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Verifying Heisenberg’s error-disturbance relation using
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Heisenberg’s uncertainty relations have played an essential role in quantum physics since its very beginning. The un-
certainty relations in the modern quantum formalism have become a fundamental limitation on the joint measure-
ments of general quantum mechanical observables, going much beyond the original discussion of the trade-off
between knowing a particle’s position and momentum. Recently, the uncertainty relations have generated a consid-
erable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty
relations. We report an experimental test of one of the newHeisenberg’s uncertainty relations using a single 40Ca+ ion
trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty
relation proposed by Busch, Lahti, and Werner (BLW) based on a general error–trade-off relation for joint measure-
ments on two compatible observables. The positive operator-valued measure, required by the compatible observa-
bles, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a
state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a
single-spin level and will stimulate broad interests in various fields associated with quantum mechanics.
INTRODUCTION
Heisenberg’s uncertainty relation (1) is one of the cornerstones in under-
standing quantum mechanics. In most textbooks, the uncertainty rela-
tion isquantifiedby the standarddeviations (SDs)of themeasuredvariables,
such asDP̂DQ̂ ≥ ħ=2 (where ħ is the Planck constant divided by 2p),
withDP̂andDQ̂being the SDs of two noncommuting operators P̂and
Q̂. This definition, which implies that the measurements of P̂ and Q̂ are
performed on an ensemble of identically prepared quantum systems,
describes a preparation uncertainty (2–4), which is actually different
from the original spirit of Heisenberg’s idea. A correct understanding
of Heisenberg’s uncertainty relation should be based on the observer’s
effect; that is, the accuracy of an approximate position measurement is
related to the disturbance of the particle’smomentum (1). This is amea-
surement uncertainty, also called the error-disturbance relation (EDR).
For the above defined variables P̂ and Q̂ , which are not restricted to
describing the position and momentum of a particle, Heisenberg’s
EDR, as strictly proven recently (5), is quantified as DðP̂ÞxðQ̂Þ ≥ ħ=2,
where DðP̂Þ is the measurement error of the observable P̂, and xðQ̂Þ is
the disturbance magnitude of Q̂ induced by the measurement.

Both the preparation uncertainty and the measurement uncertainty
(that is, EDR) have been debated for years and generalized to be
DP̂DQ ≥ 〈½P̂; Q̂ �〉�� ��=2 and DðP̂ ÞxðQ̂Þ ≥ 〈 P̂; Q̂

� �
〉 =2j�� , respectively. Al-

though the former seems uncontroversial (6), which represents the fun-
damental limit on the measurement statistics for any state preparation,
the latter was proven to be incorrect and can be violated experimentally
(7). Following this observation, there has been a considerable amount
of lively debate on uncertainty relations as a result of the new inequal-
ities for generalizing original ones (8–14). Ozawa (8, 9), Hall (11), and
Branciard (12) independently derived new inequalities for the EDR,
which were later experimentally verified with polarized neutrons (15, 16)
and photons (17–22).

The EDR implies the impossibility of simultaneouslymeasuring two
noncommuting variables to arbitrary precision. That is, a simultaneous
measurement, called joint measurement, of P̂and Q̂ indicates the capa-
bility of measuring P̂without disturbing Q̂. Recently, Busch, Lahti, and
Werner (BLW)have proposed an idea for jointmeasurements of qubits,
by which a general error–trade-off relation is obtained as the uncertain-
ty relation (23, 24). Because the jointmeasurement is available, onemay
approximate this joint measurement to the unavailable joint measure-
ment of the other two operators, which follows the spirit ofHeisenberg’s
original idea in 1927, as claimed in the BLW proposal. Specifically, two
compatible observables C and D are defined by Busch et al. (23, 24),
which are noncommuting but own common eigenvectors. Because they
can be measured jointly, C and D are used to approximate two in-
compatible observablesA and B. The BLW scheme aims to find com-
bined approximation errors constrained by the incompatibility degree
of the target observablesA andB (See Fig. 1 for a conceptual understand-
ing of the idea.). The combined approximation errors are considered as
the worst-case estimate of the inaccuracy, which are defined in the BLW
proposal as figures of merit characterizing the performance of the
measuring device, rather than the disturbance induced by the mea-
surement. Meanwhile, different from the definition given in previous
studies (8, 9, 11, 12), the BLW error–trade-off relation can be state-
independent and provides amore reasonable bound of themeasurement
precision.
RESULTS
The system and the scheme
We report experimental verification of Heisenberg’s EDR by a single
trapped 40Ca+ ion, following the BLW proposal. The atomic ion is con-
fined in a harmonic trap, that is, within the Lamb-Dicke regime of a
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linear Paul trap, with an axial frequency of wz/2p = 1.01 MHz and a
radial frequency of wr/2p = 1.2 MHz. We encode a qubit into two elec-
tronic levels ↓〉 ≡ S1=2;mJ ¼ þ1=2〉

���� and ↑〉 ≡ D5=2;mJ ¼ þ3=2〉
���� ,

where mJ is the magnetic quantum number (see Fig. 2A). Doppler
cooling and resolved-sideband cooling are performed mainly along
the axial direction, yielding the final average phonon number n�<0.1
along the axial direction with the Lamb-Dicke parameter h ∼0.09.
Together with the optical pumping, the system is initially prepared in
↓〉j . We carry out the unitary rotations between the two encoded levels
and implement projective measurement on ↑〉j by the electron shelving
technique (see the Supplementary Materials).

Before presenting our experimental results, we first specify some im-
portant points in our experimental scheme.We consider the positive op-
eratorsA± ¼ I ± a ⃗⋅ s ⃗ð Þ=2 andB± ¼ I ± b ⃗⋅ s ⃗

� �
=2 regardingA and

B, respectively, where a ⃗ and b ⃗ are unit vectors and s ⃗ ¼ sx; sy; sz
� �

represents a vector associatedwith the usual Paulmatrices. To be jointly
measurable, the compatible observables C andD, as the approximation
ofA and B, own the positive operators C± ¼ I ± c ⃗⋅ s ⃗ð Þ=2 and D± ¼
Zhou et al. Sci. Adv. 2016;2 : e1600578 21 October 2016
I ± d ⃗⋅ s ⃗
� �

=2, which satisfy ∥c ⃗∥ ≤ 1, ∥d ⃗∥ ≤ 1; and ∥c ⃗ þ d ⃗∥þ
∥c ⃗ � d ⃗∥≤2.

The essential step of our execution is the jointmeasurementG on the
compatible observables C and D. In the study of Busch et al. (23), G is
associated with the POVMoperatorsG±,± commonly owned byC± and
D± with the marginality relation C± =G±,+ +G±,− andD± =G+,± +G−,±.
Generally speaking, the POVM can be achieved in a qubit with the as-
sistance of another auxiliary qubit, implying the requirement of two
qubits for implementing the operations. However, in our experiment,
we construct the POVMs by single-qubit operations, and thus, the BLW
scheme can be verified on a single qubit. To this end, the POVMs con-
structed are not general but satisfy the restricted condition

rankðGÞ ≡ 1 ð1Þ

which means that only some special POVMs are achievable in the
single-qubit system. The condition also implies that we have to involve
a prefactor Tr[G] in the measurement of the POVM operator. Besides,
in our ion trap system, the projective measurement is performed on ↑〉j .
Thus, we have to first rotate the POVMs unitarily to be in line with ↑〉j
before making the measurements.

Ina single-qubit system, for eachPOVMelementoperatorGm,n (m,n =±)
applied on a density operator r, the measurement result pr(Gm,n) and
the normalized density operator Kr Gm;n

� �
correspond, respectively,

to pr(Gm,n) = Tr[Gm,nr] and Kr Gm;n
� � ¼ ffiffiffiffiffiffiffiffi

Gm;n
p

r
ffiffiffiffiffiffiffiffi
Gm;n

p
=pr Gm;n
� �

;
with ∑m,nGm,n = 1. To simplify the description below, we rewrite Gm,n as
G by neglecting the subscripts m and n. Defining a pure-state measure-
ment basis φ〉j , we obtain a measurementM along the same direction as
φ〉j satisfyingM ≡ Tr M½ �jφ〉〈φj and Tr[M] = Tr[G]. If there is a unitary
operation U mapping G to M with M = UGU†, the density operator
changes accordingly as r′ ¼ UrU†. Therefore, we reach important re-
lations as below

prðGÞ ¼ Tr½G�pr′ðjφ〉〈φjÞ
KrðGÞ ¼ U†Kr′ðjφ〉〈φjÞU

which are one-by-onemappings between the POVMand the projective
measurement on φ〉j . Because no unitary transformation changes the
a b 
c 
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Fig. 1. Conceptual understanding of the BLW scheme for testing Heisenberg’s
EDR. (A) Conceptual diagramof the BLWproposal. A jointmeasurement of compatible
observables C and D is carried out as an approximation of the incompatible observ-
ablesAandB, respectively. TheWasserstein distancesD A; Cð Þ2 andDðB;DÞ2 satisfy the
error–trade-off relation. We emphasize that, in our experiment, C andD cannot be
measured directly but can be obtained from the positive operator-valued measure
(POVM) operator G, which is detected experimentally. (B) The Bloch vectors a, b,
c, and d, corresponding to the observablesA, B, C, andD, respectively, are plotted
following the implementation steps in our experiment with qin defined in the text.
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Fig. 2. A single trapped ion manipulated for testing Heisenberg’s EDR. (A) Relevant levels of the 40Ca+ ion and transitions. We encode the qubit in S1=2;mJ ¼ þ1=2〉
�� and

D5=2;mJ ¼ þ3=2〉
�� and denote them by ↓〉j and ↑〉j , respectively. A narrow-linewidth 729-nm laser couples the two encoded states under carrier transitions. We monitor fluo-

rescence due to spontaneous decay from 4P1/2 for qubit readout. (B) Experimental implementation steps and the corresponding states of the system in Bloch sphere. The
ion is first laser-cooled close to the vibrational ground state. The experiment starts from the qubit state of ↓〉j and evolves to ϕ〉j under the preparation pulse UC(q1, f1), with

q1 ¼ arcsin 1� að Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að Þ2 þ 1� bð Þ2

q� �
and f1 = 0. Then, themeasurement of the expectation of the observablesA,B, andG is performedby themeasurement pulse UC(02, f2)

(see Table 1 for values), followed by the detection on ↑〉j .
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rank of an operator, the POVM operator G can be achieved by a
pure-state–relevant positive operator, strictly obeying the condition
in Eq. 1.

In our case with a single qubit consisting of the upper level ↑〉j
and the lower level ↓〉j , we assume that G ¼ g0I þ g ⃗⋅ s ⃗. Provided
that ∥g ⃗∥2 ¼ g20 is satisfied and the ranks of all the POVM operators
are units, the operators can be directly measured by combining a
unitary operation and a projective measurement on ↑〉j . In addition,
the marginality relations between G±,± and C±, D± imply that the
condition of∥g ⃗∥2 ¼ g20 is equivalent to∥c ⃗ þ d ⃗∥þ ∥c ⃗ � d ⃗∥ ¼ 2, that
is, 1þ c ⃗⋅d ⃗¼ ∥c ⃗ þ d ⃗∥ and 1� c ⃗⋅ d ⃗ ¼ ∥c ⃗ � d ⃗∥, under which find-
ing optimal approximations to A and B are always available (see the
SupplementaryMaterials). In the trapped ion system, the unitary operators
under the government of carrier transitions are accomplished by tuning
the evolution time and the laser phase as explained in Fig. 2B. Thus, we
obtain the Wasserstein distances (23) between A, C and B, D, in as-
sociation with Heisenberg’s EDR. Then, we examine themaximal uncer-
tainty for various states of the system and different choices of C andD.

In our implementation, we considerA ¼ sywithA± = (I±sy)/2 and
B ¼ sz with B± = (I ± sz)/2. As the approximation ofA andB, the two
compatible observables CandDcanbe set asC±= (I±asy)/2 andD±= (I±
bsz)/2, where a

2 + b2 = 1 is satisfied as a result of the requirement for
unit rank of the POVMs. In our case, C± and D± are not directly mea-
surable but are obtained from the POVM operators G+,± = [I + asy ±
bsz]/4 and G−,± = [I − asy ± bsz]/4. As clarified below, by using the
carrier transition and then making projective measurements on ↑〉j ,
we can achieve measurements of the observables A±, B±, and G±,±.

In the operations presented below, we define a = sin (qin) and b =
cos (qin) (Fig. 1B). For a state r, the errormeasure (23, 25) betweenAand
C is estimated by theWasserstein distance Dr A; CÞ2�

(see Materials and
Methods), and similarly, we haveDr B;DÞ2�

for the difference between
B andD. Heisenberg’s EDR for the pair of incompatible observables is
determined by maximizing the summation of the two Wasserstein
distances over all the possible states of the system with

D ðA;BÞ2 :¼ max
r

½DrðA; CÞ2 þ DrðB;DÞ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2

q ffiffiffip

¼ 2 ð1� aÞ þ ð1� bÞ ≥ 2ð 2� 1Þ ð2Þ

where the second equality holds when the system is prepared in
φ〉 ¼ cos q1=2ð Þj j↓〉� i sin q1=2ð Þeif1 ↑〉j , with q1 and f1 defined in
Fig. 2B, and the state-independent lower bound Dbl A;BÞ2 :¼�
2

ffiffiffi
2

p � 1
� �

of the uncertainty is reached at a ¼ b ¼ 1=
ffiffiffi
2

p
. Equation

2 represents a worst-case estimate of the inaccuracy applicable to all
possible states.

Experimental observation
Under the rotating-wave approximation (see the Supplementary
Materials), the Hamiltonian of our case in units of ħ = 1 is given
by HC = W(s+e

if + s−e
−if)/2 (26), where W is the Rabi frequency

representing the laser-ion coupling strength, s± are the usual Pauli
operators, and f is the laser phase. As shown in Fig. 2B, the experiment
starts from the state ↓〉j , and the system evolves under UC(q, f),
that is,

UCðq; fÞ ¼ cos ðq=2ÞI � i sin ðq=2Þðsxcos f� sysin fÞ ð3Þ

with q = Wt determined by the evolution time.
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To verify Heisenberg’s EDR, we vary a and b to reach the max-
imal Wasserstein distance as in Eq. 2. The first step is to prepare
the state f〉j . We fix the laser phase f1 and steer the system under
UC(q1, f1) toward φ〉j , which is tuned with the change of a and b
for an optimal value corresponding to the worst-case estimate of
inaccuracy. The operation is executed by a 729-nm laser coupling
↑〉j and ↓〉j for 2 to 3 ms (see details in the Supplementary Materials).
The second step is to measure the necessary observables A±, B±, and
G±,±, which is achieved by another evolution under UC(q2, f2) and then
a detection on the state ↑〉j . To this end, we first drive the ↓〉↔ ↑〉jj
transition by the 729-nm laser following the scheme in Table 1.
Detection is then made by reapplying the cooling lasers and counting
the emitted photons for 4 ms by the photomultiplier tube.

A faithful observation requires a clear understanding of the opera-
tional imperfections. From an effective period of Rabi oscillation, we
estimate the error of the initial-state preparation to be 3(1)% and the
imperfection in the detection to be 0.35(2)% (the numbers in parenthe-
ses are the SEM). The radial thermal phonons cause a dephasing-like
behavior that yields an accumulative deviation in the evolution. All
these errors are experimentally determined, and the induced deviation
can be corrected.Hence, the Rabi oscillation under a p/2 pulse ofUC can
reach a fidelity of 99.8(1)% (see the Supplementary Materials), and
thus, the observed data of A, B, C, and D demonstrate an excellent
agreement with the theoretical prediction. Errors, reflecting the fluctu-
ation due to unstable laser power andmagnetic field, are calculated and
included in the SD.

Typical experimental data sets of 〈A±〉, 〈B±〉, 〈C±〉, and 〈D±〉 are de-
picted in Fig. 3, which clearly demonstrate no possibility of good ap-
proximations of C to A and D to B, simultaneously. Provided qin →
p/2, we haveC → sy, indicating the nearly perfect case forC approach-
ingA. However, in this case, we haveD → I=2, implying that we cannot
obtain any information aboutB.With qin away from p/2,DapproachesB,
andmeanwhile,C turns out to bemuchdifferent fromA. The sumof their
differences, reflecting the balance between the twodifferences, reaches the
minimum at qin = p/4 (see the inset of Fig. 4).

The error–trade-off relation is witnessed in Fig. 4 by theWasserstein
distances D A; CÞ2�

and D B;DÞ2�
, which are calculated by the experi-

mental data in Fig. 3. The observation fits the theoretical prediction
“when one is more precisely measured, the other is more disturbed”
very well. One cannot predict both outcomes of two incompatible mea-
surements to arbitrary precision. Because it results from the maximal
Wasserstein distances over all the possible states in the system, the ob-
served error–trade-off relation represents the state-independent in-
accuracy and reflects the essence of Heisenberg’s EDR.
Table 1. Scheme for the measurement pulses in experimental ob-
servation of the inaccuracy of the error–trade-off relation for A ¼¼ sy

and B ¼¼ sz .
A+
 A−
 B+ B−
 G+,+
 G+,−
 G−,+
 G−,−
q2
 p
2

p
2
 0 p
 2 arcosffiffiffiffiffiffiffiffiffiffiffi

1þ b
2

r !
 2 arcosffiffiffiffiffiffiffiffiffiffiffi
1� b
2

r !
 2 arcosffiffiffiffiffiffiffiffiffiffiffi
1þ b
2

r !
 2 arcosffiffiffiffiffiffiffiffiffiffiffi
1� b
2

r !
f2
 0
 p
 0 0
 0
 0
 p
 p
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Because A and B in our case are maximally incompatible, the
lower bound of the uncertainty can reach 2

ffiffiffi
2

p � 1
� �

, the minimum
in Eq. 2.We plot this lower bound in Fig. 4 by the dashed line tangent to
the state-independent curve of the error–trade-off relation. The tangent
point implies a ¼ b ¼ 1=

ffiffiffi
2

p
. It is worth noting that the error bars,

which dominantly resulted from the statistical deviation (due to
quantum projection noise), represent the largest valid range of the
experimental observation, rather than the true values allowed to be be-
low the theoretically predicted lower bound of the uncertainty. Besides,
the error bars here are four times as long as those in Fig. 3, reflecting the
maximum possible deviation of statistics in measuring four variables
(see Materials andMethods). More measurements can shrink the error
bars but could not present new physics with respect to the 40,000
measurements performed here. Moreover, by fixing a and b, but
varying the state φ〉j , we can obtain tangent curves below the state-
independent curve, which represent the error–trade-off relation with
the state dependence. This example, with a ¼ b ¼ 1=

ffiffiffi
2

p
, is illustrated

in the Supplementary Materials. Furthermore, extending our imple-
mentation to other Pauli operators, for example,A ¼ sx andB ¼ sz,
is straightforward and will result in the same EDR as simply verified
in Fig. 5. For this case, we performed operations for optimal state
preparation and measurement largely different from those for A ¼
sy and B ¼ sz (see the Supplementary Materials) but obtained similar
EDRs. The similarity indicates the universality of Heisenberg’s uncer-
tainty relation.
Zhou et al. Sci. Adv. 2016;2 : e1600578 21 October 2016
DISCUSSION
Because modern technology has been progressing steadily toward the
exploration ofmuch smaller objects, our operations, particularlymeasure-
ments, confront the ultimate quantum limits. As a result, Heisenberg’s
uncertainty relation not only bounds the accuracy of the operations avail-
able with current laboratory techniques but also helps in understanding
the very foundations of quantum mechanics. In quantum information
science, the uncertainty relations have already been used to prove the
security of quantum key distribution (27) and to explore the influence
from quantum memory (28). In this context, the use of information-
theoretic definitions, for example, entropic uncertainty relations (29)
in terms of information, to quantify the limited information gained
on each observablemight bring new insights into quantum information
theory. On the other hand, more in-depth research on the uncertainty
relation may also bring new insights into the foundations of quantum
theory, such as a deeper understanding of nonlocality (30, 31).

We note that the BLW idea has stimulated broad interests in further
exploring error–trade-off relations, such as the optimal joint measure-
ment in a geometric manner (32) and possible joint measurement for
arbitrary observables of finite dimensional systems (33). Because the
inequality, as the inaccuracy in the error–trade-off relation, is physically
more specific than the measurement uncertainty or the preparation
uncertainty, the BLW idea can be readily applied to further checking the
security of quantum key distribution and the nonlocality. In addition,
the inequality in the BLW scheme is different from other uncertainty re-
lations (8–14). As a result, applying the BLW idea to quantum
information science as done for other inequalities, for example, in the
studies ofWatanabe and Sagawa (34) andDressel andNori (34, 35), will
help in scrutinizing the lowest bound amongvarious uncertainty relations,
which might optimize the available information gained on each qubit.

Our demonstration by a single ultracold trapped ion system is the
first evidence to confirm the BLW-formulated error–trade-off relation
in a pure quantum system. This is also an essential step toward
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understanding fundamental uncertainties of quantum mechanical
variables, the prerequisite of exploring limits of ultraprecisionmeasure-
ments. Our experimental scheme is readily applicable to other trapped
ion species and single-spin systems for quantum information purposes.
The idea of achieving POVMs in a single-ion system will be applied to
other quantum tasks, such as accurately testing the inequalities in pre-
vious studies (32, 33) at the single-qubit level.
MATERIALS AND METHODS
Operation details
In our experiment, we demonstrated variation of the observables with
respect to a and b. Our operations included steering toward the state
φ〉j by UC(q1, f1) and realizing the observables by UC(q2, f2),
followed by the detection on the state ↑〉j . The step can be mathe-
matically written as

〈K±〉 ¼ Tr½K±� ⋅ 〈↑ Uj j↓〉〈↓ U†
�� ��↑〉 ð4Þ

where U = UC(q2, f2)UC(q1, f1) and K = A, B, G.
The trace distance for a pair of observables E and F, with Eþ ¼

e0I þ e ⃗⋅ s ⃗ð Þ=2 (E− = I − E+) and Fþ ¼ ð f0I þ f ⃗⋅ s ⃗Þ=2 (F− = I − F+)
applied on the state r ¼ I þ r ⃗ ⋅ s ⃗ð Þ=2, is given by

DrðE; FÞ2 :¼ 2∑
i¼±

pEi � pFi
�� �� ¼ 2je0 � f 0 þ r

→ ⋅ ðe→ � f
→Þj ð5Þ

wherepJi ¼ Tr rJi½ � (J = E, F) is the probability distribution. In the qubit
case, the trace distance was actually theWasserstein distance defined in
Busch et al. (23) for inaccuracies. Equation 5 shows that the SD of the
trace distance was four times that of the pi observed.

In our case, Dr A; CÞ2 ¼ 2 1� að Þ� ��ryj and Dr B;DÞ2� ¼ 2ð1�
bÞjrzj;where ry = sin q1 cos f1 and rz = − cos q1 (see the Supplementary
Materials). The probability distribution for the observables in the main
Zhou et al. Sci. Adv. 2016;2 : e1600578 21 October 2016
text can be measured as in Eq. 4. Heisenberg’s EDR is D A;BÞ2 :¼�
max

r
Dr A; CÞ2 þ Dr B;DÞ2� ���

, where the maximum is reached by a

state φ〉j prepared at q1 ¼ arcsin 1� að Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aÞ2 þ 1� bÞ2� ��q�

and f1 = 0. Here, we have to mention that the D A;BÞ2�
we defined

was slightly different from that in Busch et al. (23), which used the
summation of the respective maximum of Dr A; CÞ2�

and Dr B;DÞ2�
.

We preferred to work with our formulation because of the con-
venience in experimental implementation.

Numerical treatments
Numerical simulation was performed to fit the experimental observation
and assess the imperfection of experimental execution. Themain devia-
tions in our experiment came from two aspects: thermal phonons from
the radial direction yielding offsets of Rabi oscillations and imperfection
in qubit detection. For the former, an effective mean deviation at differ-
ent moments could be estimated by means of a fitting method (36, 37).
This kind ofmean deviation is nearly constant and thus easily corrected.
The detection error yielded a mean deviation of 0.35(2)% and could be
calibrated by a practical method (38). The statistical error in our exper-
iment was calculated by the Monte Carlo simulation with a peak value
of 0.025. The decay and dephasing times of the qubit were 1.1 s and
2 ms, respectively, whose detrimental effects were negligible during the
short periods (∼ 8 ms) of our operations. Other possible imperfections
could also lead to small errors, such as fluctuations of AC Stack shift due
to power instability of the 729-nm laser and the fluctuating magnetic
field, which were assessed to be less than 2% from the Rabi oscillation
and included in the SD represented by the error bars.
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