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Shared network pattern of lung
squamous carcinoma and
adenocarcinoma illuminates
therapeutic targets for
non-small cell lung cancer
Piaopiao Li1, Xuemei Kuang2, Tingting Zhang1* and Lei Ma1*
1College of Life Science, Shihezi University, Shihezi, Xinjiang Uyghur Region, China, 2The First
Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, China

Background: Non-small cell lung cancer (NSCLC) is a malignant tumor with
high mortality. Lung squamous carcinoma (LUSC) and lung adenocarcinoma
(LUAD) are the common subtypes of NSCLC. However, how LUSC and LUAD
are compatible remains to be elucidated.
Methods: We used a network approach to find highly interconnected genes
shared with LUSC and LUAD, and we then built modules to assess the
degree of preservation between them. To quantify this result, Z-scores were
used to summarize the interrelationships between LUSC and LUAD.
Furthermore, we correlated network hub genes with patient survival time to
identify risk factors.
Results: Our findings provided a look at the regulatory pattern for LUSC and
LUAD. For LUSC, several genes, such as AKR1C1, AKR1C2, and AKR1C3, play
key roles in regulating network modules of cell growth pathways. In addition,
CCL19, CCR7, CCL21, and LY9 are enriched in LUAD network modules of
T lymphocyte-related pathways. LUSC and LUAD have similar expressed
gene expression patterns. Their networks share 46 hub genes with
connectivity greater than 0.9. These genes are correlated with patient
survival time. Among them, the expression level of COL5A2 in LUSC and
LUAD is higher than that in normal tissues, which is closely related to the
poor prognosis of LUSC and LUAD patients.
Conclusion: LUSC and LUAD share a network pattern. COL5A2 may be a risk
factor in poor prognosis in LUSC and LUAD. The common landscape of
LUSC and LUAD will help better define the regulation of NSCLC candidate
genes and achieve the goals of precision medicine.
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Introduction

Lung cancer is one of the fastest-growing malignancies in the world in terms of

morbidity and mortality (1). Non-small cell lung carcinoma (NSCLC) accounts for

more than 85% of lung cancer patients (2). Advanced NSCLC has a poorer prognosis

compared to small cell lung cancer (3). It is imperative to find early biomarkers to
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judge prognosis and guide treatment for NSCLC (2). Lung

squamous carcinoma (LUSC) and lung adenocarcinoma

(LUAD) are the most common subtypes of NSCLC (4). They

differ in genetics, pathogenesis, biological behavior, treatment,

and prognosis (5–8). Generally, LUAD grows more slowly and

has a smaller mass than LUSC at the same stage, but LUAD

tends to start to metastasize at an early stage (9, 10). LUSCs

metastasize later and are usually diagnosed at an advanced

stage (11). LUAD is insensitive to radiation and chemotherapy

(12). The prognosis of patients is unsatisfactory, and the 5-

year survival rate is less than 10% (13). However, both

subtypes lack effective early diagnosis methods. Therefore,

elucidating the molecular mechanisms of these two subtypes

and finding new prognostic markers is of great significance for

the prognosis of patients with NSCLC (14).

Comparative studies of cancer types based on common features

(13) and individual distinct attributes can provide new insights into

different cancers at the molecular level (15). Network analysis is an

effective means to provide key insights into the relationship

between gene expression levels and the different progression of

cancers (16). To access how LUSC and LUAD are compatible,

we built a network to find highly interconnected genes associated

with them. In sum, LUSC and LUAD share a common gene

expression pattern with 46 common hub genes in both networks.

In addition, the COL5A2 gene may be a major factor in poor

prognosis in LUSC and LUAD. The common landscape of

LUSC and LUAD may provide potential target genes for the

diagnosis of NSCLC and provide a new insight into the precision

therapy of LUSC and LUAD.
Material and methods

Data preparation

We downloaded 484 LUSC and 510 LUAD cohorts from

the cBioPortal for Cancer Genomics (http://www.cbioportal.

org/) (17). We then used R to standardize the dataset and

determine the comparability of the data. By calculating the

median absolute deviation, we selected the top 20% of genes

shared by the two cancers. Then, according to the degree of

sample aggregation estimated by the WGCNA package, 136

LUSCs and 184 LUADs were retained (Supplementary

Table S1) (18). The two datasets were comparable when

the data correlation between LUSCs and LUSCs was 0.46

(P < 0.01) (Supplementary Figure S1).
Network analysis of weighted gene
co-expression

We set genes as nodes and relationships between genes

as edges to build a co-expression network using the
Frontiers in Surgery 02
WGCNA package (18). The construction steps of the

network mainly included correlation matrix calculation,

soft threshold selection, adjacency matrix calculation,

heterogeneous matrix calculation, dynamic branch cutting,

and module merging (19). We then identified the

network modules.
Module consensus between subtypes

We identified the consensus module between LUSC and

LUAD. Module overlap degree referred to the common gene

number between modules (20). We then generated Z-scores

(20) using the permutation test in the WGCNA package to

assess the preservation of LUAD genes in the LUSC

module. The ranges 5 < Z < 10 and Z > 10 were considered

moderate and highly preserved, respectively.
Module eigengene and GO enrichment

Module eigengene (ME), the first principal component of

modules, represents the feature expression mode of modules

(21). Eigengene connectivity (KME) represents the Pearson

correlation between genes (including genes not originally

assigned to modules) and modules in the network. We

calculated KME and P values for all genes in LUSC and

LUAD, then ranked the KME values from largest to

smallest and selected the top 100 genes for each module

(P < 0.05). We performed a Gene Ontology (GO)

enrichment analysis to select the top five enrichment terms

for each module via the Clusterprofiler package (22).
Hub gene screen

Based on Z-scores, we selected candidate hub genes with

KME-module correlations greater than 0.9 in high-

conservation modules. We then performed Spearman’s

rank correlation analysis between the expression of

candidate hub genes and the overall survival time of

patients. Finally, the online software Kaplan–Meier Plotter

(23) was used to analyze the effect of gene expression on

patient survival. Cancer samples were divided into two

groups based on high and low expression levels of genes.

Genes with significantly different survival curves between

the two groups were thought to be closely related to the

survival of cancer patients (19). We used Cox univariate

analysis in the SURVIVAL and SURVMISER software

packages to verify whether hub gene expression is a major

prognostic factor.
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Validation of COL5A2

Based on the GEO database (https://www.ncbi.nlm.nih.gov/

gds/), we obtained the LUSC and LUAD gene expression dataset

(GSE134381), including 20 LUSC cancer samples and 20

normal samples, and 17 LUAD cancer samples and 17

normal samples. We evaluated the expression differences of

hub genes in cancer and normal samples. We searched for

chemical substances and human diseases that have regulatory

relationships with hub genes in the Comparative

Toxicogenomics Database (CTD) (24) and counted the

number of corresponding files.
FIGURE 2

Module overlaps. Circles represent, from outermost to innermost,
the color labels of modules of LUSC and LUAD, the number of
genes, and internetwork overlapping.
Results

Similarity of LUSC and LUAD network

We identified 11 LUSC and 6 LUAD gene co-expression

modules, respectively (Figure 1 and Supplementary Figures

S1, S2). For visualization, we named modules with colors.

Modules are clusters of densely interconnected genes that may

be involved in a similar function. For example, the LUSC

module “greenyellow” contains some genes, such as AKR1C1,

AKR1C2, and AKR1C3, enriched in regulation of the extent of

cell growth pathways. In addition, the LUAD module “yellow”

consists of genes, such as CCL19, CCR7, CCL21, and LY9,

that are enriched in T-lymphocyte-related pathways involved
FIGURE 1

LUSC (A) and LUAD (B) networks. The upper panel shows a gene dendrogram
underneath the dendrogram shows the module assignment determined by th
module onto another network. These module color labels in the second row
good preservation. Note that for some modules, even with significant preserv
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in T-cell activation, regulation of lymphocyte activation, and

regulation of T-cell activation.

Modules highlighted similar expression patterns of genes in

LUSC and LUAD, respectively. We then assessed how well the

modules in one cancer subtype are preserved in another cancer

subtype. As a qualitative evaluation, we imposed modules from
obtained by mean linkage hierarchical clustering. The first color row
e dynamic tree cut. The second row shows the imposition of a subtype

are still grouped together corresponding to the first row, indicating
ation, they cannot be seen in obvious grouping in the second dataset.
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LUSC onto the network for dataset LUAD and vice versa

(Figures 1A,B). Some modules from one cancer subtype are

still assembled in another cancer, well preserved (Figure 2;

Supplementary Table S2). There is a high degree of gene

overlap within the module between LUSC and LUAD. For

example, the LUSC module “turquoise” is contained in the
TABLE 1 LUSC and LUAD network module.

LUSC
module

Gene
number

LUAD
module

Gene
number

Preservation
Z-score

Turquoisea 354 Turquoise 670 44.715663

Blue 352 Yellow 208 21.557415

Brown 344 Blue 339 28.486611

Yellow 309 Brown 270 23.538526

Green 309 Green 152 10.620995

Red 251 Red 111 10.467881

Black 170 — — 3.714300

Pink 115 — — 3.543998

Magenta 99 — — 2.992362

Purple 76 — — 2.552492

Greenyellow 53 — — 1.174076

aModules are named by color for visualization, corresponding to the color in

Figures 1 and 2.

FIGURE 3

Module function similarity. (A) shows the functional overlap between LUS
functional overlap between LUSC module “brown” and LUAD module “blu
circles represent modules and small colored circles represent GO terms. The
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LUAD module “turquoise,” and the LUSC module “brown” is

corresponding to the LUAD module “blue.” To quantify this

result, we used the Z-score to summarize how well the

modules hold in each other (Table 1). In general, the higher

the value of the Z-score, the more preserved the module is

between cancer subtypes. The Z-scores of the six modules are

greater than 10, indicating that the LUSC network is

significantly similar to LUAD (Table 1).
Module function similarity

We explored the top five significant rich GO terms for each

module. The functional overlap degree of modules between

LUSC and LUAD corresponds to the degree of preservation

of the module among them (Figure 3 and Supplementary

Table S3). The higher the degree of preservation between the

LUSC module and the LUAD module, the higher the

functional overlap between them. For example, the LUSC

module “turquoise” and the LUAD module “turquoise” have

the highest Z-score, sharing 80% (4/5) of GO terms

(Figure 3A). Furthermore, LUSC module “brown” and LUAD

module “blue” are almost completely overlapping (Figure 2),

which share common biological processes, such as
C module “turquoise” and LUAD module “turquoise”; (B) shows the
e”, the LUSC module “magenta” and the LUAD module “blue”. Big
purple circles represent the inter-network overlap.
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FIGURE 4

Hub genes survival curve for seven genes in LUSC (A) and LUAD (B). The horizontal axis is survival time, and the vertical axis is the overall survival rate.

TABLE 2 LUSC and LUAD clinical characteristics.

Covariate Category Quantity

LUSC LUAD

Age <60 88 138
≥60 388 357

Gender Male 358 239

Li et al. 10.3389/fsurg.2022.958479
extracellular matrix organization, extracellular structure

organization, collagen fibril organization, ossification, and

cartilage development (Figure 3B). In addition, low-

preservation modules also have shared GO terms. For

example, both the LUSC module “magenta” and the LUAD

module “blue” are involved in extracellular structure in

organization processes (Figure 3B).

Female 127 275
Hub genes

The LUSC and LUAD networks share 46 hub genes with

connectivity greater than 0.9. We then correlated these genes

with patient survival time. The hub genes of COL5A2, TTLL3,

SPEF1, TMEM190, CCDC65, CCDC33, and GLT8D2 have the

highest Spearman rank correlations. Furthermore, COL5A2 is

closely related to both LUSC and LUAD patients’ survival

time (Figure 4), implying it may be a risk factor. The

COL5A2 gene may lead to both LUSC and LUAD patients’
Frontiers in Surgery 05
poor prognosis [LUSC HR = 1.35 (1.02–1.78), logrank P =

0.035; LUAD HR = 1.5 (1.07–2.11), logrank P = 0.019]. The

higher the COL5A2 expression, the worse the patient survival

rate (Figure 4).
Prognostic factor COL5A2

To determine whether the COL5A2 gene is a major

prognostic factor, we correlated the clinical data of LUSC and
frontiersin.org
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FIGURE 5

Cox univariate analysis. Relationships between clinical characteristics and patients’ overall survival rate were shown. (A,B) show the relationship
between patients’ overall survival rate with age and sex for LUSC, respectively. (C,D) show the relationship between patients’ overall survival rate
with age and sex for LUAD, respectively.

FIGURE 6

The relative expression of COL5A2. Stars represent statistical
significance of T-test: ***<0.001; ****<0.0001.

FIGURE 7

Substances related to COL5A2. Pink and blue circles represent
substances that up- and downregulate COL5A2.

Li et al. 10.3389/fsurg.2022.958479
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LUAD with patient prognoses (Table 2). The survival analysis

results showed that age and gender have no significant

relationship with LUSC and LUAD patients’ survival rates

(Figure 5). Moreover, the COL5A2 gene expression in LUSC

and LUAD samples is significantly higher than that in normal

samples (P < 0.001, Figure 6). Therefore, COL5A2 may serve

as a potential therapeutic target for NSCLC.
COL5A2 subnetwork

To investigate the role of COL5A2, we searched the CTD

database. We found that COL5A2 may regulate chemicals and

human diseases and it is related to tumor treatment drugs. In

addition, many tumor-related substances or drugs can affect

the expression of COL5A2 (Figure 7). For example,

PIRINIXIC acid can increase COL5A2 expression by binding

to PAPAYA protein and increasing its activity. In addition,

tumor preventive drugs such as decitabine and fenretinide can

downregulate COL5A2. Dexamethasone can reduce COL5A2

expression and suppresses the testosterone response.
Discussion

We used a network approach to find a number of highly

interconnected transcriptional events associated with non-

small cell lung cancer (Figure 1). Our findings provided a

preliminary view of the regulatory landscape of LUSC and

LUAD. For LUSC, some genes, such as AKR1C1, AKR1C2,

and AKR1C3, are enriched in the network module for

regulating cell growth pathways. Overexpression of AKR1C1 is

associated with cancer progression (25). In addition, AKR1C1

can directly interact with and promote phosphorylation of

STAT3, enhancing the binding of STAT3 to the promoter

regions of target genes, and then transactivating these genes,

promoting tumor metastasis (26). Therefore, further studies

on the mechanisms of AKR1C1, AKR1C2, and AKR1C3 in

LUSC may provide new candidate targets for the treatment of

patients.

Furthermore, genes CCL19, CCR7, CCL21, and LY9 are

enriched in LUAD network modules of T-lymphocyte-related

pathways, such as T-cell activation, regulation of lymphocyte

activation, and regulation of T-cell activation. CCL19, CCL21,

and CCR7 are involved in inducing the directed migration of

T lymphocytes to lymph nodes in LUAD. CCL19 and CCL21

are chemokines and CCR7 is their receptor in gastric cancer

(27) and esophageal squamous cell carcinoma (28). The three

genes play an important role in cell migration and lymph

node metastasis (29). These chemokines may play a crucial

role in directing immune cell migration, which is required to

initiate an effective antitumor immune response (30).
Frontiers in Surgery 07
Modules with high retention rates between LUSC and

LUAD are enriched with similar functionality (Figures 1–3).

For example, most LUSC modules show significant overlap

with at least one LUAD module in terms of functionality

(Table 1). LUSC and LUAD networks were found to share 46

common hub genes, of which COL5A2, TTLL3, SPEF1,

TMEM190, CCDC65, CCDC33, and GLT8D2 had the highest

correlations with patient survival time. Further results showed

that the COL5A2 gene was highly expressed in both cancer

subtypes with significantly poorer prognoses (Figure 6).

COL5A2, encoding type V collagen a2, is upregulated in

rapidly proliferating cells (31). In addition, COL5A2 is

involved in the occurrence and development of various

malignancies, such as lung cancer (32), squamous cell

carcinomas (33), bladder cancer (34), and colon cancer (35).

We found that higher COL5A2 expression was associated with

lower survival in LUSC and LUAD patients (Figure 4). Our

findings on COL5A2 are largely consistent with previous

studies that the COL5A2 gene can be used to assess and

predict prognosis in LUAD. Therefore, COL5A2 may be a

major factor in poor prognosis in LUSC and LUAD (Figure 7).

Considering that the pathogenesis of non-small cell lung

cancer is still under investigation, we do not claim that our

network approach can identify key genes in all classes of

LUSC and LUAD, although it successfully found some

instances with similar characteristics to those reported in the

experiments. For further research, the following issues are

worth: (1) investigating the utility and feasibility of COL5A2

as a clinical marker; and (2) identifying the pathways in

which COL5A2 is involved and the key mechanisms that may

guide personalized therapeutic strategies.
Conclusion

LUSC and LUAD share a common network pattern, i.e.,

similar gene expression trends. AKR1C1, AKR1C2, and

AKR1C3 are enriched in the network module of LUSC for

regulating cell growth pathways. CCL19, CCR7, CCL21, and

LY9 are keys in LUAD network modules of T-lymphocyte-

related pathways. Furthermore, COL5A2 may be a major

factor in poor prognosis in LUSC and LUAD. The above

findings may provide potential target genes for the early

diagnosis of NSCLC and provide a new reference for the

targeted therapy of LUSC and LUAD.
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