IS6110. (a) The real-time fluorescence curves for 

the different copy numbers of IS6110 and the blank in triplicates. The triplicates are shown 

in the same color. (b) The linear plot between the threshold time and IS6110 copy numbers. 

Error bars indicate the standard error of the mean.
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Fig. 2. 
Examination of HDA in TINY for mycobacterial strains. The real-time fluorescence curves 

for the three IS6110-positive Mtb strains (H37Rv, CDC 1551, and Erdman wild-type) and 

the IS6110-negative Mycobacterium avium in triplicates. The triplicates are shown in the 

same color.
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Fig. 3. 
Evaluation of HDA in TINY for spiked oral swabs. The real-time fluorescence curves for the 

IS6110-spiked swabs (2.5 × 108 and 2.5 × 105 copies of IS6110) and the negative control 

spiked with sterile water. The triplicates are shown in the same color.
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Fig. 4. 
Schematic of the HDA in the TINY platform for TB diagnosis. The entire process from 

specimen preparation to result interpretation could be completed in <1.5 h.
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