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Compared to enhancers, silencers are notably difficult to identify and validate experimentally. In search for human silenc-

ers, we utilized H3K27me3-DNase I hypersensitive site (DHS) peaks with tissue specificity negatively correlated with the ex-

pression of nearby genes across 25 diverse cell lines. These regions are predicted to be silencers since they are physically

linked, using Hi-C loops, or associated, using expression quantitative trait loci (eQTL) results, with a decrease in gene ex-

pression much more frequently than general H3K27me3-DHSs. Also, these regions are enriched for the binding sites of

transcriptional repressors (such as CTCF, MECOM, SMAD4, and SNAI3) and depleted of the binding sites of transcription-

al activators. Using sequence signatures of these regions, we constructed a computational model and predicted approximate-

ly 10,000 additional silencers per cell line and demonstrated that the majority of genes linked to these silencers are

expressed at a decreased level. Furthermore, single nucleotide polymorphisms (SNPs) in predicted silencers are significantly

associated with disease phenotypes. Finally, our results show that silencers commonly interact with enhancers to affect the

transcriptional dynamics of tissue-specific genes and to facilitate fine-tuning of transcription in the human genome.

[Supplemental material is available for this article.]

Regulatory elements (REs) are generally categorized into twomajor
classes based on their impact on the transcription of their target
genes: positive regulators, such as promoters and enhancers; and
negative regulators, such as silencers and insulators. Precisely un-
veiling the maps of these REs is an essential step toward under-
standing gene regulatory mechanisms (Maston et al. 2006).

High-throughput sequencing techniques have provided a
wealth of genome-wide landscapes of various epigenetic modifica-
tions and transcription factor (TF) binding sites. These data, to-
gether with the increasing knowledge of histone modification
patterns of functional REs, facilitates the identification of positive
and negative REs (Ernst and Kellis 2012; Hoffman et al. 2013).
Despite these advances, the studies of positive REs largely outnum-
ber those of negative REs (Petrykowska et al. 2008). The investiga-
tive studies of negative REs, especially silencers, have lagged far
behind those of positive REs partially due to the experimental dif-
ficulty in distinguishing negative regulators from either repressed
positive regulators or neutral DNA (Gaszner and Felsenfeld 2006;
Maston et al. 2006; Qi et al. 2015).

Themethylation of H3K9, H3K27, or H4K20 is commonly as-
sociated with transcriptional down-regulation (Mozzetta et al.
2015). In particular, H3K9me3 features heterochromatin forma-
tion of chromosomal regions with tandem repeat structures
(Kim and Kim 2012). H3K27me3, which is catalyzed and main-
tained by Polycomb repressive complexes (PRCs), directly inhibits
gene transcription by impeding or poising the occupancy of RNA
polymerase II (van Kruijsbergen et al. 2015). Transcriptional dy-
namics during development and disease initiation have been at-
tributed to H3K27me3 (Simon and Kingston 2009; Sexton et al.

2012; Jiang et al. 2013; Pinello et al. 2014; Laprell et al. 2017).
Notwithstanding the fact that H3K27me3 is well-known as amod-
ification of silencers, the regulatory contribution of H3K27me3
has been asserted to be context-dependent (Young et al. 2011;
Lv et al. 2016). H3K27me3 and H3K4me1, simultaneously recruit-
ed by Polycomb repressive complex 2 (PRC2), collaborate to pre-
cisely fine-tune the expression of targeting genes in pluripotent
cells (Mikkelsen et al. 2007; Schwartz and Pirrotta 2008). We
thus argued that H3K27me3 is a descriptive feature of silencers,
but it is not a determinant factor of silencers on its own.

Results

H3K27me3 is not a specific mark and frequently co-occurs

with other histone marks

In this study, we focused on open chromatin regions that are
accessible for transcriptional activity and can be characterized
by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs).
WeoverlappedDNase-seqpeaks andH3K27me3 chromatin immu-
noprecipitation-high throughput sequencing (ChIP-seq) peaks re-
ported by the Roadmap Epigenomics Mapping Consortium
(Roadmap Epigenomics Consortium et al. 2015) and built ge-
nome-widemaps ofH3K27me3-DHSs in a cohort of 25 distinct hu-
man cell lines, including stem cells (H1), normal human lung
fibroblast primary cells (NHLF), and cancer cells, such as hepatocel-
lular carcinoma cells (HepG2) and myelogenous leukemia cells
(K562) (Supplemental Fig. S1). After excluding promoter regions,
we obtained a total of 481,101 distal H3K27me3-DHSs, with an av-
erage of 46,457 per cell line.

Approximately 75% of the H3K27me3-DHSs coincided
with the well-known activator-associated histone modificationsCorresponding authors: ovcharen@nih.gov, elnitski@mail.nih.gov
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H3K4me1,H3K4me3, orH3K27ac. Similarly, 15%of the regulatory
activators, identified using DHS peaks with H3K4me1, H3K4me3,
or H3K27ac signals, displayed H3K27me3 signals, while only 7%
of these regions have been annotated as bivalent enhancers by
the Chromatin Hidden Markov Model (ChromHMM) (Roadmap
Epigenomics Consortium et al. 2015). Overall, the H3K27me3
mark appears to be characteristic of different groups of REs, such
as silencers and poised, bivalent, and often active enhancers. The
intensive co-occurrence of H3K27me3 with activator-associated
histone marks suggests that H3K27me3 alone is inadequate to ac-
curately identify silencers.

Silencer identification using the correlation between H3K27me3-

DHS activity and gene expression

We herein propose a computational framework for building ge-
nome-wide silencer maps. In this framework, focusing on the
DHSs overlapping H3K27me3 peaks (H3K27me3-DHSs), we ex-
plore their correlation with the expression of the nearby genes
across tissues and then the sequence patterns of H3K27me3-DHSs
to build genome-wide maps of silencers (Supplemental Fig. S2).

We focused on the H3K27me3-DHSs present in at least three
cell lines, which account for about 30% of all H3K27me3-DHS
peaks (Supplemental Fig. S3), as cross-tissue profiles of these
marks and gene expression levels are required to evaluate the tis-
sue-specificity correlation between these H3K27me3-DHSs and
their neighboring genes. Based on these correlation estimates,
we categorized these H3K27me3-DHSs into three groups: signifi-
cantly negatively correlated (negCOR); significantly positively
correlated (posCOR); and uncorrelated (unCOR) with the expres-
sion of neighboring genes (see Methods; Fig. 1A). In total, we
identified 4574 negCORs and 4451 posCORs, with an average of
1334 negCORs and 1364 posCORs per cell line (Supplemental
Fig. S4). For example, myocyte enhancer factor 2A (MEF2A), a
landmark gene in muscle cells (Narlikar et al. 2010; Liu et al.
2014), hosts three negCORs in its neighborhood that are present
in a broad spectrum of 13 nonmuscle cell lines, including stem,
progenitor, pancreas, skin, and liver cells (Fig. 1B). Similarly, the
negCOR close to PPARG coactivator 1 alpha (PPARGC1A) is not
present in the tissues where PPARGC1 is highly expressed, such
as muscle fiber and liver and pancreas (Supplemental Fig. S5;
Lin et al. 2005).

A

B

Figure 1. Silencer identification based on correlation of cross-tissue profiles of gene expression and H3K27me3-DHS activity. (A) Multi-tissue H3K27me3-
DHSs were categorized based on their correlation with the expression of proximal genes into three groups: positively correlated (posCOR); negatively cor-
related (negCOR); and uncorrelated (unCOR). negCORs were verified as silencers. (B) Three negCOR silencers in the locus of MEF2A.
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The negative correlation between negCORs and their neigh-
boring genes does not necessarily indicate that negCORs func-
tion as silencers. An alternative hypothesis would characterize
negCORs as enhancers acting distantly on genes other than the
flanking ones. To examine this hypothesis, we identified target
genes of negCORs using Hi-C data available for seven cell lines
(see Supplemental “Hi-C data”; Rao et al. 2014). We analyzed the
normalized expression levels of genes linked to different classes of
REs by Hi-C data. As compared to all genes and those linked to
DHSs, the genes linked only to unCORH3K27me3-DHSs displayed
an insignificant tendency toward a decrease of gene expression
(Wilcoxon rank-sum test P=0.08). The genes linked to negCORs
were significantly lowly expressed compared to unCOR genes,
whichwas independent of whether genes harbor negCORs in their
neighborhood (P=4×10−12) (shown as “proximal negCORs” in
Fig. 2A) or genes are targeted by negCORs only throughHi-C loops
while skipping intermediate gene(s) (P=3×10−24) (termed as “dis-
tal negCORs” in Fig. 2A). While the expressional decrease of prox-
imal negCOR genes is expected due to the negatively correlated
tissue specificity between negCORs and their neighboring genes,
the expressionaldecreaseofdistal negCORgenes is an independent
verificationof thesilencingactivityofnegCORs.Also, thegenestar-
geted by the ChromHMM “bivalent elements” (see Supplemental
“Bivalent elements defined by ChromHMM”), but not by either
negCORs or posCORs, displayed no significant expression differ-
ences fromtheunCORgenes (P=0.5), indicating that the identified
negCORs yield transcriptional impact different from bivalent ele-
ments. Together, these observations demonstrate that a large frac-
tion of the identified negCORs represent silencers. Therefore, we
will refer to negCORs as negCOR silencers or simply silencers, al-
though we note that a fraction of the predicted silencers might
not act as silencers in vivo.

We further validated the silencers using eQTL associations.
Through measuring the correlation between genotypes and tran-
scriptional levels, eQTL studies pair genomic loci, the majority
of which are noncoding, with their highly correlated genes, pre-
dicting that these genomic loci regulate the transcription of
the paired genes in a way of either cis-acting or trans-acting
(Grundberg et al. 2012; Albert and Kruglyak 2015). We used
eQTL associations reported by the Genotype-Tissue Expression
(GTEx) project (see Supplemental “GTEx eQTLs”; The GTEx Con-
sortium 2015). The eQTL-associated genes of silencers had sig-
nificantly lower expression (P<10−6) (Fig. 2B), while the genes
associated with unCORs or ChromHMM bivalent elements
showed no significant trend toward either increase or decrease of
gene expression (P=0.57 and 0.33, respectively) (Fig. 2B). Consis-
tent with the results based on Hi-C connections, these findings
again advocate for the effectiveness of the proposed framework
in silencer identification.

In addition, we observed that the genes associated with
H3K27me3-DHS posCORs were highly expressed (Hi-C: P=2×
10−5; eQTL: P=2×10−19) (Fig. 2A; Fig. 2B, respectively), indicating
that posCORs represent either active or, more likely, poised en-
hancers, as they contain H3K27me3 marks but not silencers.
These findings further support the functional complexity of the
H3K27me3-DHSs and the competency of our approach to distin-
guish silencers from general H3K27me3-DHSs. Despite opposite
transcriptional influence, silencers and posCORs feature multiple
similarities. For example, silencers and posCORs exhibit compara-
ble signal intensity of DHS and H3K27me3 (Fig. 2C; Supplemental
Fig. S6), similar GC content, repeat density, distance to the nearest
transcriptional start sites, and similar sequence length across all
cell lines (Supplemental Figs. S7, S8; Supplemental Table S1).
PosCORs were thus used as controls in further analysis.

A
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Figure 2. Expression of genes linked to different classes of DNA sequences by Hi-C data (A) and eQTL associations (B). Background consists of all genes
assayed in RNA-seq experiments. Proximal negCOR genes host negCORs in their loci, while distal negCOR genes are linked by Hi-C/eQTL to the negCOR(s)
separated from them by at least one intermediate gene. Expression of the distal negCOR genes represents an independent test on the effect of negCORs.
Bivalent represents the genes associated with bivalent elements reported by ChromHMM but not with either negCOR silencers or posCORs. The number
below each x-axis label is the number of the associated genes. (C) DNase-seq signal intensity of negCOR silencers (red) and posCORs (gray) across cell lines.
(D) Motif-based TFBS enrichment in negCOR silencers. PosCORs were used as controls for enrichment analyses. The averages and standard deviations of
the enrichment values are represented by the red diamonds and the gray lines flanking the red diamonds, respectively. The blue bar identifies TFBSs ubiq-
uitously enriched in negCOR silencers across cell lines. (E) ChIP-seq TFBS density (gray bars) and enrichment (diamonds) in K562 and GM12878 cell lines.
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Silencers feature abundant binding sites of transcriptional

repressors

TF occupancy and histone modifications along DNA sequences
constitute two layers of transcriptional regulation machinery.
Since H3K27me3 alone is not able to discern silencers from other
H3K27me3-DHSs (Supplemental Fig. S6), we speculated that TF
binding plays a substantial role in establishing the biological func-
tion of different H3K27me3-DHS peaks. To identify TFs specific to
silencers, we mapped putative TF binding sites (TFBSs) using 1388
distinct TF binding motifs collected from published resources and
evaluated enrichment of these putative TFBSs in silencers fromdif-
ferent cell lines using posCORs as background (see Methods). The
binding sites ofwell-knownubiquitous repressorswere enriched in
silencers across most cell lines, as highlighted by the blue bar in
Figure 2D. These repressors included MECOM (Cattaneo et al.
2007) and its partners from SMAD family of proteins (Bard-
Chapeau et al. 2012), FOXG1 (Roth et al. 2010), CTCF (Holwerda
and de Laat 2013; Qi et al. 2015), TCF (Bienz 1998), and SOX21
(Ohba et al. 2004). In addition to the cross-tissue enrichment of
several repressor TFBSs, we observed tissue-specific TFBS enrich-
ment in silencers (Fig. 2D). TFs, such as the STAT family of proteins
(Schroder et al. 2002), EHF (Tugores et al. 2001), TFAP2A (Scibetta
et al. 2010), NKX6-1 (Iype et al. 2004), and E2F4 (Lee et al. 2011),
display binding site enrichment in selected cell lines only andhave
dual transcription roles in different contexts.

We also explored TFBSs detected in ChIP-seq experiments in
which the binding events are captured in vivo. In K562, silencers
displayed an elevated TFBS density of CTCF and its working part-
ners SMC3 and RAD21 (fold enrichment >1.2, binomial test P<
10−100) (Fig. 2E), which is in line with the binding motif analysis
(Supplemental Fig. S9). Also, the enrichment of theChIP-seq peaks
of RCOR1 (a REST corepressor) further supports the suppressive
influence of silencers. In GM12878, silencers were enriched for
the ChIP-seq TFBSs of well-known repressors, such as PAX5
(McManus et al. 2011; Somasundaram et al. 2015), YY1 (Kleiman
et al. 2016), and RUNX3 (Spender et al. 2005), not to mention
CTCF and its interacting partner RAD21 (fold enrichment >1.2, bi-
nomial test P< 10−100) (Fig. 2E). InHepG2 and the cervical carcino-
ma cell line HeLa S3, elevated AP-1 binding was observed in
silencers (Supplemental Figs. S10, S11). AP-1 enrichment in the
tested cancer cells, namely K562, HepG2, and HeLa S3, is in accor-
dance with the suppressive function of activator protein 1 (AP-1)
during carcinogenesis (Shaulian and Karin 2002; Fan et al. 2016).

In addition, the depletion of EP300 ChIP-seq peaks in silenc-
ers was seen across all tested cells. Other well-known tissue-specific
activators also displayed notable binding depletion in the silenc-
ers, suggesting that negCORs perform a function potentially oppo-
site to activators. For example, BCL3 and NFATC1 were depleted
on the silencer sequences in GM12878, HNF4A and HNF4G in
HepG2, ELK4 and ELK1 in HeLa S3, and IRF1 in K562. The TFBS
analysis of silencers identifies putative regulatory mechanisms at
the foundation of silencer activity across different cell lines and
provides directions for follow-up biochemical analyses of these
sequences.

A machine learning model can accurately identify silencer

sequences de novo

For the identification of silencers, we had to focus on 30% of
H3K27me3-DHSs peaks only (Supplemental Fig. S3). To expand
the reach of our silencer detection framework, we decided to cap-
italize on specific TFBS patterns of silencers (Fig. 2C,D).We trained

a linear support vectormachine (SVM) classifier for each cell line to
distinguish silencers fromposCORs using TFBSmaps coupledwith
epigenetic and gene expression profiles, and then applied these
SVM models to all H3K27me3-DHSs (excluding negCOR silencers
and posCOR elements) to identify silencers beyond negCOR si-
lencers (see Methods).

The classification performance of our SVM models varied
across different cell lines, with the area under the curve (AUC)
ranging from 0.62 to 0.89 in precision-recall analysis (PR) (Fig.
3A) and from 0.71 to 0.82 in receiver operating characteristic mea-
surement (ROC) (Fig. 3A; see Supplemental “Performance evalua-
tion of SVM classification”). For instance, in K562, the SVM
model performed with AUC PR=0.89 and AUC ROC=0.80 on av-
erage (Fig. 3B). In each cell line, we applied the SVM classifiers to
score H3K27me3-DHSs andmarked the top-scoring ones as poten-
tial silencers by keeping the false positive rate of CV under 0.1 (see
Supplemental “Performance evaluation of SVM classification”).
These predicted silencers were named SVM silencers to distinguish
them fromnegCOR silencers.We predicted, on average, 9194 SVM
silencers per cell line, which are eight times more than negCOR
counterparts (Supplemental Table S2). The identified SVM silenc-
ers show high tissue specificity, with 70% of them being present
in a single cell line only (Supplemental Fig. S12).

Toevaluate SVMsilencers,we studied their transcriptional im-
pact. Similar to negCOR silencers, SVM silencers were used to cate-
gorize genes associated with SVM silencers by Hi-C links into two
groups—genes connected by Hi-C links only to an SVM silencer
separated from them by one or more intermediate genes (termed
“distal SVM” genes in Fig. 3C), and genes connected by Hi-C links
to at least one of the SVM silencers residing in their locus (repre-
sented by “proximal SVM” genes in Fig. 3C). Genes targeted by
SVM silencers according to Hi-C connections are significantly low-
ly expressed, regardless of whether they were “proximal SVM” or
“distal SVM” genes (Wilcoxon rank-sum test, proximal: P=6×
10−61; distal: P=9×10−35) (Fig. 3C). Distal SVM genes provided
an independent validation of SVM silencers as the expression of
these genes has no contribution to silencer prediction. Sixty-five
percent of distal SVM genes are lowly expressed, with a normalized
expressional level of <0, which is significantly higher than ex-
pected (65% of distal SVM genes versus 50% of all genes, binomial
test P<10−100) and thus suggests a significant repressive effect
exerted by SVM silencers. Similarly, the eQTL-associated genes
of SVM silencers were strongly lowly expressed in both proximal
(P=2×10−22) and distal cases (P=4×10−5) (Fig. 3D). These find-
ings, reminiscent of those of negCOR silencers, confirm the reli-
ability of the newly identified silencers, which significantly
expand the landscape of silencer elements.

In support of our model’s ability to predict silencers, a large
fractionof thepredictions features the classicalpolycombsignature
of repressive activity. In particular, in addition to the overlap with
theH3K27me3 regions used as a foundation for the SVMscan, 54%
of thepredicted SVMsilencers contain abinding site of enhancerof
zeste homolog II (EZH2) and13%of themcontain a SUZ12binding
site, two enzyme components of the Polycomb repressive complex
2 (Supplemental Table S3). In addition, histone modifications
H3K9me3 and H4K20me1 are well-known to be associated with
the repression of gene regulation (Mozzetta et al. 2015). Predicted
SVM silencers more frequently contain these histone modifica-
tions than background DHSs (Supplemental Fig. S13), further
advocating for the repressive function of SVM silencers. On the
otherhand, SVMsilencers andgeneralH3K27me3-DHSs showsim-
ilar enrichment for H3K9me3 and H4K20me1 modifications
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(Supplemental Fig. S13), suggesting that thewell-known repressive
histone marks (including H3K27me3, H3K9me3, and H4K20me1)
are incapable of accurately identifying silencers on their own due
to a complicated interaction among transcriptional regulators
(including histone modifications and TFs). Additional analysis
(such as the proposed model) is necessary to distinguish potential
silencers from general DHSs carrying repressive histone marks.

It is important to note that SVM silencers are predicted learn-
ing from negCOR silencers. Thus, negCOR silencers represent an
essential step toward building a larger map of silencers in the
human genome. Also, as SVM classifiers are not perfect, negCOR
silencers are more likely to accurately predict in vivo silencers
than their more abundant SVM silencer counterparts.

Experimental validation of silencer predictions

To address the impact of the predicted silencers on the activity of a
nearby gene experimentally, we placed 10 negCOR silencers (S1…
S10) and four H3K27me3-DHS regions displaying no significant
correlation to the flanking gene expression profiles (H1…H4) up-
stream of an enhancer + SV40 promoter + luciferase reporter gene
construct in K562 cells (see Methods). All 14 tested sequences
(S1…S10 andH1…H4) showed a significant decrease in the report-
er gene activity (Fig. 4; Supplemental Table S4). We observed a
decrease in the reporter gene activity for the H1…H4 sequences,
whichwere not classified as silencers. Although this decrease is sig-
nificant as compared to the reporter gene activity driven by the na-
ked enhancer, it is at the level of other previously reported controls
(Petrykowska et al. 2008). While ourmethod is not rejecting a pos-
sible silencer function of these sequences and some of themmight
be acting as silencers, we usedH1…H4 sequences as a strict control
while screening for predictions, which would result in reporter
gene activity lower than the activity associated with H1…H4 se-
quences. Five out of 10 predicted silencers (S1, S3, S7, S9, and

S10) resulted in the decrease of reporter gene activity significantly
stronger than at least three out four of the H1…H4 sequences
(Student’s t-test, P<0.05) (Fig. 4). As a group, the S1…S10 predict-
ed silencers drove the reporter gene expression 3.5-fold lower than
the enhancer + promoter construct and 1.4-fold lower than the
H1…H4 set. As in vitro enhancer validation is known to result in
∼50% detection of enhancer activity in a selected cell line (The
ENCODE Project Consortium 2012; Sanyal et al. 2012), our
40%–50% validation of silencer activity in vitro using very strict

Figure 4. Predicted silencer activity in K562 cells. Ten predicted silencers
(S1…S10) and four H3K27me3-DHS regions (H1…H4) were placed up-
stream of an SV40pr promoter and enhancer construct (SV40pr + Enh),
and the activity of the luciferase reporter gene has been measured in
K562 cells (see Methods). All predicted silencers resulted in a significant
decrease of the enhancer-driven gene expression (blue bars), while five
predicted silencers (represented by dark blue bars) reduced the activity
of the reporter gene to levels lower than 3/4 H3K27me3-DHS regions.
The dots above bars indicate that the reporter gene activity of a silencer
was significantly lower (Student’s t-test, P<0.05) than that of the corre-
sponding control with the matching color bar. The gray rectangle indi-
cates the luciferase activity range of H1…H4.
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Figure 3. SVM classification performance. (A) AUC-PR and AUC-ROC of the classifiers built to discriminate negCOR silencers from posCORs, which were
measured under a fivefold cross-validation. (B) PR and ROC curves in K562 cell line. Expression of genes linked to SVM silencers by Hi-C data (C ) and eQTL
associations (D).
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controls is a strong indicator of the true silencing function of the
predicted silencers.

Also, the results of massively parallel report assays (MPRAs),
in which the impact of REs was measured using the expression
of reporter genes (Melnikov et al. 2012), were used to test the func-
tion of predicted silencers. Based on the results of Sharpr-MPRA
(Ernst et al. 2016), the predicted negCORs and SVM silencers are
associated with negative Sharpr-MPRA scores, suggesting a repres-
sive impact of these elements (Ernst et al. 2016). Also, the predict-
ed silencers display a stronger decrease in the level of gene
expression than the H3K27me3-DHSs regions not predicted as si-
lencers (Supplemental Fig. S15). This independent test further sup-
ports the predicted silencers having a repressive function on the
activity of nearby genes.

To counterbalance the sparsity of chromatin interaction data,
we assumed that H3K27me3-DHSs act on their neighboring genes,
rather than on distal genes, as a part of ourmodel. This assumption
resulted in an underprediction of silencers and can partially ex-
plain why some of the H1…H4 sequences might have been acting
as silencers and thus resulting in a lower reporter gene expression
(Fig. 4). Those H3K27me3-DHSs that only target distal genes
wouldnot be picked upbyourmodel, while using additional infor-
mation (such as chromatin interaction data across cell lines) in fu-
ture studies could reduce the number of false negative predictions
and result in a larger set of predicted silencers.

Silencers form clusters in tissue-specific gene loci

We next examined the genomic distribution of silencers.
Following the widely used proximity rule, we assigned silencers
and enhancers (marked by the DHSs overlapping both H3K27ac
and H3K4me1) to their most proximal genes (see Methods). The

genes next to the silencers displayed a higher value of tau (τ)
than their enhancer counterparts (Wilcoxon rank-sum test, P=2
×10−186) (Fig. 5A), suggesting that the predicted silencers tend to
be associated with tissue-specific genes, since a large τ indicates
high tissue specificity (Yanai et al. 2005). To summarize, the tis-
sue-specific genes (τ> 0.9) hosted 13.8% of silencers but only
10.7% of enhancers (binomial test, P<10−10) (Fig. 5B). On the oth-
er hand, the housekeeping genes (τ<0.6) hosted 15.9% of the si-
lencers and 19.2% of the enhancers (P<10−10). This suggests
that silencers determine the identity of a cell through suppressing
genes highly expressed in other cell lines. Also, we examined the
tissue specificity of the genes targeted by enhancers and silencers
via Hi-C loops (Rao et al. 2014). As compared with enhancers, si-
lencers more frequently link to tissue-specific genes (13.8% of si-
lencers versus 11.2% of enhancers, P=1.2 ×10−6) and avert from
the housekeeping genes (14.3% of silencers versus 17.2% of en-
hancers, P= 1.7 ×10−4) (Supplemental Fig. S15). All these observa-
tions advocate for the essential role of silencers in establishing a
unique transcriptional profile of a cell.

Since regulatory cluster formation is well-known for enhanc-
ers (Parker et al. 2013; Zhou et al. 2014), we investigated the clus-
tering tendency of silencers by detecting significant silencer
cluster formation in gene loci with more than one silencer (bino-
mial test P<10−6) (see Methods). On average, these silencer clus-
ters accounted for 28% of all silencers across tested cell lines
(Fig. 5C), which is twofold higher than expected if silencers were
randomly distributed among all H3K27me3-DHSs (P<10−10).
Silencer cluster formation might be beneficial for functional
backup or battering (Spitz and Furlong 2012). This cluster forma-
tion might also provide evolutionary stability to the repression
of gene expression in a specific cell where the activity of particular
genes might be detrimental to the fitness of the species.

A

D

E

B C

Figure 5. Distribution of silencers. τ of genes flanking silencers and enhancers (A) and fraction of tissue-specific (τ>0.9) and housekeeping (τ<0.6) gene
loci harboring silencers or enhancers (B). (C) Clustering of silencers. Background clustering was established using randomly selected H3K27me3-DHSs
peaksmatching the number of silencers. The dashed lines indicate the average fraction of clustered elements across all cell lines (red = silencers, gray = back-
ground). (D) Association of silencers and silencer clusters with tissue-specific genes. (E) Enrichment of clustered silencers in the loci of superenhancers (SEs).
Enhancers were used as a background reference.
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Relative to all H3K27me3-DHSs, as reported above, silencers
are more likely to reside in the loci of tissue-specific genes in the
tested tissues (binomial test, P<10−20) (Fig. 5D). This effect greatly
increased only when clustered silencers were considered (14.6% of
silencer genes versus 25.8% of clustered-silencer genes, P<10−20)
(Fig. 5D). This trend is significant in almost all differentiated tis-
sues. In HepG2, for instance, 28.6% of the loci hosting silencer
clusters are tissue-specific, which is significantly higher than the
background expectation (29% of clustered silencers versus 14.5%
of all silencers versus 13.6% of all H3K27me3-DHSs, P<10−20)
(Fig. 5D). The enrichment of silencer clusters in the loci of tis-
sue-specific genes is lower in the case of stem and progenitor cells.
For instance, in H1-derived neuronal progenitor cells, 16% of the
clustered silencer loci were tissue-specific. To address a possible
bias caused by the locus length discrepancy (on average, the loci
of tissue-specific genes are longer than those of housekeeping
genes) (Supplemental Fig. S16), we compared silencers with the
background, which was generated through randomly selecting
H3K27me3-DHSs matching the corresponding silencers, and con-
sistently observed a significant association of silencers from
silencer clusters with tissue-specific genes, especially in differenti-
ated cells (Supplemental Fig. S17).

Silencer clusters act alongside superenhancers

Superenhancers, i.e., groups of multiple enhancers, have been re-
ported to frequently occur in the loci of tissue-specific genes
(Lovén et al. 2013; Pott and Lieb 2015). The strong preference of
clustered silencers toward tissue-specific genes, as reported above
(Fig. 6C), prompted us to examine co-occurrence of silencers
with superenhancers. We observed a depletion of silencers in
the loci hosting active superenhancers. Such depletion became
even more pronounced when only the clustered silencers were
considered (binomial test, P<10−5) (Fig. 5E). At first, this antago-
nistic presence of clustered silencers and superenhancers appears
counterintuitive given the individual enrichment of each of these
two groups of REs in the loci of tissue-specific genes. However, if

we assume that the activity of silencers/silencer clusters and super-
enhancers is compartmentalized to different tissue specificities,
the silencer clusters and superenhancers might be acting on the
same genes but in a mutually exclusive way, i.e., the activity of
one group determines the inactivity of the other group. Indeed,
silencer clusters were significantly enriched in the genomic re-
gions hosting superenhancers active in a cell line(s) other than
the inquiry one (binomial test, P<10−5) (Fig. 5E). This suggests a
regulatory model for the genes controlled by superenhancers,
which requires strong transcriptional deactivation in tissues or
cell types where superenhancers are absent. We can hypothesize
that this deactivation might be taking place by silencer clusters
acting directly on superenhancers to deactivate key gene regula-
tors instead of acting directly on promoters of these genes, as a di-
rect competition with superenhancers might not be feasible.
However, we would like to note that either a validation or rejec-
tion of this hypothesis would have to be performed by a follow-
up biochemical study.

Regulation of TF genes is fine-tuned by silencers and enhancers

To gain further insight into the cooperation between silencers and
enhancers, we focused on gene loci hosting amixture of enhancers
and silencers (named silencer-enhancer loci) (see Methods). As
gene expression increases, the fraction of silencer-enhancer loci
among all the loci hosting at least one silencer or enhancer de-
creases, while the enhancer-rich loci gain prominence (Fig. 6A,
C). About 33% of all loci are silencer-enhancer loci, and this
silencer-enhancer loci fraction diminishes to 13.1% when the
genes having normalized expression >2 are considered (binomial
test, P<10−100). Nevertheless, there is a notable fraction of highly
expressed genes that require silencers for their proper regulation.
Highly expressed silencer-enhancer genes were significantly en-
riched for TFs, including canonical TFs and transcriptional cofac-
tors (Schmeier et al. 2017; see Supplemental “Human TFs”).
Among the silencer-enhancer genes with normalized expression
of >1, 18% are TFs, which is 1.4 times enhancer-rich counterparts

A D

E

B

C

Figure 6. Silencers in TF gene loci. Gene loci are stratified into three groups: silencer-rich loci; enhancer-rich loci; and silencer-enhancer loci (see
Methods). The fraction of loci (A) and the fraction of TF genes (B) are binned by the level of gene expression (C). Green asterisks depict significant differ-
ences between silencer-enhancer loci and silencer-rich loci, while red asterisks indicate significant differences of TF fraction among silencer-enhancer loci
across gene groups. Association of silencers and enhancers with eQTL SNPs (D) and GWAS SNPs (E).
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(binomial test, P<10−5) (Fig. 6B). The TF enrichment among
silencer-enhancer genes increases with the increase of gene expres-
sion (P<0.05) (Fig. 6B), highlighting the role of silencers collabo-
rating with enhancers in the regulation of TFs. Collectively,
highly expressed TFs, which are the backbone of the transcription-
al regulation system (Vaquerizas et al. 2009), tend to be regulated
simultaneously by enhancers and silencers. The opposite effect
of enhancers and silencers enables a fine-tuning of these TFs and
provides great sensitivity and robustness to the entire regulatory
circuitry (Daniel et al. 2014).

Finally, we explored Hi-C connections to examine silencer-
enhancer genes, although Hi-C connections are available only
for a part of the enhancers and silencers. TFs are overrepresented
among the highly expressed silencer-enhancer genes (binomial
test, P<0.05) (Supplemental Fig. S18), which is in line with the re-
sults presented in Figure 6B.

Silencer mutations likely have phenotypic consequences

We superimposed silencers onto the SNPs associated with pheno-
typic effects.We collected eQTL SNPs from seven tissuesmatching
our studied cell lines from the GTEx project (The GTEx Consor-
tium 2015; see Supplemental “GTEx eQTLs”). Silencers, as well
as enhancers, were enriched for eQTL SNPs compared to general
H3K27me3-DHSs (binomial test, P<10−100) (Fig. 6D). Fifteen per-
cent of the identified silencers carry at least one eQTL SNP, which
is significantly higher than their background counterparts (P<
10−12, H3K27me3-DHSs and DHSs). Next, we turned to GWAS
SNPs significantly associated with phenotypic traits or disorders.
In this study, we used 324,454 GWAS SNPs that are associated
with 1106 phenotypes, from body mass index to glioblastoma
(see Supplemental “GWAS SNPs”). Silencers, as well as enhancers,
are more likely to carry GWAS SNPs than the H3K27me3 back-
ground (P<10−12) (Fig. 6E). Approximately 6.7% of silencers har-
bor at least one GWAS SNP, which is significantly higher than
the background (P<10−12) (Fig. 6E), although less than that of en-
hancers (P=8 ×10−8). The enrichment of GTEx andGWAS SNPs in
silencers, which is comparable to that of enhancers, suggests a role
of silencers in human diseases and disorders that should not be
overshadowed by enhancer studies.

Discussion

Histone modifications have been an extremely powerful approach
for investigating the cell-type–specific regulatory landscape of the
human and other genomes. Hundreds of thousands of tissue-spe-
cific enhancers have been successfully identified (Roadmap
Epigenomics Consortium et al. 2015). However, it appears to be
much more difficult to predict silencers. One of the challenges is
the dual nature of the repressive H3K27me3mark (i.e., being asso-
ciatedwith both enhancers and silencers). To address this issue, we
correlated H3K27me3 activity with gene expression across a set of
distinct tissues to identify negCORs, i.e., the H3K27me3-DHSs
peaks anticorrelating with the expression of nearby genes. We val-
idated negCORs as silencers by demonstrating that 63% of genes
linked to negCORs by Hi-C connections or eQTL associations
show decreased expression, which is significantly higher than
that of background genes.

NegCOR silencer sequences are enriched for the binding sites
of repressors across different cell lines and thereforewere exploited
to build SVM models for identifying additional silencers. With
these models, we expanded the silencer landscape of the human

genome from 1334 negCOR silencers to 9194 SVM silencers per
cell line. Identified silencers (negCOR and SVM silencers together)
are significantly enriched for SNPs associated with human pheno-
types and diseases as compared with general H3K27me3-DHSs.
Their enrichment levels are comparable to enhancers, highlight-
ing the biological importance of silencers.

The regulatory model suggesting an active interplay of differ-
ent classes of REs is one of the dominant topics of the postse-
quencing era (Kolovos et al. 2012; Markenscoff-Papadimitriou
et al. 2014; Long et al. 2016). We demonstrated that silencers
form clusters of activity and intimately collaborate with enhancers
and superenhancers to accurately orchestrate the transcription of
genes, especially tissue-specific genes and TF genes. The interac-
tion between silencers and enhancers seems to be bimodal:
(1) Silencers and/or silencer clusters are present in a mutually ex-
clusive way to enhancers, probably acting on enhancers or, more
likely, superenhancers to deactivate their activity and down-regu-
late the target gene expression through this indirect activity; and,
(2) silencers co-occur with enhancers to fine-tune highly ex-
pressed genes. Our results show that the former model mainly
governs tissue-specific genes and is important for setting up a dis-
tinct identity of a cell. The latter greatly contributes to the regula-
tion of highly expressed TFs and is essential for a stable and
sensitive regulatory system.

Understanding the molecular mechanisms by which silenc-
ers function remains an outstanding topic in the field of transcrip-
tional regulation (Blackledge et al. 2015). Establishing reliable
genome-wide silencer maps is the crucial step in promoting these
studies. Through exploring DNA sequence signatures, epigenetic
as well as transcriptional profiles, we identified a multi-tissue
map of silencers in the human genome with improved accuracy
and demonstrated that both TF occupancy and epigenetic modifi-
cation contribute to the activation of silencers.

Methods

A framework for predicting silencers

Using the DNase-seq peaks overlapping with H3K27me3 ChIP-seq
peaks (defined as H3K27me3-DHSs) as input across different hu-
man cell lines, our method is composed of two sequential mod-
ules: a correlation-based module and a classification-based
module (Supplemental Fig. S2). In the first module, we evaluated
the correlation between the activity of H3K27me3-DHSs and
the expression of their proximal genes by focusing on the
H3K27me3-DHSs active in at least three tissues. For an intronic
H3K27me3-DHS, the proximal gene is its host gene. An intergenic
H3K27me3-DHS has two proximal genes, i.e., the nearest gene in
the downstream direction and the nearest one in the upstream di-
rection. A correlation between an H3K27me3-DHS region (h, h=1
and 0 represents the presence and absence of a region, respective-
ly) and its proximal gene is measured as

corr(G,h) = sign(avg(Gh=1)− avg(Gh=0))∗p(Gh=1, Gh=0).

Gh = 1 is the collection of the expression levels of the tested gene
when h=1. avg(∗) is the average of ∗, and p(a,b) is the Wilcoxon
rank-sum test P-value measuring the significance of the difference
between a and b. As such, the correlation corr(G,h) is the weighted
significance of the change of gene expression due to presence/ab-
sence of a H3K27me3-DHS region (h=1/0, respectively). A low ab-
solute value of corr(G,h) indicates a strong association between
G and h. A negative/positive corr(G,h) shows that the gene expres-
sion G decreases/increases as the element h appears in a locus.
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Wemarked the correlation of (G,h) as significantly negative when
−0.05< corr(G,h) < 0. An H3K27me3-DHS was regarded as negCOR
only when at least one of its corr(G,h) values is significantly nega-
tive and none of its corr(G,h) values is significantly positive.
Similarly, an H3K27me3-DHS was regarded as significantly posi-
tive correlated (posCOR) only when at least one of its corr(G,h) val-
ues is significantly positive and none of its corr(G,h) values is
significantly negative.

In the second module, i.e., the classification-based module,
SVMs were built by contrasting negCORs against posCORs.
AnH3K27me3-DHS is encodedby using the occurrence of putative
TFBSs along its DNA sequence (as detailed below), the signal inten-
sity of several histone modifications (including H3K4me1,
H3K4me2, H3K4me3, H3K27ac, H3K79me1, H3K9ac, H3K9me3,
H2A.Z, and H3K36me3), as well as the maximum and minimum
of the expressions of proximal genes. The values of each feature
were linearly normalized to be in the range of [0, 1]. SVMswere im-
plemented in MATLAB with the function “svmtrain” having ker-
nel_function= “linear” and method= “LS”. To test classification
performance, a fivefold cross-validation scheme was used. In this
scheme, a training data set was equally divided into five subsets.
After using every subset for validating the SVM built on the other
four subsets, we obtained validation results on all training samples
and evaluated these results in terms of false positive rate, precision,
and recall. Also, we applied all the built SVMs to score each of the
H3K27me3-DHSs other than negCORs and posCORs and used the
average of the SVM scores as a final estimate of the inquiry
H3K27me3-DHSs. H3K27me3-DHSs having scores greater than a
threshold were then marked as potential silencers. The threshold
was determined in such away that the false positive rate on the val-
idation results was 0.1. After concatenating negCOR and SVM si-
lencers, we delivered a silencer map for each tested cell line.

Analysis of gene expression data

We downloaded RNA-seq data for 25 cell lines (Supplemental Fig.
S2) and discarded uninformative genes, i.e., those with expres-
sion levels of less than 0.01. We normalized gene expression
(RPKM values) so that the normalized expression level of each
gene had a median of 0 and a standard deviation of 1 across
the tested cell lines. A positive/negative normalized level of ex-
pression suggests a lowly/highly expressed gene in the corre-
sponding cell line.

With these RNA-seq data, we measured tissue specificity of
genes using tau (τ), which has been shown to provide strong ro-
bustness to change of data and high sensitivity of detecting tis-
sue-specific genes (Kryuchkova-Mostacci and Robinson-Rechavi
2017). τ is defined as

t =
∑N

i=1 1− x̂i
N − 1

, x̂i = xi
maxNk=1xk

,

where xi is the expression of a tested gene in the cell line i. N is the
number of the cell lines under consideration (N=25 here). A high
value of τ indicates a large variation in gene expression across tis-
sues (i.e., high tissue specificity) of the corresponding gene.
Genes having τ>0.9 and τ<0.6 are considered tissue-specific and
housekeeping genes, respectively (Kryuchkova-Mostacci and
Robinson-Rechavi 2017). In total, we identified 3419 tissue-specif-
ic and 2503 housekeeping genes.

Experimental characterization of silencers

Candidate silencer regions were synthesized by Thermo Fisher
Scientific. Synthesized regions were cloned into plasmid DNA, up-
stream of an enhancer, SV40 promoter, and luciferase reporter

gene using the Invitrogen Gateway Cloning System. Transfection
of cells andmeasurement of expression were the same as previous-
ly published (Petrykowska et al. 2008).

Identification of silencer clusters

To identify silencer clusters, we used the distribution of enhancers
(detected as the DHSs overlapping both H3K27ac and H3K4me1
peaks in this study) as a reference. For a cell line, we thereby estab-
lished a genome-wide map of silencers and enhancers (consisting
of nS silencers and nE enhancers) and measured the genome-wide
fraction of silencers as P=nS/(nE+nS). Given a gene locus harbor-
ing s silencers and e enhancers, the enrichment of silencers in that
locus was estimated as the probability of obtaining more than s si-
lencers in (s+ e) attempts of randomly selecting one element
(silencer or enhancer) in the built genome-wide map. This proba-
bility can be calculated under a binomial distribution as

PS
r (X . s) = 1−

∑s

i=0

e+ s
i

( )

pi(1− p)e+s−i
. (1)

A given locus was regarded as being enriched for silencers
when PS

r (X . s) , 10−6 and s≥2, in which all silencers were con-
sidered to form a silencer cluster. With Equation 1, we estimated
silencer enrichment in each gene locus, then sorted out the loci
enriched for silencers, and finally evaluated the fraction of the
clustered silencers over all tested silencers. To estimate the sig-
nificance of this fraction, we generated a background distribution
through randomly shuffling silencer labels among all H3K27me3-
DHSs and then calculating the fraction of clustered silencers. After
50 independent runs, the background distribution of the fraction
of clustered silencers was empirically built to assess the signifi-
cance of the predicted silencers being clustered.

The above analyticswas also applied to estimate the enhancer
enrichment in a gene locus. That is, the enrichment of enhancers
in a locus (hosting e silencers and s silencers) was evaluated as

PE
r (X . e) = 1−

∑e

i=0

e+ s
i

( )

qi(1− q)e+s−i = 1− PS
r (X . s), (2)

where q, the fraction of the enhancers on a genome-wide scale, was
measured as q=1− p=nE/(nE +nS).

Silencer-rich, silencer-enhancer, and enhancer-rich loci

The estimates of PE
r and PS

r render us three groups of gene loci
—“silencer-rich” representing the loci with a significant abun-
dance of silencers, i.e., PS

r (X . s) , 10−6 and s≥2; “enhancer-
rich” labeling the loci enriched for enhancers (i.e.,
PE
r (X . e) , 10−6 and e≥2; and finally, “silencer-enhancer loci”

denoting the loci harboring both silencers and enhancers but en-
riched for neither silencers nor enhancers.

Binding sites of TFs

Transcription factor binding sites were identified through map-
ping of TF motifs, represented by position weight matrices
(PWMs). We used 4004 human and mouse PWMs provided by
MEME (http://meme-suite.org/db/motifs). To exclude PWM re-
dundancy,we analyzed PWMmapping in randomDNA sequences
and excluded a PWM if its TFBSs were at least 90% similar to TFBSs
of another PWM. The reduction in redundancy resulted in 1388
distinct PWMs, which correspond to 1119 TFs. To predict TFBSs,
we applied FIMO (Grant et al. 2011) with default settings to the
DNA sequences of H3K27me3-DHSs. We also used the TF ChIP-
seq peaks to build TFBS profiles (see Supplemental “TFBS profiles
based on TF ChIP-seq data”).
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Weused posCORs as a background to evaluate the TFBS signa-
ture of silencers. To ensure reliability of analysis, we focused only
on the TFs for which TFBSs occurred in at least 3% of either en-
hancer sequences or silencer sequences. For example, in
GM12878, EP300 was excluded from our study since <3% of
H3K27me3-DHSs overlap with EP300 ChIP-seq peaks.
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