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Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized
by a progressive loss of dopaminergic neurons in the substantia nigra alongside
the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have
been directed to the restoration of the dopaminergic system, and the prevention
of dopaminergic neuronal cell death in the midbrain. This review discusses the
physiological mechanisms involved in PD as well as new and prospective therapies for
the disease. The current data suggest that prevention or early treatment of PD may
be the most effective therapeutic strategy. New advances in the understanding of the
underlying mechanisms of PD predict the development of more personalized and integral
therapies in the years to come. Thus, the development of more reliable biomarkers at
asymptomatic stages of the disease, and the use of genetic profiling of patients will
surely permit a more effective treatment of PD.
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INTRODUCTION

Due to the inability to find effective preventive or curative therapies (Fox et al., 2018),
epidemiological predictions for the worldwide incidence of Parkinson’s disease (PD) are not
optimistic (Lees et al., 2009; AlDakheel et al., 2014; Savica et al., 2016). For example, it is projected
that by the year 2040, neurodegenerative diseases will surpass cancer as the leading cause of disease-
related death (Gammon, 2014). Accordingly, there is an urgent need to identify effective treatments
that transcend a reduction of symptoms.

PD leads to an array of symptoms and is characterized by a progressive loss of motor
functions with bradykinesia, gate alterations, and posture instability (Gelb et al., 1999; Dexter and
Jenner, 2013). Other symptoms include anxiety, depression, cognitive dysfunction, hallucinations,

Abbreviations: 5-HT, serotonin; AADC, the aromatic L-amino acid decarboxylase; AD, Alzheimer’s disease; cAMP, cyclic
adenosine monophosphate; DBS, deep brain stimulation; ESC, embryonic and adult stem cells; GPi, globus pallidus
internal; iPSC, induced pluripotent stem cells; LRRK2, Leucine-Rich Repeat Kinase 2; MSCs, mesenchymal stem cells;
MSN, medium spiny neurons; NK1, substance P; NSC, neural stem cells; NOS, nitric oxide synthase; PD, Parkinson’s
disease; RONS, reactive oxygen/nitrogen species; rRNA, ribosomal RNAs; SNc, substantia nigra pars compacta; SNpr,
substantia nigra pars reticulate; STN, subthalamic nucleus; tRNA, transfer RNAs; UPDRS, the unified PD rating scale;
VEGF, vascular endothelial growth factor; VTA, ventral tegmental area.
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hypophonia, micrographia, and dysphagia as well as
sialorrhea, dysphagia, hyposmia, impaired color vision,
bladder hyperreflexia, and abnormalities of nociception and
sleep (Voon et al., 2011; Hemmerle et al., 2012; Lindqvist
et al., 2012; Schapira et al., 2017b). The pathological
hallmark of the disease is the presence of Lewy bodies
containing increased levels of α-synuclein, neurofilaments,
and ubiquitin in neuronal and glial cells across an array
of brain regions (Braak et al., 1998; Kotzbauer et al., 2001;
Martin et al., 2012).

While PDwas first described almost 200 years ago (Parkinson,
2002), it took nearly 150 years to determine that deficiencies
of the dopamine (DA) system play a leading role in the
pathology’s etiology (Lees et al., 2009). In the mid-20th century,
Arvid Carlsson, who was later awarded the Nobel Prize in
Physiology and Medicine for these discoveries in 2000, found
that a decrease in DA levels in the brain led to PD-like
symptoms (Carlsson et al., 1957). Then, Alexander et al.
(1986) described parallel afferent pathways originating from
the dorsal striatum. It has since been argued that the death
of DA producing neurons leads to imbalanced communication
from the dopaminergic midbrain system. Inasmuch, it is
believed that motor dysfunction results from altered signaling
of both direct and indirect pathways to the Globus pallidus
internal (GPi)/Substantia nigra pars reticulata (SNpr) regions,
which significantly disrupts thalamic connectivity with the
motor cortex (Joyce, 2001; Gerfen and Surmeier, 2011;
Calabresi et al., 2014). Concerning the cognitive and emotional
deficits, it has been shown disruption of the output from
dopaminergic neurons in the ventral tegmental area (VTA;
Blonder and Slevin, 2011).

Despite these discoveries, the fundamental mechanisms
inducing dopaminergic cell death are still unknown (Olanow
and Tatton, 1999; Han et al., 2015, 2016). Among various pools
of neurons that produce DA in the central nervous system,
midbrain dopaminergic neuronal lesions alone can lead to
PD-like symptoms in animal models. However, there appears to
be some resilience associated with DA cell death, as humansmust
lose 48–68% of the dopaminergic neurons of the substantia nigra
pars compacta (SNc) and about 70–80% of the DA content of the
striatum to experience symptomatic PD (Bernheimer et al., 1973;
Fearnley and Lees, 1991).

Given that PD genesis is multifactorial and depends mainly
on the age of disease onset (Marsden, 1990; Cheng et al.,
2010; Okun, 2017), the prognosis is highly variable, and
personalized treatment regimens are theoretically possible.
While early diagnosis of PD is difficult, some display an
extended period (up to 5 years) of asymptomatic development
(Fearnley and Lees, 1991). This latent period of disease
progression opens up broad opportunities for therapeutic
intervention. Accordingly, the early detection of degenerating
dopaminergic neurons opens the possibility of halting PD
progression at asymptomatic stages. In this review article,
we review the pathological changes associated with the
functional disorganization of the frontostriatal circuit in PD and
overview current efforts to develop therapeutic approaches for
treating PD.

Anatomy, Morphology and Functional
Organization of the Midbrain DA System
The complexity of the dopaminergic system seems to coincide
with evolutionary development given that the number, size, and
distribution, as well as receptor subtypes of dopaminergic
neurons in the brain, increases alongside phylogenetic
complexity (Callier et al., 2003; Yamamoto and Vernier, 2011;
Yamamoto et al., 2013). For example, dopaminergic terminal
fields arising from midbrain clusters are more prominent and
less segregated in the neocortex of primates than in rodents (Joel
and Weiner, 2000; Björklund and Dunnett, 2007).

Dopaminergic neurons in the midbrain are mainly located
in the SNc and VTA, although some smaller clusters have been
found elsewhere, for instance, the dorsal andmedian raphe nuclei
(Ochi and Shimizu, 1978). In a classic article by Dahlstroem and
Fuxe (1964), SNc andVTADAneurons were characterized based
on their organization and projection patterns, which, in rat, can
be found discrete clusters (A8, A9, and A10 see Figure 1). SNc
neurons (cluster A9) innervate the dorsal and lateral striatum,
thus forming a nigrostriatal pathway (Andén et al., 1964), and
are necessary for the initiation and control of motor movements.
Accordingly, the degeneration of this pathway is considered to
be responsible for much of the motor dysfunction associated
with PD. The VTA (A10) innervates the ventral striatum, nucleus
accumbens, and limbic and cortical areas, and this way forms the
mesolimbic and mesocortical pathways (Willner, 1991; Schott
et al., 2008).

It has been documented that VTA neurons are involved in
the regulation of motivation and reward as well as emotion-
related behavior. Accordingly, degeneration of dopaminergic
VTA neurons may underlie the development of depression and
anhedonia in patients with PD (Thobois et al., 2010; Blonder and
Slevin, 2011; Drui et al., 2014). Finally, the A8 cluster projects
from the retrorubral field (RRF), and functionally appears related
to the A10 cluster.

While the contributions from Dahlstroem and Fuxe (1964)
were monumental, recent research calls this oversimplified view
into question. As referred to above, organizational complexity
is more significant in primates than in rats. Furthermore, the
projection patterns from SNc and VTA neurons are not so
refined, even within rodents. For examples, in addition to the
targets listed above: (i) DA neurons of the SNc also innervate
cortical and limbic regions; (ii) dopaminergic VTA neurons
project to both the ventral striatum and the ventral-medial
aspects of the head of the caudate-putamen; and (iii) the A8 cell
group, which forms the dorsal and caudal expansion of the
A9 cell group, contains cells that project into striatal, limbic, and
cortical regions (Bentivoglio and Morelli, 2005; Björklund and
Dunnett, 2007).

In general, midbrain DA neurons could be divided into two
classes: the DA neurons located in the more dorsal tier of VTA
and SNc and A8 cluster cells that are typically fusiform in
appearance, with 2–5 dendrites emanating from the poles of
each neuron (Björklund and Dunnett, 2007). These A8 cells are
characteristically calbindin-positive and express relatively low
levels of the DA transporter (DAT). In contrast, more ventrally
located DA neurons are both multipolar in shape, are packed
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FIGURE 1 | Diagram depicting the dopaminergic system of the midbrain. The dotted lines indicate the dopaminergic regions of the midbrain. GP, globus pallidus;
SNc, substantia nigra pars compacta; VTA, ventral tegmental area; RRF, retrorubral field; A8, A9, and A10—clusters of dopaminergic neurons in the midbrain (RRF,
SNc, and VTA clusters, respectively).

more densely, are calbindin-negative, and express higher levels
of DAT. The ventral tier neurons extend (probably exclusively)
to the striatum where they innervate, above all, the striosome
compartment. Furthermore, many of these cells also possess
prominent dendritic arborizations that spread within the zona
reticulata (Björklund and Dunnett, 2007).

DA neurons of midbrain clusters have several unique
morphological characteristics that may contribute to their
specialized functions. For example, DA neurons appear
capable of storing and releasing DA from their dendrites,
permitting self-regulatory control of neurotransmitter release
from nigral afferent fibers as well as to influence the activity
of non-dopaminergic nigral cells (Cheramy et al., 1981). SN
midbrain neurons typically have long unmyelinated axons and
massive dendrites that branch into SN reticulata; the somas
of these DA neurons make up much less than 1% of the total
cell volume. A relatively small number of neurons provide the
massive dopaminergic innervation of the striatum. It is estimated
that each SN neuron can have as many as 150,000 presynaptic
terminals in the striatum (Sulzer, 2007). In that regard, much
is required for the normal functioning of a neuron with such
a morphology. For example, each DA neuron must contain
highly active axonal transport through microtubules to support
metabolic and repair processes, synaptogenesis, removal of cell
waste, and communication with other brain cells (Prots et al.,
2013, 2018; Lu et al., 2014). In turn, each of these processes
requires constant mitochondrial production of adenosine
5’-triphosphate (ATP) to assist the motor proteins dynein,
kinesin, myosin, and actin (Course and Wang, 2016; Course
et al., 2017; Vanhauwaert et al., 2019). Altogether, this makes
the DA neurons in SN especially susceptible to mitochondrial
dysfunction, and the resultant energy deficits could contribute
mightily to DA-related impairments, such as those occurring in

PD (Horowitz et al., 2011; Venkateshappa et al., 2012; Burbulla
et al., 2017; Prots et al., 2018).

Mitochondrial Dysfunction: A Pivotal
Pathological Mechanism of Parkinson’s
Disease
Mitochondria are complex cytosolic organelles of eukaryotic cells
whose primary function is the generation of cellular energy in
the form of ATP by oxidative phosphorylation. Mammalian
mitochondria contain between 2 and 10 mitochondrial DNA
(mtDNA) molecules encoding 22 transfer RNAs, two ribosomal
RNAs, and 13 polypeptides, each of which is part of the
respiratory chain and the oxidative phosphorylation system
(Schapira, 1994). The mitochondrial respiratory chain contains
four protein complexes that form the site of oxidative
phosphorylation. This site is responsible for NADH and
FADH2 oxidation, co-occurring with the movement of protons
from the matrix into the intermembrane space. This movement
produces an electrochemical gradient denoted as mitochondrial
membrane potential (∆Ψm). This gradient stimulates the ATP
synthase to reduce molecular oxygen and synthesize ATP. This
step is fundamental in aerobic metabolism and constitutes the
primary provider of ATP at the final stage of cellular respiration
(Schapira, 1994; Videira and Castro-Caldas, 2018). Nevertheless,
the biological function of mitochondria goes far beyond energy
production and includes the metabolism of lipids and amino
acids and the support of intermediate metabolic pathways, such
as the Krebs cycle.

Mitochondria also play numerous regulatory actions
outside of metabolism, which underscores the importance of
maintaining optimal mitochondrial function. For example,
mitochondrial cells regulate calcium homeostasis, remove free
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radicals, and control programmed neuron death (Keane
et al., 2011; Franco-Iborra et al., 2016). In that regard,
mitochondrial dysregulation or dysfunction can lead to an
array of cellular and neuronal circuit perturbations. One
common source of such disruptions is oxidative stress and,
cyclically, neuroinflammation. Oxidative stress occurs as a
result of high levels of unstable radicals, also called reactive
oxygen and nitrogen species (RONS). These radicals can, rapidly
and somewhat indiscriminately, alter proximal molecular
structures through chained reduction-oxidation (redox)
reactions (Betteridge, 2000). Proper mitochondrial-dependent
cellular function is particularly threatened by oxidative stress
due to multiple unique features of mitochondria: (i) electron
leakage from the transfer chain can react with oxygen-generating
RONS, thus perpetuating and amplifying proximal; (ii) mtDNA
is particularly susceptible to damage due to its proximity to the
electron transfer chain, and (iii) mitochondria lack effective
mechanisms for mtDNA repair and protection.

Under physiological conditions, RONS production is
neutralized by endogenous antioxidant factors such as
Manganese superoxide dismutase and glutathione. However,
many factors can disrupt this balance, such as diet, injury, illness,
and age. For example, the ‘‘free radical theory of aging’’ (Harman,
1956), now commonly referred to as the ‘‘oxidative damage
theory’’ (Gladyshev, 2014), posits that aging itself is the result of
an oxidative stress-favoring imbalance of a tripartite relationship
between RONS generation, antioxidant defenses, and repair
from oxidative damage (Beckman and Ames, 1998). Indeed,
many have shown that in aging, the vulnerability of mtDNA
to damage increases due to reductions of antioxidant defense
mechanisms (Chakrabarti et al., 2011; Kubben et al., 2016).
It is noteworthy that this assertion has been under continued
scrutiny (Beckman and Ames, 1998; Payne and Chinnery, 2015),
likely due to multiple potential avenues of mtDNA dysfunction,
for example, age-related mutation of mtDNA (Bandy and
Davison, 1990; Arnheim and Cortopassi, 1992). That said, such
alterations frequently coincide with increased levels of free
radicals, which can perpetuate the aforementioned imbalance
and result in elevations of oxidative stress. Almost a decade
ago, a therapeutic approach for PD targeting the mitochondrial
dysfunction was reported. This study consisted of a double-blind,
placebo-controlled study to assess the effect of the antioxidant
MitoQ in PD pathology progression, and it was the first clinical
trial of a mitochondria-targeted antioxidant (Snow et al., 2010;
Chaturvedi and Beal, 2013).

Increased RONS production and/or decreased neutralization
can also cause neuronal death through lipid peroxidation
and oxidation and nitration of proteins (Keane et al., 2011;
Videira and Castro-Caldas, 2018). Together, these processes
can then trigger apoptotic signaling leading to mitochondrial
dysfunction. Indeed, RONS-initiated mitochondrial dysfunction
accelerates the damage and death of dopaminergic neurons
(Keane et al., 2011; Bose and Beal, 2016). Thus, energy and
mitochondrial dysfunction is the earliest modifiable defect
in the aging brain, and treatment with agents that improve
mitochondrial function or enhance antioxidant activity may
be beneficial in neurodegenerative diseases (Beal, 2005). A

recent study investigating the role of telomerase in neuronal
degeneration reported a new mechanism of mitochondrial
dysfunction. Kim H. et al. (2017) used CRISP9/Cas9 technology
to eliminate telomere repeats in the Neuroblastoma cells SH-
SY5Y. Telomere removal resulted in mitochondrial dysfunction
that adversely affected mitochondrial respiration and cell
viability. Telomere removal also altered the levels of various
PD-associated proteins, including PTEN-induced putative kinase
1, peroxisome proliferator-activated receptor gamma coactivator
1-alpha, nuclear respiratory factor 1, parkin, and aminoacyl
tRNA synthetase complex interacting multifunctional protein
2. Finally, telomere removal enhanced α-synuclein protein
aggregation, suggesting that this mechanism may be one of the
links between aging and PD (Kim H. et al., 2017).

Dopaminergic Input and Organizational
Features of the Dorsal and Lateral Striatum
As reviewed above, it is generally accepted that dysfunction in PD
stems from the degeneration of SNc neurons (i.e., nigrostriatal
pathway), which leads to motor dysfunction and the loss of
VTA neurons (i.e., mesolimbic and mesocortical pathways),
which leads to behavioral dysregulation, including demotivation,
anhedonia, and depression within PD (Thobois et al., 2010;
Blonder and Slevin, 2011; Drui et al., 2014). While both pathways
have been studied extensively across an array of conditions and
pathologies, the modulatory mechanisms of the nigrostriatal
pathway neurons have been fairly well described while the
varied mechanisms and roles of VTA efferents continue to
be elucidated. Within the nigrostriatal pathway, GABAergic
medium spiny neurons (MSN) of the dorsal/lateral striatum
receive excitatory glutamatergic signals that can be modulated
via dopaminergic inputs originating from the SNc. MSNs are
moderately sized cells with large, multi-structured dendritic
arbors that constitute a staggering 95% of all postsynaptic
nigrostriatal neurons (Kemp and Powell, 1971). Local circuit
interneurons of the dorsal striatum are also actively involved
in regulating MSN activity (Gittis and Kreitzer, 2012) and
can be subdivided into cholinergic interneurons (1–2% of all
striatal cells) and aspiny GABAergic interneurons known as
low-threshold, fast-spiking neurons (Lim et al., 2014). Striatal
cholinergic andMSNs express several neurotransmitter receptors
including the γ-aminobutyric acid (GABA), glutamate, DA,
adenosine, serotonin, opioids, and substance P (NK1) receptors
(Lee et al., 1997; Tzaferis and McGinty, 2001; Solbrig et al., 2002;
Lim et al., 2014).

Present on MSNs is multiple functional receptors capable of
binding DA. All DA receptors are G-protein coupled and are
generally classified into two subgroups according to structure,
function, and pharmacokinetic properties (Watts and Neve,
1997; Gerfen and Surmeier, 2011). The first often termed
‘‘D1-like receptors,’’ are comprised of D1 and D5 receptors
subtypes and, upon DA binding, drive adenylyl cyclase and
thus cyclic adenosine monophosphate (cAMP) activity. On
the other hand, ‘‘D2-like receptors,’’ which comprise D2, D3,
and D4 receptor subtypes, suppress cAMP activity, thereby
producing an inhibitory effect upon DA binding. While there is
some evidence that D1- and D2-like receptors can colocalize in
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4–6% of dorsal and 17–30% of ventral striatal MSNs (Matamales
et al., 2009; Gangarossa et al., 2013; Perreault et al., 2015),
there appears to be little, if any, functional competition between
receptor subtypes within the same neuron (Biezonski et al., 2015;
Frederick et al., 2015). This, therefore, yields two distinct MSN
subtypes that exist in approximately equal quantities (Gerfen
and Surmeier, 2011). These two types of MSNs can be further
organized based on their differential projection patterns. D1-like
containing MSNs monosynaptically innervate SNpr and are
thusly termed the ‘‘direct’’ pathway while D2-like containing
MSNs of the ‘‘indirect’’ pathway project to the GPi which, in
turn, innervates various interface nuclei of the basal ganglia
(Gerfen and Surmeier, 2011; Leisman et al., 2012, 2014; Leisman
and Melillo, 2013; Rangel-Barajas et al., 2015). MSNs of the
direct pathway also synthesize dynorphin and substance P
as co-transmitters. MSNs of the indirect pathway co-transmit
encephalin. While some have argued, particularly following
electrophysiological studies, that the complexity of DA system
physiology may be due to the coexpression patterns of D1-
and D2-like receptors described above on direct and indirect
pathway neurons, work using bacterial artificial chromosome
(BAC) transgenic mice confirms that the ‘‘murkiness’’ of this
system is instead a consequence of the complexity of striatal
circuitry (Gerfen and Surmeier, 2011).

The influence of dopaminergic cells on the brain and behavior
is impressive, considering that they account for less than 1% of
the total number of neurons in the brain. This is achieved due to
the numerous input signals by a small number of dopaminergic
neurons in the midbrain within the striatum (Nagy et al., 2006;
Reig and Silberberg, 2014). Indeed, MSNs integrate, and DA
modulates signals from the cortex, thalamus, hippocampus,
midbrain, brain stem, and various limbic structures (Plenz and
Wickens, 2016).

While each integrated signal within the striatum plays its
critical role, inputs from the frontal cortex are particularly
crucial in goal-directed movements. For example, while motoric
information from the premotor cortex (PrC) converges with
situational reward information from the dopaminergic system in
MSNs, all three of these systems are predominantly orchestrated
via input from the prefrontal cortex (PFC; Figure 2; Deutch,
1993; Vogelsang and D’Esposito, 2018). With a panoply of
roles in the top-down regulation of emotion, cognition, and
goal-directed planning, various subregions of the PFC participate
in the cognitive control and planning of movements. By
projecting to the PrC, the PFC organizes, and the PrC then
sequences voluntary bodily actions. The PrC then projects to
the primary motor cortex, which is responsible for executing
the associated movements. That having been said, movements
initiated by this pathway are further refined by sub-second,
situational updates that loop back to the PFC, PrC, and primary
motor cortex via several subcortical pathways. Simultaneous
glutamatergic projections from the PFC and PrC to the striatum
are subjected to conditional modulation via SNc DA, which in
turn projects via the direct and indirect pathways that loop back
to the PrC and primary motor cortices by way of interface nuclei
of the basal ganglia and, finally, the thalamus. These pathways
are jointly referred to as the frontostriatal circuit or motor loops.

The schematic diagram in Figure 2 describes the basal ganglia
circuitry involved in voluntary motor control affected in PD (Ray
and Strafella, 2010).

As alluded to above, the dorsal striatum controls and
modulates signals passing from the PFC and PrC areas toward
themotor cortex through the striatal-motor loop. The complexity
of this process is underscored by the integration and signal
modulation of more than a dozen neurotransmitter systems and
their receptors (Figure 3). Accordingly, dopaminergic cell death
in PD is associated with massive disruptions in the flow of
information coming from the midbrain system and leading to
an imbalance in the action of the direct and indirect pathways
(Joyce, 2001; Alexander, 2004). However, the integrated use
of these various other neurotransmitter systems provides an
opportunity for targeted treatments in PD.

PROGRESS IN THE TREATMENT OF
PARKINSON’S DISEASE

Despite the fact that 200 years passed since the discovery of
PD, it was not until later in the 20th century that progress in
the treatment of PD was achieved, predominantly due to the
limited understanding of PD pathophysiology. Given Carlsson’s
discoveries of DA’s involvement in the 1950s, it became clear
that PD development involved dopaminergic cell death and a
decrease of DA in the striatum and other structures of the
forebrain. The first steps towards treatment were made by
Carlsson (2001), who proposed targeting this DA deficiency to
facilitate symptom reduction.

Treatment of Parkinson’s Symptoms With
the Dopamine Precursor, L-DOPA
Based on Carlsson’s discoveries, Hornykiewicz and colleagues
developed the treatment of PD with the DA precursor, L-DOPA
(Lees et al., 2015). This approach compensates for decreased
DA by promoting DA synthesis in midbrain DA neurons. As
evidenced in several pop-culture pieces, such as the award-
winning motion picture Awakenings starring Robin Williams
and Robert De Niro and based on the novel of the same
name written by Oliver Sacks, the success of this approach in
patients with PD was dramatic and often quite rapid (Birkmayer
and Hornykiewicz, 1961). Despite these dramatic effects, it
was reported that L-DOPA’s effects were often inconsistent,
even within the same patients, and often eventually induced
profound and intolerable side effects such as dyskinesia, motor
fluctuations, and various emotional disturbances and psychiatric
problems (Allan, 2007; Voon and Fox, 2007; Fox and Lang, 2008;
Salat and Tolosa, 2013). Furthermore, all the clinical benefits
of the treatment are eventually reverted with a continuation
of dopaminergic neuronal death, as L-DOPA administration
does not halt disease progression (Castrioto et al., 2013).
However, despite these limitations, the improvement seen in
some patients is so pronounced that these downsides do not
prevent its use. Indeed, after almost 60 years, L-DOPA remains
the gold-standard medication for PD (Tan, 2001; Salat and
Tolosa, 2013).
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FIGURE 2 | Diagram describing the frontostriatal motor loop controlling motor function under physiological and parkinsonian states. The prefrontal cortex (PFC)
participates in cognitive control and planning of movements. The premotor cortex organizes sequences of body actions, and the primary motor cortex is responsible
for executing them. Excitatory signals, which are initiated by cortical glutamatergic neurons, project from the PFC to the premotor cortex, and then to the motor
cortex through several subcortical structures. Then, the resultant signals received by the pyramidal cells of the motor cortex go to the motor neurons of the spinal
cord. Together, this is called the frontostriatal motor loop. Midbrain dopaminergic neurons play an essential role in modulating the signals that go along the
frontostriatal motor loop. Changes in the direct inhibitory (initiated by D2 receptors) and indirect (D1 receptors) pathways under parkinsonian states due to the loss of
dopaminergic neurons in the SNc are indicated. GABA, γ-aminobutyric acid; SNc, substantia nigra pars compacta; GPe, globus pallidus external; GPi, globus
pallidus internal; STN, subthalamic nucleus; PPN, peripeduncular nucleus.

Deep Brain Stimulation
In the late 1990s, the theory of the dual organization of the
striatum and its outputs to other parts of the basal ganglia (Albin
et al., 1989; DeLong, 1990; Figure 3) led to a renaissance of
neurosurgical procedures for the treatment of PD. Based on this
theory, a new surgical treatment to reduce the symptoms of PD
called deep brain stimulation (DBS) was established (Lozano and
Snyder, 2008; Lozano et al., 2010). Despite its highly invasive
nature, DBS led to significant improvements in the quality of
life of patients with advanced PD and consists of the direct
electrostimulation of the subthalamic nucleus (STN) or the
GPi that are hyperactivated due to the decrease in midbrain
dopaminergic neurons.

In general, among PD patients, before surgery, women
with PD use lower doses of dopaminergic medication and
experienced more dyskinesias, mobility limitations, and sensory
symptoms than men (Hariz et al., 2013). Nonetheless, after
DBS, both sexes show a similar functional improvement (Hariz
et al., 2013). Although it is effective at motor symptom
alleviation, DBS can also induce adverse side effects such as
an aggravation of freezing of gait and worsening of verbal
fluency (Carlson et al., 2014; Foley et al., 2017; Højlund et al.,
2017). Yet another downside of DBS is that PD-induced speech
disruption is much less responsive to DBS than any other
motor dysfunctions (Limousin andMartinez-Torres, 2008; Moro

et al., 2010). The mechanism underlying the beneficial effect
of DBS is not completely understood; however, the actual
evidence suggests that vascular changes may be involved in its
therapeutic effects (Pienaar et al., 2015). The overexpression
of the vascular endothelial growth factor (VEGF) and the
downregulation of neuroinflammatory factors are considered
to be key molecular mechanisms involved in DBS-induced
microvascular changes (Pienaar et al., 2015; Sharma et al., 2016;
Lozano et al., 2018).

L-DOPA and DBS treatments are frequently applied together
to potentiate their beneficial effects (Pienaar et al., 2015; Sharma
et al., 2016; Lozano et al., 2018). This said, although these
treatments can efficaciously reduce PD symptomology, they are
ineffective at halting PD progression. Still, L-DOPA and DBS
have been widely used for some decades now, thus improving the
lives of patients with PD where few other options are available
(Timpka et al., 2016).

Nigral Cell Transplantation
Another promising therapeutic strategy for PD is cell
replacement therapy to restore dopaminergic neurons (Kupsch
et al., 1995; Stoker et al., 2017). This strategy, supported
by reports in the late 1970s and early 1980s, showed that
dopaminergic neurons derived from the developing embryonic
midbrain were able to survive when implanted in adult brains
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FIGURE 3 | Diagram depicting the striatal neurotransmitter systems modulating the responses of the striatal neurons to the premotor cortex and SN afferent
signals. The direct and indirect pathways, as well as stimulating and inhibitory neurotransmitter receptors, are outlined. MSNs, medium spiny neurons; GABA,
γ-aminobutyric acid; SNc, substantia nigra pars compacta; ACh, acetylcholine; Enk, enkephalin; Dyn, dynorphin; GABA (PLTS and FS), aspiny GABAergic
interneurons, low-threshold spiking (PLTS) and fast-spiking (FS) neurons.

and, moreover, that the transplanted neurons formed axons that
extended through surrounding scar tissue and thus restored
innervation in the host brain (Björklund et al., 1976; Stenevi
et al., 1976). More recent investigations in animal models have
focused on the survival and differentiation of implanted cells.
This includes fetal dopaminergic neurons (Thompson and
Parish, 2013) as well as embryonic, adult, neural, mesenchymal,
and induced pluripotent stem cells (Freed et al., 2003; Hedlund
and Perlmann, 2009; Thompson and Parish, 2013; Barker et al.,
2016; Xu et al., 2016; Venkatesh and Sen, 2017; Zhang et al.,
2017). These efforts were accompanied by the development
of biomaterial scaffolds to provide support materials for cell
adhesion and growth (Moriarty et al., 2019).

The first clinical trials were conducted in the late 1980s
to investigate the transplantation of embryonic mesencephalic
tissues into the striatum but resulted in only minimal clinical
improvements (Drucker-Colín et al., 1988; Iriarte et al.,
1988; Madrazo et al., 1988a,b). However, after refining the
technique, subsequent clinical studies showed significant clinical
improvements following implantation of fetal DA neurons

into the brains of young PD patients (Freed et al., 2001).
Unfortunately, this approach resulted in high morbidity and
mortality rate in elderly patients (Madrazo et al., 1988b; Goetz
et al., 1989; Brundin et al., 2010). However, postmortem
studies showed a sustained survival of the transplanted cells
(Barrow, 2015; Björklund and Lindvall, 2017). These studies
revealed that cell replacement is a promising approach for
the treatment of PD, but with many problems that remain
unresolved. A significant issue has been the absence of significant
and consistent therapeutic effects in patients with PD. This
failure results in a 10-year moratorium for this kind of surgery,
which was imposed in 2003 (Han et al., 2015). Also, other
ethical and logistical problems exist, including the absence of
sufficient source material for tissue transplantation for a large
number of patients (Barker et al., 2016), inconvenient side effects
such as graft-induced dyskinesia (Lindvall and Björklund, 2004;
Lindvall, 2015, 2016), and the enhanced risk of tumor formation
(Wolff et al., 2015). Nonetheless, the biology of stem cells has
advanced significantly over the past decade, as has the obtention
of dopaminergic neurons from neural and induced pluripotent
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stem cells (Björklund and Lindvall, 2017). These advances aid
in resolving problems of availability as well as the rejection of
transplanted cells while circumventing ethical issues associated
with obtaining stem cells from embryos.

While promising, another problem with this approach
resides in the complicated architecture of the midbrain
dopaminergic system. As mentioned above, there are two
prominent populations of dopaminergic neurons in themidbrain
(i.e., SNc vs. VTA). While the loss of dopaminergic neurons
in the SNc is primarily associated with motor impairment,
the loss in the VTA may induce psychological and emotional
disturbances (Thobois et al., 2010; Blonder and Slevin, 2011; Drui
et al., 2014). In most clinical studies, stem cells were grafted
directly in the striatum or the lateral ventricle. Importantly,
dopaminergic neurons have complex relationships with glial
and other neural cells that support their survival and activity
including the formation of tripartite synapses with astrocytes
in the midbrain (Hennigan et al., 2015; Xin et al., 2019). An
ongoing clinical trial (NCT01898390) named The Transeuro
Transplant study consists in grafting fetal tissue into the brain of
patients with PD. The last update informed that 11 PD patients
were subjected to cell transplantation in the UK and Sweden.
The study will finish the clinical evaluation of all these patients
in 2021.

These studies raise important questions in need of addressing:
(i) can grafted stem cells retain their functions outside SNc and
VTA; and (ii) can the new cells correctly replace the damaged
ones by integrating into the existing information networks of
the brain? New answers for these questions continue to appear.
A more detailed description of more than 30 years of neuronal
transplantation studies in PD, can be found in excellent reviews
(Björklund and Lindvall, 2000; Lindvall and Björklund, 2004;
Lindvall, 2015; Lindstrom, 1997; Stoker et al., 2017). Despite
the challenges associated with this therapeutic approach, the
considerable progress in the field predicts essential advances in
the years to come.

PREVENTATIVE APPROACHES:
TARGETING THE CAUSES OF
PARKINSON’S DISEASE

Unfortunately, although some therapies for PD produce a
period of recovery for about 5 years, there is a sharp
decrease in the beneficial effects of treatments thereafter
(Castrioto et al., 2013). Indeed, the best approach would be
to understand the relevant triggers of the disease in order to
target the physiopathological mechanisms causing the death
of dopaminergic neurons. Epidemiological studies have shown
that less than 10% of PD cases have a strict familial etiology,
while most of them are sporadic and appear to be caused
by other factors associated with susceptibility genes (Thomas
and Beal, 2007; Videira and Castro-Caldas, 2018). Although
these factors are not fully understood, there is a consensus
that PD is induced by a combination of age, gender, genetic
background, and environmental factors. However, neither of
these has, alone, been identified as a leading cause of PD

(Allam et al., 2005; Thomas and Beal, 2007; Wirdefeldt et al.,
2011). While the cellular and neurochemical mechanisms
underlying PD have remained incompletely understood, what
data have been collected point to heavily to mitochondrial
dysfunction, oxidative stress, inflammation, and excitotoxicity
in the pathogenesis of both familial and sporadic cases of
PD (Ouchi et al., 2009).

Despite low heritability rates, as discussed above, some
rare familial forms of PD give important clues regarding the
molecular mechanisms of the sporadic form of PD pathology.
Currently, 28 chromosomal regions have been linked to PD;
from these, six contain genes in which a single mutation
causes monogenic forms of PD (3–5% of all cases; Klein and
Westenberger, 2012; Videira and Castro-Caldas, 2018). These
mutations affect genes responsible for autosomal dominant
forms of PD including genes such as α-synuclein, Park 1/4
(SNCA), Park 8 (the Leucine-Rich Repeat Kinase 2, LRRK2),
and genes exhibiting an autosomal recessive mode of inheritance
such as Parkin, PINK1, DJ-1, and ATP13A2. The remaining cases
of PD seem to be the result of complex gene-environmental
interactions influencing the development of the disease (Klein
and Westenberger, 2012).

The α-synuclein gene encodes a small protein present in
nerve terminals. The physiological function and role of α-
synuclein in the etiology of PD are still unclear. However,
evidence suggests that this protein plays a significant role in the
pathogenesis of the disease (Schapira and Jenner, 2011). Because
of its structure, α-synuclein can interact with anionic lipids,
which results in conformational changes favoring aggregation
into toxic complexes. Also, these aggregate-prone forms of
α-synuclein can interfere with lysosomal and mitochondrial
functions, autophagy, vesicular homeostasis, and microtubule
transport (Keane et al., 2011; Rocha et al., 2018). For
example, the accumulation of mutant forms of α-synuclein
in the inner mitochondrial membrane impairs the complex I,
increasing RONS production and promoting neuronal death
(Devi et al., 2008).

Interestingly, all familial forms of PD are associated with
mutations in genes that directly or indirectly causemitochondrial
dysfunction. Often these mutations have multiple pathological
effects on mitochondria. For example, mutations in the genes
SNCA, Parkin, DJ-1 inhibit the activity of the complexes I, II,
and III and affect mechanisms regulating the morphology and
dynamics of mitochondria (Beal, 2005; Moon and Paek, 2015;
Ryan et al., 2015; Bose and Beal, 2016). These disturbances in
the mitochondria or direct inhibition of its complexes in both
sporadic and familial PD affects mitochondrial integrity and
induce negative bioenergetic effects, such as a dysregulation of
glucose metabolism, impaired pentose phosphate pathway, and a
decrease in ATP production (Dunn et al., 2014). The complex I
of damaged mitochondria vigorously produces RONS, and when
the production exceeds the cell antioxidant capacity, the oxidant
species damage mitochondrial proteins, lipids, and mtDNA.
Damage tomtDNA leads tomutations that inhibit the respiratory
chain and reduce the mitochondrial membrane potential (Ryan
et al., 2016). Ultimately, these self-reinforcing processes lead to
proliferative cell death.
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This evidence suggests that preventing mitochondrial
dysfunction can be a key therapeutic goal to achieve as stand-
alone or adjunctive therapy against PD.

Genetic Approaches
CRISPR Technology
The explosive development of new genetic editing technologies,
although still under investigation for clinical use, open the
possibility to correct mutated genes and regulatory DNA in the
monogenic forms of PD (Nadim et al., 2017; Singh and Sen, 2017;
Deverman et al., 2018; Kabra et al., 2018; Lu et al., 2018). With
these ideas in mind, several methods of gene delivery, including
viral vectors and CRISPR, have been developed (Lino et al., 2018).
Outstandingly, new reports for clinical trials have shown success
in CRISPR technology use against diseases induced by single
mutations such as β-thalassemia and sickle cell anemia. However,
because Cas9 induces a double-strand DNA break, potential
detrimental side effects of CRISPR-Cas9 technology are possible,
such as non-specific CRISPR-induced mutation due to deletions
in non-intended regions of the genome (Ihry et al., 2018). A
description of PD linkage studies using CRISPR technology as
well as the process of genome editing in PD patients’ inducible
progenitor stem cells (iPSCs) has been reviewed and reported
(Safari et al., 2019).

Active research efforts are currently underway to overcome
these limitations. Recently one of the latest advances in CRISP
technology was reported by Rees et al. (2019) from Harvard
University (Anzalone et al., 2019). In this new approach,
Cas9 hybridizes to the target DNA site using a guide engineered
RNA containing a complementary spacer. To transfer the latest
information from these guide RNAs, the genomic DNA is nicked
at only one location (Anzalone et al., 2019). This method reduces
the risk of undesired DNA mutations, and it may very well
revolutionize the therapy of PD and other pathologies linked to
single-gene mutations.

Viral Vectors
Another promising approach lies in gene therapy using
non-replicating viral vectors such as gene delivery forms of
adeno-associated virus (AAVs), retro and lentiviruses (Lundberg
et al., 2008), and glycoprotein-deleted rabies virus (Chen et al.,
2019; Wang and Huang, 2019; Wang F. et al., 2019; Wang
X. et al., 2019; Wang Y. et al., 2019). Gene delivery using AAVs
has the advantage in that these viruses do not integrate into
host chromosomes yet persist as episomic chromosomes that
do not provoke insertional mutations and permit stable gene
expression in neuronal and glial cells (Penaud-Budloo et al.,
2008). Furthermore, AAVs do not induce immunoreactions in
humans and, as a result, are regarded as one of the best viral
gene delivery systems for use in preclinical biomedical research
and clinical trials (Naso et al., 2017). The main limitation of
AAVs is that they can only deliver up to 5.2 kb of genetic
material (Wu et al., 2010). Lentiviruses, however, can deliver
genetic sequences of up to 9 kb to dividing and non-dividing
cells. After transduction, the lentiviral RNA is reverse transcribed
to DNA and randomly integrated into the host chromosomes
(Rodríguez et al., 2019). This disadvantage limits its clinical

application though lentiviruses are frequently used in preclinical
research (Maes et al., 2019).

The recent approval of human AAV vector use in Europe
and the USA has led to an array of gene therapy attempts
in various clinical trials (Piguet et al., 2017; Axelsen and
Woldbye, 2018; Hitti et al., 2019). The genetic approaches
taken for PD treatment are largely neuro-regenerative in
nature, and they are directed to halt neuronal cell death. For
example, some strategies include inducing the overexpression of
neurotrophic factors in the substantia nigra or the increasing
repair genes to disrupt the formation and accumulation of
aggregated and neurotoxic forms of neuronal proteins such
as a-synuclein. More than a decade ago, a pioneering phase
1 study assessing the safety of human aromatic L-amino acid
decarboxylase (hAADC) gene therapy for PD tested the effect
of bilateral AAV2-induced AADC expression in the putamen
of subjects with advanced PD (Eberling et al., 2008). Although
the authors reported no adverse effects of AAV-mediated
AADC overexpression in humans, they found no significant
clinical recovery as tested using the Unified PD Rating Scale
(UPDRS; Eberling et al., 2008). Follow-up clinical studies
reported positive effects, such as reduction of symptoms and
improvement of UPDRS scores, as well as lowered L-DOPA
dosage required for treatment. Other recent studies include
the Phase 1 trial and current Phase II trial for Voyager’s
AAV2-hAADC transplantation, a year-long clinical trial in PD
patients that also investigates changes in overnight time free
of dyskinesia (McFarthing et al., 2019). Furthermore, gene
therapy has been used with the intent to prevent mitochondrial
dysfunction in the brain of patients with PD, by increasing the
expression of synaptic proteins, neurotrophic factors (NTFs),
antioxidants, and anti-inflammatory proteins.

Neurotrophic Factors
The overexpression of neurotrophic factors (NTF) is a powerful
strategy to prevent the neurodegeneration of dopaminergic
neurons in PD brains. The delivery of these factors, including
the neurotrophic factor (NF), glial cell line-derived neurotrophic
factor (GDNF), neurturin (NRTN), cerebral dopamine
neurotrophic factor (CDNF) and growth/differentiation factor
5 (GDF5) is a challenging task. An alternative approach is the
use of recombinant viral vectors to enable long-term expression
of these factors in brain cells without the risk of hemorrhages
induced by the catheter placement into the brain. From them,
genetic therapy directed to increase the expression of GDNF
and NRTN alone or combined with other NFs have shown
promising results.

The study of GDNF both in vitro and in vivo using rodent
(Rosenblad et al., 1998; Sullivan et al., 1998; Georgievska et al.,
2002) and monkey models of PD (Gash et al., 1996; Miyoshi
et al., 1997; Palfi et al., 2002; Eberling et al., 2009; Su et al.,
2009; Redmond et al., 2013), revealed potential therapeutic
effects that encouraged its clinical investigation. These benefits
included behavioral improvements and protective effect on the
dopaminergic nigrostriatal neurons (Eslamboli et al., 2005; Sun
et al., 2005; Sajadi et al., 2006; Eberling et al., 2009) However,
GDNF therapy was not initially successful due predominantly
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to the low efficiency of delivery methods (Lang et al., 2006).
Accordingly, subsequent efforts were refocused on improving
delivery and expression methods, including; infusion, cannula
design, and insertion zones to optimize the delivery of AAV
vectors expressing GDNF to the brain (Lang et al., 2006;
Richardson et al., 2011).

Other study tested AAV2-delivered NRTN, under the name
CERE-120 (Ceregene Incorporated; Marks et al., 2010). While
animal models of PD and an open-label, phase I clinical trial
suggested tolerability and a favorable safety profile as well
as reductions of UPDRS scores and dyskinesias, a follow-up
phase II trial with bilateral intraputaminal injections resulted in
nearly a third of CERE-120-treated patients reporting serious
adverse events, including surgery-related complaints in many
and tumor formation in three of the CERE-120-treated patients,
and in two control subjects. Furthermore, treatment with
CERE-120 for a year did not improve the UPDRS scores of
the PD patients when compared to the control sham-operated
group. However, CERE-120-treated patients did show significant
improvements in off-medication UPDRS scores when assessed
after 18 months, suggesting a delayed neurotrophic effect
(Marks et al., 2010).

Another open-label trial assessed the safety and efficacy of
targeting both the SNpc and striatum. Patients received nigral
and putaminal doses of CERE-120 and were monitored for
2 years. This trial reported no treatment-induced adversemedical
events during the entire study (Bartus et al., 2013). In the follow-
up, placebo-controlled, double-blind phase 2b study, the data
did not show significant improvements in motor-off scores.
However, significant motor-off improvements were observed
in patients that had been diagnosed less than 5 years before
treatments when compared with those who were diagnosed
more than 10 years before gene therapy interventions began.
This indicates that gene therapy can be useful as a preventative
approach in PD (Bartus et al., 2014).

A more recent study reported the results of a 6-month
double-blind, randomized trial assessing the clinical effects
of bilateral brain delivery of the glutamic acid decarboxylase
(GAD) gene into the subthalamic nuclei (STN) of advanced PD
patients (LeWitt et al., 2011). The results showed significant
improvements in the UPDRS scores in the AAV2-GAD group
compared with the sham group at 6 and 12 months. Also,
the levodopa-induced dyskinesia significantly diminished in
duration in the AAV2-GAD group, but not in the control group
that remained constant. On the other hand, functional network
connectivity analysis showed an increase in the metabolism of
the network after a year from baseline, as investigated by PET
imaging. Specifically, enhanced metabolic activity was observed
in the premotor cortex, motor cortex, and supramarginal gyrus.
Reduced metabolic activity is observed in the putamen, caudate,
globus pallidus, inferior frontal gyrus, medial dorsal thalamus,
and ventral anterior thalamus. The beneficial effects persisted
when investigated 12 months after interventions (Niethammer
et al., 2017).

Recently, another study reported positive effects using a
lentiviral vector named AXO-Lenti-PD, which encodes three
enzymes essential for DA synthesis (aromatic L-amino acid

decarboxylase; cyclohydrolase 1; and tyrosine hydroxylase).
Three months into the ongoing phase II trial of AXO-Lenti-
PD, initial reports show a 25-point reduction in UPDRS
scores. The study (NCT03720418) consists of two parts. In
the first part, two patients with advanced PD who received a
one-time administration of the lowest dose of AXO-Lenti-PD,
which was reportedly well-tolerated and safe. A new cohort
with up to six patients will receive three times the initial
dose. The Initial data from this cohort is expected by the
end of 2019.

Additional gene therapy approaches can be directed to
knockdown the expression of PD-related genes using small
interfering RNA (siRNA) or microRNA (miRNA). Various
groups have focused on suppressing α-synuclein expression
in animal models using RNAi (Zharikov et al., 2015; Kim
Y.-C. et al., 2017. These groups have shown that reducing
α-synuclein expression leads to reductions in dopaminergic
neuron loss alongside fewer motor deficits. Thought, it is crucial
to consider that blocking the expression of α-synuclein may
interfere with the normal function of this protein (Surguchev
and Surguchov, 2017; Burré et al., 2018; Sorrentino et al., 2019;
Taguchi et al., 2019).

NATURAL PRODUCTS

Green Tea and Coffee to Reduce the Risk
of Developing PD
Green tea is prepared from the leaves of the Camellia
Sinensis plant and contains phenolic compounds such
as (-)-Epigallocatechin-3-gallate a potent antioxidant and
neuroprotective compound. Preclinical clinical and self-report
studies suggest that green tea may prevent PD (Kandinov
et al., 2009; Bitu Pinto et al., 2015). However, the therapeutic
mechanism of green tea’s potential protective actions in PD is
unclear. It is feasible that green tea’s phenolic compounds are
modulating critical neuroprotective signaling pathways in the
brain (Jurado-Coronel et al., 2016b). On the other hand, green
tea could exert its effects via caffeine-induced inactivation of the
adenosine receptor.

Almost two decades ago, a clinical study investigating
the relationship between coffee consumption and the risk of
developing PD found that coffee intake negatively correlated
with PD in a dose-dependent manner (Ross et al., 2000). PD
incidence declined from 10.4 per 10,000 person-years in male
subjects who consume no coffee to 1.9 per 10,000 people/year
in men who drink at least 28 oz)approximately three cups)
of coffee a day. The authors concluded that higher coffee and
caffeine intake are associated with a significantly lower risk of
developing PD (Ross et al., 2000). Numerous studies have since
confirmed these findings and point to adenosine A2A receptor
antagonists as a putative treatment for PD (Schwarzschild et al.,
2002; Kalda et al., 2006; Postuma et al., 2012, 2017). However,
a recent study concluded that in PD patients, consumption
of 200 mg coffee a day for 6 months did not improve the
motor symptoms. Still, other clinical studies using the A2A
receptor antagonist, istradefylline, are encouraging given that
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istradefylline significantly improved motor manifestations of
PD and reduced nighttime urinary frequency (Jankovic, 2008;
Matsuura and Tomimoto, 2015; Kitta et al., 2018).

CORRECTING CHOLINERGIC DEFICITS IN
PARKINSON’S DISEASE: COTININE A
POTENTIAL THERAPEUTIC AGENT

The cholinergic system plays a broad role in controlling
neurotransmitter release, reducing neuroinflammation, and
promoting neuronal survival and synaptic plasticity in the
brain. The binding of acetylcholine (ACh) to nicotinic ACh
receptors (nAChRs) occurs throughout the brain, including
within striatum and other constituents of the mesolimbic,
mesocortical, nigrostriatal, and frontostriatal loops. nAChRs are
pentameric ligand-gated ion channels composed of α-subunits
(α2-α7) or containing α and β-subunits (β2–β4; Quik et al.,
2007). Presynaptic nAChRs mediate neurotransmitter release
and postsynaptic receptors increase neuronal firing rates and
thus facilitate long-term potentiation.

As discussed above, the striatum contains large aspiny
cholinergic interneurons (ChIs) that interact with DA inputs.
While ChIs is the primary source for ACh in the striatum,
cholinergic projections also arrive from the pedunculopontine
nucleus (PPN) and the laterodorsal tegmental nuclei (Tanimura
et al., 2018). DA depletion in the striatum causes increased
the excitability of ChIs as a consequence of the loss of the
inhibitory dopaminergic modulation via presynaptic D2-like
receptors on ChIs. Deficits in ChI function is involved in various
basal ganglia-related movement disorders such as dystonia, PD,
and Tourette’s syndrome (Pisani et al., 2007; Deffains and
Bergman, 2015; Tanimura et al., 2018). Striatal ChIs appear to
support synaptic plasticity and cognitive functions, mediated by
the dorsal striatum such as attention, and motivation (Bohnen
and Albin, 2011; Deffains and Bergman, 2015; Aarsland, 2016;
Aarsland et al., 2017; Schapira et al., 2017a). ChIs and DA
work together to regulate motor function and represent good
targets to alleviate PD symptoms (Ztaou and Amalric, 2019).
In the striatum, ChIs express the muscarinic acetylcholine
receptors (mAChRs; M1/M5) as well as various subtypes of
nAChRs, composed mainly of α4, α6, α7, β2, and β3 subunits,
with the primary expression of the α4β2 and α6β2 receptors
(Quik and Wonnacott, 2011). Striatal nAChRs are expressed in
dopaminergic and glutamatergic neurons, as well as ChIs and
GABAergic interneurons (English et al., 2011; Nelson et al.,
2014). On the other hand, nAChRs are absent from MSNs
(Quik et al., 2007).

Several studies have investigated changes in the expression
of muscarinic and nAChRs in PD (James and Nordberg, 1995;
Lindstrom, 1997; Quik and Jeyarasasingam, 2000; Forgacs and
Bodis-Wollner, 2004; Picciotto and Zoli, 2008; Shimohama,
2009; Kawamata et al., 2012; Jurado-Coronel et al., 2016a; Zhao
et al., 2016). Various studies showed that α4β2 and α7nAChRs
were reduced in the cortical and subcortical regions of the
brain, including the frontal and temporal cortices, hippocampus,
caudate nucleus, and the pons of patients with PD when
compared to healthy controls (Lange et al., 1993; Perry et al.,

1995; Banerjee et al., 2000). It has also been reported an
inverse correlation between the level of dementia and nAChRs
expression in the hippocampus and temporal cortex of the
PD patients with a loss or down-regulation of these receptors
preceding the loss of dopaminergic neurons (Meyer et al.,
2009). A significant decrease in nicotine binding (65–75%) has
also been reported in the SNc of the midbrain, as well as a
significant pathological change of cholinergic neurons of the
pedunculopontine region (Perry et al., 1995). Other studies
showed severe losses in α6β2 receptor expression and a minor
decline in the α4β2 subtypes in PD brains. The decrease in
α6β2, but not α7 receptors, paralleled a reduction in markers
of nigrostriatal degeneration (Bohr et al., 2005). Within the
putamen, there was no change in the expression of the α2-α7,
β2, and β3 nicotinic subunits and the authors suggested that the
observed binding deficits may be the result of a change in the
assembly of the receptors’ subunits likely induced by α-synuclein
instead of a change in the expression of the nicotinic subunits
in the striatum (Martin-Ruiz et al., 2002). Brain imaging studies
using positron emission tomography, and the α4β2 receptor-
specific radioligand 2-18F-FA-85380 or (123I)5IA and single-
photon emission computed tomography revealed a decrease
in the number of nAChRs in the amygdala of patients with
PD (Quirion, 1993; Pimlott et al., 2004; Fujita et al., 2006;
Schmaljohann et al., 2006; Oishi et al., 2007; Meyer et al., 2009,
2014). This is similarly true in frontal and parietal cortices,
the striatum, and substantia nigra in the PD brain (Kas et al.,
2009). Nevertheless, a compensatory increase in the expression
of the nAChRs has been identified during the early stages of the
pathology (Isaias et al., 2014).

Epidemiological studies have shown lower rates of PD
development in people consuming tobacco products, which
suggests that the nicotinic receptors may play an essential
role in preventing PD and that one or more tobacco-derived
compounds may be neuroprotective (Fratiglioni and Wang,
2000; Parain et al., 2003; Hong et al., 2009). Various studies
using cellular models have shown a neuroprotective effect
of nicotine that diminished dopaminergic neuronal damage
(Riveles et al., 2008; Toulorge et al., 2011; Getachew et al.,
2019). Other reports have shown that both nicotine and its
main derivative, cotinine, have a neuroprotective effect against
6-hydroxydopamine (6-OHDA)-induced toxicity in cultured
differentiated SH-SY5Y neuroblastoma cells expressing nAChRs
(Pogocki et al., 2007; Riveles et al., 2008).

Within in vivo animal models of PD, nicotine also appears
to produce beneficial effects (Linert et al., 1999; Salminen
et al., 1999; Quik and Kulak, 2002; Quik et al., 2006; Huang
et al., 2009). Studies using non-human primates show that
nicotine reduced dyskinesia in PD (Bordia et al., 2008), but
not all studies have found a positive effect of transdermal
nicotine on the cognitive or motor symptoms of PD (Lemay
et al., 2004). It is not clear whether nicotine effects are the
result of the activation or desensitization of the nAChRs.
Studies using antagonists, it has been discovered that both
α7 and α4/β2 nAChRs contribute to the neuroprotective
properties of nicotine, although the effects of the cholinergic
modulators will vary according to the type of brain cells
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and the different combinations of nicotinic subunits that may
predominate in specific brain regions. In addition to nicotine,
the neuroprotective effects of other nAChR modulators have
been investigated and yield promising results (Pogocki et al.,
2007; Tiwari et al., 2015; Jurado-Coronel et al., 2019). Derivatives
clinically tested include Isoproniclina (TC1734), (S)-N-metil-
5-(5-pirimidinil)-4-penten-2-amina (TC1827), and RJR-2403
(transmetanicotina), which were shown to stimulate DA release
and improve working memory in PD patients (Pogocki et al.,
2007). Additionally, SIB-1508Y, an α4β2 agonist, has been
investigated in various clinical trials for PD (Pogocki et al., 2007).
The results obtained collectively support the view that nAChRs
modulators are neuroprotective against the neurotoxic insults in
the PD brain.

Research from our and other labs has shown that nicotine’s
predominant metabolite, cotinine has unique pharmacokinetic
and pharmacodynamic properties, acts as a weak agonist at
nAChRs, and a positive allosteric modulator of α7nAChRs, and is
safe and non-addictive (Grizzell and Echeverria, 2015). Cotinine
protects astrocyte from the toxic effects of glucocorticoids and
increases synaptogenesis in the PFC and hippocampus during
stress in mice (Grizzell et al., 2014a,b; Alvarez-Ricartes et al.,
2018). Cotinine also diminished the activation of macrophagic
immune cells (Rehani et al., 2008) and showed neuroprotective
effects in mice models of AD, reducing plaque deposition, tau
phosphorylation, and cognitive impairments (Buccafusco and
Terry, 2003; Buccafusco et al., 2007; Szyma ńska et al., 2007;
Echeverria et al., 2011; Echeverria and Zeitlin, 2012; Gao et al.,
2012, 2014; Moran, 2012; Patel et al., 2014; Li et al., 2015; Terry
et al., 2015; Echeverria et al., 2017; Grizzell et al., 2017). Also,
cotinine seems to control the number and stoichiometry of the
nAChRs affecting their properties (Lester et al., 2009).

Despite their chemical similarities, cotinine and nicotine
differ in their mechanisms of action, behavioral effects, and show
distinct properties and toxicity profiles. Cotinine is a hundred
times less toxic than nicotine and binds poorly α7nAChR in
the orthostatic site (Grizzell and Echeverria, 2015). Based in
its neuroprotective effects, and its ability to increase DA levels
and positively modulate the α7nAChRs in the brain, we have
postulated that cotinine might also delay the development of PD
(Soto-Otero et al., 2002; O’Leary et al., 2008; Riveles et al., 2008;
Barreto et al., 2014).

PRECISION MEDICINE IN A PREVENTIVE
APPROACH

The failure of current therapies for PD may be due to the
heterogeneity of syndromes collectively referred to as PD. While
all converge in the massive loss of DA neurons in the midbrain
alongside the appearance of Lewy bodies, different etiologies
of PD have been found. Some of these etiologies specifically
affect the DA neurons, while others may overlap with comorbid
conditions such as AD and other synucleinopathies. Based
on this idea, the ‘‘multiple hit’’ hypothesis was proposed, in
which the basis for selective neuronal death is a combination
of toxic stress, induced by DA oxidation or mitochondrial
dysfunction, co-occurring with inhibition of neuroprotective

responses, such as follows after the loss of parkin function
(Sulzer, 2007).

This said, the bright side of PDs multifactorial etiology
provides an opportunity for more personalized treatment
regimens. Precision medicine is driven to improve specific
molecular alterations and treat particular subtypes of PD
(Okun, 2017). Personalized medicine is not a novel treatment
approach outside of PD, and it is currently used in an array
of conditions, such as oncology and cystic fibrosis (Schilsky,
2014). The slow development of PD gives a unique opportunity
to study the patient’s genome and environmental factors to
target the causes of the disease in each specific group of patients
(Barouki et al., 2018).

The availability of biomarkers to assess the appearance and
progression of PD is fundamental to perform an early therapeutic
intervention as well as to monitor the clinical response. So far
there are several leading biomarker candidates including α-SYN
(Atik et al., 2016), image biomarkers (Saeed et al., 2017), LRRK2
(Taymans et al., 2017), and microRNAs (Quinlan et al., 2017;
Khodadadian et al., 2018).

The discovery of additional molecular biomarkers in
groups of patients with different etiologies may permit the
classification of PD subtypes according to clinical symptoms
and differential molecular profiles. Accordingly, better profiling
of individual patients with PD will allow the development of
more effective therapies for specific PD subtypes, thus increasing
the effectiveness and saving valuable time and resources
during treatment.

CONCLUSIONS

The development of effective preventive or curative therapies
for PD has been extremely challenging. The causes may
involve additive or impeding factors, including a limited
understanding of the mechanisms of neurodegeneration in PD,
the heterogeneity of the pathology, and lack of adequate animal
models. Also, the clinical effectiveness of preventative therapies
has been challenging to assess due to the limitations in trial
designs and because of the absence of reliable biomarkers
to diagnose the pathology at early stages before irreversible
neuronal damage occurs. Despite the current restrictions, success
in preventing or halting the development of PD should be
possible due to the constant appearance of new diagnostic
methods and the current significant advances in gene therapy
and other therapeutic approaches in the field of neurology
and neuroscience.
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