
Hindawi Publishing Corporation
International Journal of Genomics
Volume 2013, Article ID 606919, 7 pages
http://dx.doi.org/10.1155/2013/606919

Research Article
Microarray Analysis of Transcriptome of Medulla Identifies
Potential Biomarkers for Parkinson’s Disease

Xiao-Yang Liao,1 Wei-Wen Wang,2 Zheng-Hui Yang,2 Jun Wang,2 Hang Lin,2

Qing-Song Wang,2 Yu-Xian Wu,2 and Yu Liu2

1 Unit of General Practice, West China Hospital of Sichuan University, Chengdu 610041, China
2Department of Neurology, Cheng Du Military General Hospital, Chengdu 610083, China

Correspondence should be addressed to Wei-Wen Wang; weiwenwang32@hotmail.com

Received 13 August 2013; Accepted 30 September 2013

Academic Editor: Bo Wang

Copyright © 2013 Xiao-Yang Liao et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To complement themolecular pathways contributing to Parkinson’s disease (PD) and identify potential biomarkers, gene expression
profiles of two regions of the medulla were compared between PD patients and control. GSE19587 containing two groups of gene
expression profiles [6 dorsal motor nucleus of the vagus (DMNV) samples from PD patients and 5 from controls, 6 inferior olivary
nucleus (ION) samples from PD patients and 5 from controls] was downloaded from Gene Expression Omnibus. As a result, a
total of 1569 and 1647 differentially expressed genes (DEGs) were, respectively, screened in DMNV and ION with limma package
of R. The functional enrichment analysis by DAVID server (the Database for Annotation, Visualization and Integrated Discovery)
indicated that the aboveDEGsmay be involved in the following processes, such as regulation of cell proliferation, positive regulation
of macromolecule metabolic process, and regulation of apoptosis. Further analysis showed that there were 365 common DEGs
presented in both regions (DMNV and ION), which may be further regulated by eight clusters of microRNAs retrieved with
WebGestalt. The genes in the common DEGs-miRNAs regulatory network were enriched in regulation of apoptosis process via
DAVID analysis.These findings could not only advance the understandings about the pathogenesis of PD, but also suggest potential
biomarkers for this disease.

1. Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder in human, which is characterized by
progressive death of dopamine-generating cells in the sub-
stantia nigra and accumulation of intraneuronal Lewy bodies
containing misfolded fibrillar 𝛼-synuclein (SNCA), which
eventually results in progressivemovement disorders, includ-
ing shaking, rigidity, bradykinesia, and gait disturbance [1].
Epidemiologic studies have identified environmental factors
such as trauma [2] and pesticide exposure [3, 4] as risk factors
for PD, while the increasing evidence demonstrates that
genetic factors play significant roles in PD. Several genes have
been linked to PD, such as SNCA, leucine-rich repeat kinase 2
(LRRK2), parkin (PARK2), PTEN-induced kinase 1 (PINK1),
and DJ-1 (PARK7) [5, 6]. In addition, as an important regu-
lator at posttranscriptional level, several miRNAs have been
discovered to be involved in PD pathogenesis via regulating

PD-associated gene expression. For example,miR-7 andmiR-
153 are recently described to regulate endogenous synuclein
levels; inhibition of 𝛼-synuclein expression bymiR-7 protects
against oxidative stress-mediated cell death [7, 8]; several
studies suggest that the role of LRRK2 in the pathogenesis of
PD is mediated through the miRNA pathway [9].

Dorsal motor nucleus of the vagus (DMNV) and inferior
olivary nucleus (ION) are two brainstem regions which may
be damaged early in the course of PD [10, 11]. However,
the molecular mechanism of these two regions is not well
understood for PD. In this study, we aimed to compare
the gene expression profiles of DMNV and ION from PD
patients with that of controls using oligonucleotide microar-
ray. Microarray experiments can simultaneously measure the
expression levels of thousands of genes, generating huge
amounts of data, [12] and have been applied to identify
molecular markers of PD in several studies [13, 14]. In
addition, the relatedmiRNAs thatweremapped to their target
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Figure 1: Box plot for normalized gene expression data.Themedians (black lines) are almost at the same level, indicating a good performance
of normalization (a). Venn diagram of differentially expressed genes identified from dorsal motor nucleus of the vagus (DMNV) and inferior
olivary nucleus (ION) of PD (b).

differentially expressed genes (DEGs) were also analyzed by
bioinformatics methods to reveal the regulatory mechanism.

2. Materials and Methods

2.1. Microarray Data. Gene expression data set GSE19587
[15] was downloaded fromGene Expression Omnibus [16]. It
contained two groups of gene expression profiles: 6 DMNV
samples from patients with PD and 5 from controls; 6 ION
samples from patients with PD and 5 from controls. The
platform was GPL571 [HG-U133A 2] Affymetrix Human
Genome U133A 2.0 Array. Probe annotation files were also
acquired.

2.2. Preprocessing and Differential Analysis. Raw data were
converted into recognizable format with package affy of
𝑅, and missing values were then imputed [17]. After data
normalization with median method [18], differential analysis
between PD and control was performed using package limma
[19] for DMNV and ION, respectively. |log (fold change)
FC| > 1 and 𝑃 < 0.05 were set as the cut-offs to screen out
DEGs.

2.3. Gene Ontology (GO) Functional Enrichment Analysis of
DEGs. In order to identify disturbed biological functions in
PD, GO functional enrichment analysis was performed for
DEGs in DMNV and ION using DAVID with a threshold of
𝑃 < 0.05 [20]. DAVID is theDatabase forAnnotation, Visual-
ization and Integrated Discovery, providing a comprehensive
set of functional annotation tools for the investigation of the
biological meaning behind large list of genes.

2.4. Comparison of DEGs between DMNV and ION. Com-
mon DEGs from the two regions of the medulla (DMNV and
ION) were obtained using package Venn of 𝑅.

2.5. Establishing Interaction Network between Common DEGs
and miRNAs and Functional Enrichment Analysis for DEGs in

Network. miRNAs which targeted the common DEGs were
retrieved with WebGestalt [21, 22]. For multiple testing cor-
rection, the Benjamini-Hochberg (BH) approach was used
[23], andmiRNAswithBH-adjusted𝑃 < 0.05 (false discovery
rate (FDR) < 0.05) were selected. The regulatory network
between DEGs and miRNAs and interactions between DEGs
were then visualized with Cytoscape. In addition, GO func-
tional enrichment analysis was applied on the genes in the
network via DAVID with a threshold of 𝑃 < 0.05.

3. Results

3.1. DEGs in DMNV and ION. After gene expression data
normalization (Figure 1(a)), 1569 (DMNV) and 1647 (ION)
DEGs for PDwere screened by comparison between the sam-
ples from PD patients and controls. As shown in Figure 1(b),
385 commonDEGs presented both inDMNVand IONof PD
patients were extracted from these identified DEGs.

3.2. Functional Enrichment Analysis Results. Significantly
overrepresented GO terms were revealed by using DAVID.
A total of 24 and 28 terms were disclosed for DEGs in
DMNV and ION, respectively (Figure 2), in which DEGs
from DMNV and ION seemed to share similar biological
processes, such as regulation of cell proliferation, positive reg-
ulation of macromolecule metabolic process, regulation of
apoptosis, and so on.

3.3. miRNAs and Gene Regulatory Network. A total of 8
relevant clusters of miRNAs were retrieved with WebGestalt
for the common DEGs (Table 1). Then the miRNAs-DEGs
regulatory network and DEGs-DEGs interaction network
were visualized with Cytoscape (Figure 3). Functional anno-
tation was applied on the genes in the network, and 19 GO
terms were revealed (Table 2), among which regulation of
apoptosis was the most significant one.
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Figure 3: The integrated DEGs-miRNAs regulatory and DEGs-DEGs interaction network. miRNAs and their target genes shared the same
color. DEGs: differentially expressed gene.

Table 1: Relevant miRNAs for the 365 common differentially expressed genes.

miRNA DB Num Parameters
hsa GGCAGCT, MIR-22 DB ID:780 𝑂 = 13; raw𝑃 = 8.79𝑒 − 08; adj𝑃 = 1.76𝑒 − 06
hsa TGAATGT, MIR-181A, MIR-181B, MIR-181C, MIR-181D DB ID:669 𝑂 = 16; raw𝑃 = 3.73𝑒 − 06; adj𝑃 = 2.56𝑒 − 05
hsa GCAAAAA, MIR-129 DB ID:798 𝑂 = 10; raw𝑃 = 3.84𝑒 − 06; adj𝑃 = 2.56𝑒 − 05
hsa TGGTGCT, MIR-29A, MIR-29B, MIR-29C DB ID:671 𝑂 = 16; raw𝑃 = 9.23𝑒 − 06; adj𝑃 = 4.61𝑒 − 05
hsa TTTTGAG, MIR-373 DB ID:844 𝑂 = 10; raw𝑃 = 2.08𝑒 − 05; adj𝑃 = 8.32𝑒 − 05
hsa TGCTTTG, MIR-330 DB ID:843 𝑂 = 12; raw𝑃 = 2.76𝑒 − 05; adj𝑃 = 9.20𝑒 − 05
hsa TTGCACT, MIR-130A, MIR-130B DB ID:676 𝑂 = 13; raw𝑃 = 3.80𝑒 − 05; adj𝑃 = 0.0001
hsa TATTATA, MIR-374 DB ID:727 𝑂 = 10; raw𝑃 = 0.0002; adj𝑃 = 0.0005
DB Num: number assigned by the database; 𝑂: number of differentially expressed genes regulated by the miRNA; raw𝑃: initial 𝑃 value calculated according
to the hypergeometric distribution; adj𝑃: 𝑃 value after adjusted with the Benjamini-Hochberg correction method.

4. Discussion

In the present study, we identified 1569 and 1647 DEGs
in DMNV and ION, respectively through the comparative
analysis of transcriptome between PD and controls. Also, we
found 365 common DEGs presented in both regions, as well
as 8 related miRNAs which targeted these common DEGs.
Finally, we constructed an integrated network, including

the DEGs-DEGs interactions, and the DEGs-miRNA regu-
latory network consisting of 8 miRNAs (MIR-22, MIR-181,
MIR-129, MIR-29, MIR-373, MIR-330, MIR-130, and MIR-
374) and their target common DEGs.

Apoptosis plays a critical role in the pathogenesis of PD
[24, 25]. In present study, many DEGs involved in apoptosis
were found in the two regions of the medulla. Functional
enrichment analysis of DEGs indicated that regulation of
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Table 2: Overrepresented GO terms in genes from the regulatory network.

Term Count of DEGs 𝑃 value
GO:0042981∼regulation of apoptosis 31 0.0026939
GO:0043067∼regulation of programmed cell death 31 0.0031183
GO:0010941∼regulation of cell death 31 0.0032783
GO:0070271∼protein complex biogenesis 22 0.0034321
GO:0006461∼protein complex assembly 22 0.0034321
GO:0043085∼positive regulation of catalytic activity 22 0.0048116
GO:0065003∼macromolecular complex assembly 26 0.0054608
GO:0048878∼chemical homeostasis 21 0.0082118
GO:0007267∼cell-cell signaling 23 0.0117819
GO:0043933∼macromolecular complex subunit organization 26 0.0119356
GO:0042127∼regulation of cell proliferation 28 0.0126938
GO:0042592∼homeostatic process 27 0.0128669
GO:0007049∼cell cycle 27 0.0185901
GO:0022402∼cell cycle process 21 0.0222268
GO:0006357∼regulation of transcription from RNA polymerase II promoter 25 0.027631
GO:0010604∼positive regulation of macromolecule metabolic process 28 0.0335407
GO:0031328∼positive regulation of cellular biosynthetic process 23 0.0437151
GO:0010557∼positive regulation of macromolecule biosynthetic process 22 0.0482295
GO:0009891∼positive regulation of biosynthetic process 23 0.049702
GO: gene ontology; DEGs: differentially expressed genes.

apoptosis was the one of the top 3 biological processes for
both groups of DEGs. Moreover, thirty-one DEGs in the reg-
ulatory network were also enriched in regulation of apoptosis
(the top one GO term). It has been reported that some DEGs
(e.g., VDR, NTF3, CREB1, and IGF1) within the apoptosis
pathway may contribute to the pathogenesis of PD according
to the previous literature. Vitamin D has been demonstrated
to regulate cell proliferation in the developing brain [26],
and vitamin D deficiency alters dopamine turnover in the
forebrain and dopamine-mediated movement, resulting in
high risk for PD [27, 28]. Vitamin D receptor (VDR) is
the primary mediator of vitamin D’s biological actions; that
is, vitamin D is first converted to the active metabolite
1,25-dihydroxy vitamin D3. Upon binding to 1,25-dihydroxy
vitamin D3, VDR is activated and interacts with vitamin D
responsive elements in the promoters of vitamin D target
genes to regulate their expression [29, 30]. Moreover, several
studies also report an association between VDR polymor-
phism and PD [31, 32]. Neurotrophin 3 (NTF3) is a member
of the neurotrophin family, which controls the survival and
differentiation of mammalian neurons. The delivery of NTFs
has been postulated as a therapy for neurodegenerative
disorders like PD [33, 34]. As a member of the leucine zipper
family of DNA binding proteins, CREB1 (cAMP responsive
element binding protein 1) may play an important role in
the dopaminergic activation of c-fos in the striatum, and
the lacking of a CREB1-induced transcription cascade may
contribute to long-lasting psychomotor disorders in PD
[35]. Ebert et al. report that human neural progenitor cells
overexpressing IGF1 (insulin-like growth factor 1) can protect
dopamine neurons and restore function in a rat model of PD
[36].

miRNAs are important regulators participating in many
physiological processes and thus become therapeutic targets
for diseases, such as cancers and neurodegenerative diseases
[37]. To discover potential molecular targets, miRNAs inter-
acting withDEGswere retrieved in the present study and reg-
ulatory network was also constructed. Aberrant expression of
miR-22 has been identified in multiple human diseases [38].
It shows low expressions in PD blood samples, and it can
be used to distinguish nontreated PD from healthy subjects
[39]. Ferritin light polypeptide (FTL) is regulated by miR-22.
FTL is the light subunit of the ferritin protein, which is the
major intracellular iron storage protein. Previous studies have
indicated that disturbances in brain iron homeostasis may
contribute to the pathogenesis of PD [40, 41]. Thus, we sup-
pose that FTL andmiR-22 areworthy of further investigations
to disclose their specific roles in PD. miR-181 is implicated
in apoptosis. Downregulation of miR-181 permits Bcl-2 to
remain at a high level without posttranscriptional repression,
which eventually leads to the gain in neuronal survival [42]
and may decrease the incidence of PD. DEGs regulated
by this miRNA included CREB1 and estrogen receptor 1
(ESR1). The expression level of miR-29 can also be used to
distinguish nontreated PD from healthy subjects [39]. IGF1
and calcium/calmodulin-dependent protein kinase II gamma
(CAMK2G) are regulated by this miRNA. CAMK2G links
endoplasmic reticulum stress with Fas and mitochondrial
apoptosis pathways [43]. Inhibitors of CAMK2G may be
useful in preventing apoptosis in pathological settings and
even treat diseases like PD.

Overall, our study provides an integrated network insight
into the pathogenesis of PD and offers potential therapeutic
targets for controlling the disease. Although previous studies
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have implicated that brainstem regions including DMNV
and ION are relatively unaffected and not obligatory trigger
sites of PD [10, 44, 45], the genes in DMNV and ION are
demonstrated to be associated with neuron death in our
study, and thus deep experiment researches in these regions
are still needed.
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