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Understanding the causal chain from genotypic to phenotypic variation is a tremendous
challenge with huge implications for personalized medicine. Here we argue that linking
computational physiology to genetic concepts, methodology, and data provides a new
framework for this endeavor. We exemplify this causally cohesive genotype–phenotype
(cGP) modeling approach using a detailed mathematical model of a heart cell. In silico
genetic variation is mapped to parametric variation, which propagates through the phys-
iological model to generate multivariate phenotypes for the action potential and calcium
transient under regular pacing, and ion currents under voltage clamping. The resulting
genotype-to-phenotype map is characterized using standard quantitative genetic meth-
ods and novel applications of high-dimensional data analysis. These analyses reveal many
well-known genetic phenomena like intralocus dominance, interlocus epistasis, and vary-
ing degrees of phenotypic correlation. In particular, we observe penetrance features such
as the masking/release of genetic variation, so that without any change in the regulatory
anatomy of the model, traits may appear monogenic, oligogenic, or polygenic depending
on which genotypic variation is actually present in the data.The results suggest that a cGP
modeling approach may pave the way for a computational physiological genomics capa-
ble of generating biological insight about the genotype–phenotype relation in ways that
statistical-genetic approaches cannot.

Keywords: causally cohesive genotype–phenotype modeling, multivariate genotype-to-phenotype map, cGP heart
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INTRODUCTION
A comprehensive understanding of how genetic variation causes
phenotypic variation of a complex trait is a long-term discipli-
nary goal of genetics (Bateson, 1906). The idea of linking system
dynamics and genetics dates back to Burns (1970) and has proved
fruitful in relatively simple cases (Omholt et al., 2000; Gilchrist
and Nijhout, 2001; Peccoud et al., 2004; Welch et al., 2005; Gjuvs-
land et al., 2007a,b,c, 2010; Rajasingh et al., 2008; Martens et al.,
2009). The basic premise is that in a well-validated model that
is capable of accounting for the phenotypic variation in a popu-
lation, the causative genetic variation will manifest in the model
parameters. In this context, the term “phenotype” refers to any
relevant measure of model behavior, whereas the term “para-
meter” denotes a quantity that is constant over the time-scale
of the particular model being studied. However, model parame-
ters are themselves phenotypes (Rajasingh et al., 2008), whose
genetic basis may be mono-, oligo-, or polygenic, and whose
physiological basis can be mechanistically modeled at ever deeper
levels of detail. The term causally cohesive genotype–phenotype
(cGP) modeling (Rajasingh et al., 2008) thus denotes an approach
where low-level parameters have an articulated relationship to the

individual’s genotype, and higher-level phenotypes emerge from
the mathematical model describing the causal dynamic relation-
ships between these lower-level processes. It aims to bridge the
gap between standard population genetic models where the con-
nection between genotypes and phenotypes is described in the
form of “genotypic values,” i.e., the expected phenotypic value
for a given genotype (Falconer and Mackay, 1996; Lynch and
Walsh, 1998), and mechanistic physiological models without an
explicit genetic basis. This forces a causally coherent depiction of
the genotype-to-phenotype (GP) map.

Computational physiology is the natural habitat for this
endeavor. Computational modeling of multiscale physiology is
intimately tied to experimental studies and has offered unique
and generic insights into medically important mechanisms (Noble,
2002b). Mechanistic models facilitate confrontation with empiri-
cal data, incorporating conservation of charge, mass and momen-
tum, and other physical laws that serve to constrain the mapping
from low-level parameters to higher-level phenotypes (Hunter
and Borg, 2003). Dealing with genetic and other individual dif-
ferences is a key next step (Hunter et al., 2010), which will
require the incorporation of genotypic data and the application
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of multivariate numerical and statistical methods in compu-
tational physiology. The discipline thus defined may be called
computational physiological genomics.

The mammalian heart is arguably the best available cGP model
system, being studied in detail at levels from protein subunits
through ion channels and calcium handling, cellular action poten-
tial (time-course of transmembrane voltage, V ) and calcium tran-
sient (time-course of cytosolic Ca2+ concentration, Cai), tissue
electrophysiology, mechanics, and fluid dynamics (Noble, 2002a).
Much of this research has been medically motivated, as anomalies
in these processes can give rise to disease in a complex inter-
play between genetic, age-related, and lifestyle factors. However,
analyzing whole-organ models is computationally and conceptu-
ally challenging, and many submodels are of quite intimidating
complexity in themselves.

Here, as a pilot for a whole-organ cGP study, we explore, char-
acterize, and analyze a detailed model of a mouse heart cell (Li
et al., 2010), built to account for the action potential (electrical
signal) and calcium transient (linked to muscle contraction) of
the cardiomyocyte in terms of its constituent ion currents and
gating channels. Cardiac ion channels are prime candidates for
realistic gene-to-parameter mapping, being quite low-level para-
meters whose genetic variation has been well studied (Roberts and
Brugada, 2003; Roepke and Abbott, 2006; Sanguinetti and Tristani-
Firouzi, 2006). Under the assumption that genetic variation man-
ifests in low-level parameters, simulations of the model generate
in silico high-dimensional phenotypes, ranging from individual
ion currents to the action potential and calcium transient.

By use of the single heart cell cGP model we show (1) how
the statistical-genetic architecture of traits may arise, (2) how
multivariate analysis methods can be used to extract informa-
tion about high-dimensional GP maps created by cGP models,
(3) how the cGP framework can be used to identify genetic
variation underlying disease phenotypes, and (4) how the cGP
framework can be used to systematically disclose how the genetic
background may affect penetrance, i.e., the proportion of affected
individuals among those carrying a predisposing allele. The
paper thus addresses several key disciplinary aspects of physio-
logical genomics, and it exemplifies many of the methodolog-
ical challenges pertaining to whole-organ models, while being
computationally inexpensive enough to allow a more exhaustive
exploration.

METHODS
HEART CELL MODEL
The LNCS cell model (Li et al., 2010) extends that of Bondarenko
et al. (2004) with more realistic calcium handling, detailed re-
parameterization to consistent experimental data, and consistency
checking by conservation of charge (cf. Hund et al., 2001). State
variables include concentrations of sodium, potassium, and cal-
cium in the cytosol, calcium concentration in the sarcoplasmic
reticulum, and the state distribution of ion channels, whose tran-
sition rates between open, closed, and inactivated conformations
may depend on transmembrane voltage. A simplified overview is
given in Figure 1. The model is available as Supplementary Mate-
rial in CellML and PDF formats. (For details, see Bondarenko
et al., 2004; Li et al., 2010) Whereas many cell models are built

FIGURE 1 | Simplified schematic of the LNCS mouse heart cell model.

For the sake of illustration, each parameter in the model was assumed to
have a monogenic basis, with parameter values for genotypes aa, Aa, AA
having parameter values of 50, 100, and 150% of baseline. Based on an
initial sensitivity analysis, the parameters shown (bold) were selected for a
full factorial simulation experiment representing 310 genotypes and their
resulting phenotypes. The transmembrane potential is created by the
difference in ion concentrations inside and outside the cell. Extracellular
[Ca2+], [Na+], and [K+] are assumed constant, whereas the intracellular
concentrations are state variables. Calcium is initially sequestered
(J_SERCA) into the sarcoplasmic reticulum (SR, solid box) inside the cell. In
response to an electric stimulus, the fast sodium current (i_Na) sets off an
action potential that in turn triggers the release of calcium (J_xfer) via
“dyadic space” microdomains (dashed box) where an early L-type calcium
current (i_CaL) induces release of calcium from the SR. Parameters were
selected to span a range of components and roles, seeTable 1. Some
components are strongly simplified in the figure, see Bondarenko et al.
(2004), Li et al. (2010) for full description.

from heterogeneous data sets that span species and temperature
(Niederer et al., 2008), essential parts of the LNCS model have
been directly fitted to a consistent experimental data set for the
C57BL/6 “black 6” mouse, a popular strain for genetic manipu-
lation in studying cardiac electrophysiology and the regulation
of intracellular calcium transport. Formulated as a system of
35 coupled ordinary differential equations with 175 parameters
(see Unhardcoding of Parameters below), this model provides a
comprehensive representation of membrane-bound channels and
transporter functions as well as fluxes between the cytosol and
intracellular organelles. Below, the term “baseline” refers to the
point estimate for the parameter values of the LNCS model, and
phenotypes arising from simulations with the baseline parameter
scenario.

VIRTUAL EXPERIMENTS AND PHENOTYPES
We studied phenotypes defined by four experimental protocols
described in Bondarenko et al. (2004). Voltage-clamp protocols
induce series of stepwise changes in transmembrane voltage (items
3 and 4 below) that are designed to characterize the voltage-
dependent conformation switching behavior and “memory” of
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ion channels (Molleman, 2002), offering a common basis for
comparing the ion-channel behavior of different cell types,
models, or parameter scenarios. The protocols were:

1. No stimulus, yielding the quiescent cell state as a phenotype.
2. Regular pacing from quiescence to steady-state dynamics or

alternans (action potentials of alternating amplitude), imple-
mented as an external stimulus current of K+ ions. Raw pheno-
types were the multivariate time-series of state variables during
a steady-state action potential (or series of action potentials in
the case of alternans), as well as important terms in the rates
of change, such as ion currents. The main cell-level phenotypes
are the action potential (electrical signal) and calcium tran-
sient (linked to muscle contraction), i.e., the time-courses of the
transmembrane potential and cytosolic calcium concentration,
respectively. Aggregate measures for these phenotypes include
action potential duration to 90% repolarization (APD90), sim-
ilar measures for 25, 50, and 75% repolarization, and action
potential amplitude and time to peak (Figure 2). APD decay
rate, λ, was computed from the exponential approximation
V (t ) =V (0) exp(−λt ) based on voltage and time from 50
to 90% repolarization. Analogous measures were used for the
calcium transient.
A stimulus current of −15 V/s was applied for 3 ms at the start
of each stimulus interval. This was repeated until convergence
or a maximum of 10 min simulated model time. Convergence
was checked by comparing successive intervals with respect to
initial values of each state variable, as well as the integral of the
state variable’s trajectory over that interval. A running history
of 10 intervals was kept, and after each interval we checked for a
match (within a relative tolerance of 1% for all state variables)
against the previous ones. This was done for stimulus intervals
of 100, 200, and 300 ms.

3. Double-pulse voltage-clamp protocol to estimate the rate and
voltage-dependence of ion-channel inactivation. The simulated
cell is initially kept at a low holding potential V hold, followed
by an abrupt increase to some voltage V 1 for duration t 1 (pulse
P1), then set to some voltage V 2 (pulse P2). The main experi-
mental parameters are the duration and voltage of pulse 1. Raw
phenotypes are the same as for regular pacing,with emphasis on
the total current (e.g., i_Na for the fast sodium current) and the

FIGURE 2 | Scalar measures of state-variable trajectories, exemplified

by the action potential. TTP, time to peak. APD25, etc.: action potential
duration to 25%, etc., return to initial (“base”) value.

proportion of ion channels in each conformation. Aggregate
phenotypes include peak P1 current and the “rate of inactiva-
tion” τ, describing the roughly exponential decline in current
during the first pulse (P1) as:

I (t ) = I0 exp

(
− t

τ

)
,

and fitted to the interval from 95 to 5% of the peak current.
4. Variable-gap voltage-clamp protocol to estimate the rate and

voltage-dependence of recovery from inactivation. From the
holding potential, an initial depolarizing pulse P1 will inac-
tivate a high proportion of the ion channels, and is followed
by a repolarizing interpulse interval of variable duration (the
main experimental parameter), then another pulse P2. Current
magnitude during P2 measures recovery from inactivation as a
function of interpulse duration. The results were summarized
by I peak,max and t half in the equation

Ipeak
(
tg

) = Ipeak, max
tg

tg + thalf
,

where tg is the gap duration and I peak is the peak P2 current.

DISEASE PHENOTYPE
Cell dynamics was categorized as “failed” based on the calcium
transient if the peak was below 50% of baseline (illustrating failure
to contract), if the base was more than 200% of baseline (failure to
relax), if amplitude was less than 50% of baseline (at 200 ms pac-
ing), or if dynamics failed to converge within 10 min of simulated
time. Details of alternans were not pursued in this paper.

UNHARDCODING OF PARAMETERS
Many, if not most, published cell models include constants that
are arguably better viewed as parameters for the purpose of cGP
studies, such as the voltage-sensitivity of ion-channel behavior. For
example, the sodium channel of the Bondarenko model contains
just one parameter but 28 hardcoded constants (Bondarenko et al.,
2004, Eq. A51–A64). We used the Python package lxml 2.31 to scan
a CellML (Lloyd et al., 2004) representation of the LNCS model for
constants, except for physical constants (such as the Faraday con-
stant) and ion charges (e.g., 2 for Ca2+). This brought the number
of parameters up from 73 to 175, not counting physical constants
or parameters relating to pacing protocols.

LOCAL SENSITIVITY ANALYSIS
For a local overview of the genotype-to-phenotype map, we esti-
mated the first derivatives of scalar phenotype measurements φk

with respect to model parameters pi, using central differences
with a 10% step size. For parameters and phenotypes that have
a non-arbitrary zero point, it is meaningful to scale the first deriv-
atives into elasticities, i.e., dimensionless ratios of relative changes.
This is equivalent to log-transforming the quantities before taking
derivatives.

eik = dφk
/
φk

dpi
/

pi
= dφk

dpi

pi

φk
= d ln φk

d ln pi

1http://lxml.de
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Thus, a q% change in pi leads to a q × e ik% change in φk, assum-
ing q is small. Based on this overview, we selected a few model genes
for simulating all possible genotypes, using a full factorial design
for their associated parameters.

COMPUTER IMPLEMENTATION
Python code was auto-generated using the CellML code gener-
ation service at www.cellml.org. The equations were integrated
using the CVODE solver (Cohen and Hindmarsh, 1996), with
a Python wrapper for flexible scripting of virtual experiments.
Phenotypes were computed with Python and Numpy (Oliphant,
2006). Statistical analyses were done in R 2.10.1 (R Development
Core Team, 2011), using the packages “ggplot2” 0.8.3 (Wickham,
2009) for aggregation and plotting, and “pls” 2.1-0 (Mevik and
Wehrens, 2007) for partial least squares (PLS) regression.

RESULTS AND DISCUSSION
DESIGN PATTERNS FOR cGP STUDIES
The workflow in Figure 3 exemplifies the design pattern
(Wikipedia, 2010) we developed to facilitate the interchange and
reuse of its components: the generation of genotypes (e.g., exhaus-
tive enumeration or reduced designs), the mapping of genes to
parameters (based on genome databases, e.g., Hancock et al.,
2009), physiological models (Le Novere et al., 2006; Lloyd et al.,
2008) that map parameters to phenotypes, virtual experiments
to generate phenotypes that are defined by the model system’s
response to some stimulus or perturbation (e.g., voltage clamping,
Molleman, 2002), and aggregation from model dynamics to clin-
ically relevant phenotypes (e.g., action potential duration). This
pipeline design allows the gluing together of appropriate tools for
each task. For instance, experimental designs and statistical analy-
ses were done in R (R Development Core Team, 2011), whereas

FIGURE 3 | Simulation pipeline for causally cohesive

genotype–phenotype studies. Blue arrows denote functions that
generate genotypes or transform them through successive mappings,
genotype to parameter to “raw” phenotypes to aggregated phenotypes.
The surrounding text exemplifies different alternatives for each piece of the
pipeline, e.g., a simple mapping of variation at one locus to variation in one
parameter, or a more mechanistic gene regulatory model. “Virtual
experiments” interact with physiological models to generate phenotypes
defined by the system’s response to external stimuli.

virtual experiments were flexibly described in Python2 (see also
Langtangen, 2009). The general approach should apply equally
well to eventual whole-organ cGP studies.

GENOTYPE–PHENOTYPE ELASTICITIES
Figure 4 gives a broad overview of the effects of genetic para-
meter variation on higher-level phenotypes (defined in Figure 2),
formulated as elasticities (ratios of relative changes) where applic-
able. Working with relative changes provides biologically inter-
pretable measures while being dimensionless. For example, the
elasticity to Ko (a concentration) of action potential duration
to 90% repolarization (a time) was estimated at 0.45 under
pacing at 100-ms intervals. Although this number is dimen-
sionless, we find it helpful to think in terms of “percent per
percent.” Thus, a 10% increase in Ko would result in about
a 4.5% increase in APD90. For quantities without an absolute
zero, however, relative changes are not meaningful, and sensitiv-
ity measures must be expressed using absolute units for either
or both of the phenotype and genotypic parameter. For exam-
ple, the sensitivity of peak voltage to o_Na2 at 100 ms pacing
was −1.45 mV per mV; the absolute change in peak voltage per
relative change in d_Na3 was −98 mV, or −0.98 mV peak volt-
age per percent d_Na3; and the relative change in inactivation
time τ per absolute change in o_Na2 was −3.8% per mV (for
the fast sodium channel when depolarized to −30 mV). In gen-
eral, the genotype–phenotype elasticity matrix was quite sparse
(Figure 4), reflecting a combination of the model’s modular
structure and whether the simulated genetic effects on parame-
ters were able to penetrate to higher-level phenotypes. A few
model components (see Table in Supplementary Material) seemed
to have negligible impact on the phenotypes measured, at least
locally around the baseline parameter estimate and under the
experimental protocols used.

Figure 4 demonstrates the importance of virtual experiments in
model validation (see also Cooper et al., 2011). Many effects man-
ifested more clearly in voltage-stepping experiments than under
regular pacing, or under fast vs. slow pacing. Thus, genetic parame-
ter variation that would otherwise go unnoticed can be detected by
confronting model predictions with experimental data for a range
of experimental protocols.

RAW PHENOTYPIC VARIABILITY
Based on the elasticity analysis above, we selected 10 parame-
ters exemplifying various components and influencing various
phenotypes (Figure 1; Table 1), and assumed that each was deter-
mined by one biallelic locus, with genotypic values of aa = 50%,
Aa = 100%, and AA = 150% of the baseline parameter estimate,
for a total of 310 = 59049 parameter scenarios. The assumption
of parameter monogenicity is conservative with respect to under-
standing penetrance and polygenicity, and simplifies the presen-
tation of results while not influencing the major conclusions that
follow.

The simulated heart cell dynamics converged without alternans
in 56%, 62%, and 65% of cases for pacing intervals of 100, 200,

2www.python.org
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FIGURE 4 | Elasticities and sensitivities of phenotypes (columns) with

respect to parameters (rows) for selected components and

phenotypes. The body of the table shows the change in phenotype per
change in parameter (red = positive, blue = negative), expressed as percent
(for ratio–scale quantities) or millivolt (for base and peak voltage, and voltage

offset parameters). Parameters are ordered within components by their
highest absolute elasticity with respect to any phenotype. See
Supplementary Material for the full table, annotated with physical units,
baseline values, and whether quantities were considered on relative or
absolute scale.

Table 1 | Heart cell model parameters, assumed to reflect individual genes, that were varied (50, 100, 150) to simulate genetic variation.

Parameter name Unit Baseline value Description

d_Na3 mV 7.7 Fast Na current, voltage-sensitivity of opening rate (slope)

da_1Na13 mV 12 Fast Na current, voltage-sensitivity of recovery rate from inactivation (slope)

o_Na1 mV 2.5 Fast Na current, voltage-sensitivity of opening rates (offset)

y_gate_tau_const1 ms 8 L-type Ca current

Km_Nai μM 16600 Na–K pump (sensitivity to [Na+])

tau_xfer ms 8 Ca fluxes (sensitivity to Ca gradient)

vmup_init μM/ms 0.5059 SERCA, calcium uptake from cytosol to sarcoplasmic reticulum (scales the current)

V_max_NCX pA/pF 3.939 Na–Ca exchange current (scales the current)

K_mCai μM 3.6 Na–Ca exchange current (sensitivity to [Ca2+])

Ko μM 5400 Extracellular potassium concentration

See Supplementary Material for details on how the parameters enter into the physiological equations.

and 300 ms. The genotypic scenarios that did converge showed
considerable phenotypic variation in action potentials, calcium
transients, and ion currents under voltage-stepping (Figure 5).
Action potentials clustered into a few distinct shapes, whereas
the calcium transient showed more continuous phenotypic vari-
ation. This may suggest a more polygenic basis for the latter, in

that a greater number of processes affect the calcium transient.
The voltage-clamp experiment for the baseline scenario showed
the usual short-lived current that is cut short by inactivation of
ion channels (third panel, red curve in Figure 5). However, in
a high proportion of genotypic scenarios the channel failed to
inactivate, causing a persistent current throughout the first pulse.
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FIGURE 5 | Phenotypic variability simulated by varying

in silico genes that each determine one model parameter. Red
is the baseline genotype. (A) Action potential and (B) calcium
transient under regular pacing at 100 ms intervals. Only genotypes

for which dynamics converged without alternans are shown (about
56% of 310 = 59049 cases). (C,D) Fast sodium current under a
double-pulse voltage-clamp experiment. Note that the time axes
are truncated.

As a consequence, the aggregate phenotype of a time-scale of
inactivation (τ) was not well defined in these cases. In summary,
a cGP model generates phenotypic data that can be directly con-
fronted with empirical measurements, giving a causal account of
genetic concepts such as penetrance, dominance, and epistasis.
Below we exemplify how the data can be aggregated for purposes
of analysis and interpretation.

PHENOTYPIC CORRELATIONS
Scatterplots are useful in visualizing the covariation between
pairs of scalar phenotypes (cf. Figure 2) that results from sim-
ulated genetic variation (Figure 6). The distinct AP shapes in
Figure 5 are reflected in the strong phenotypic correlation between
APD25 and APD90 within distinct groups (Figure 6, upper red
highlight). Variation in calcium transient phenotypes was more
continuous, though often quite irregular (middle and lower red
highlights).

Clustering in phenotypic values may suggest that one or a few
genes underlie the variation. Coloring points by genotype is infor-
mative in simple cases, for example AP peak and base vs. Ko
(Figure 6, inset). However, when phenotypic ranges overlap, and
multiple genotypic or other causal variation is involved, multi-
variate methods can give a better overview of many dependencies
simultaneously, as shown below.

CHARACTERIZING A HIGH-DIMENSIONAL GENOTYPE-TO-PHENOTYPE
MAP
Partial least squares regression (Martens and Næs, 1992) pro-
vides a low-dimensional approximation of the covariance between
responses (here phenotypes) and predictors (here genotypic para-
meters). PLS compresses both the predictors and responses into

their most relevant subspaces, spanned by a basis of covari-
ance eigenvectors (weighting each original variable by so-called
loadings; scores denotes each observation’s coordinates in the new
basis). The correlation between the original variables and the
scores are called correlation loadings. Thus, Figure 7 places sim-
ulated loci and phenotypic measures onto a few common axes,
concisely depicting their patterns of covariation.

The placement of base voltage and other action potential phe-
notypes at the extremes of the PC1 axis (correlation loadings for
PLS component 1) shows that these enter strongly into the first
major component of phenotypic variation, as does the time-scale
of the i_CaL current. The second component brings in calcium
transient phenotypes. Together, the first pair of phenotypic com-
ponents account almost fully (outer circle) for variation in the base
voltage, whereas the variance in the calcium transient is mostly
relegated to later components, in particular the combination of
PC2 and PC3. The proximity of, e.g., APD25 and AP time to peak
shows them to be highly correlated, whereas their being at right
angles to tau_i_CaL means that these groups of phenotypes are
fairly uncorrelated in this two-dimensional projection of the data.
AP base is strongly negatively correlated with the other AP pheno-
types, as evident from its placement opposite the others. The serial,
but weakening correlation between recovery times is evident from
their placement along a curve in the diagram, for both the action
potential and calcium transient.

The first genotypic PLS component is dominated by Ko and
y_gate_tau_const1, which are strongly correlated with the phe-
notypes AP base and tau_i_CaL, respectively. In summary, the
PLS analysis gives a very concise depiction of the genotype-
to-phenotype map, reflecting findings of both the bivariate
scatterplots and variance decompositions (below).
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FIGURE 6 | (A) Scatterplot matrix of bivariate phenotypic distributions for the
action potential (AP) and calcium transient (CT), with univariate histograms in
gray. Values are natural logarithms, except for base and peak voltage, and the
lower inset. The red dot (circle in the insets) shows the baseline scenario. Red
highlight: AP durations apd90 vs. apd25 exemplify fairly distinct variation in AP

shape, whereas ctd90 vs. ctd25 shows more gradual variability, though the
relation between amplitude and time to peak is complex. (B) Clustering of AP
base and peak phenotypes exemplifies that they are affected by only a couple
of simulated genes, one of which is Ko, determining the extracellular
potassium concentration.

For cases where interesting patterns apply only to subsets of
the data, clustering-based methods may offer an alternative to
specifying interaction terms parametrically (Tøndel et al., 2011).
Many phenotypes may apply only in a portion of cases; for
instance, action potential duration is well defined only if heart cell

dynamics converges to stable dynamics without alternans. Such
cases are amenable to a combined approach, quantifying the con-
tinuous phenotypic variation for the cases where it is well defined
(Figures 7 and 9), and exploring the causes of failure using, e.g.,
logistic regression (Hosmer and Lemeshow, 2000).
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FIGURE 7 | Overview of a multivariate genotype–phenotype map:

Correlation loading plot matrix of the first three components of a partial

least squares regression of action potential, calcium transient, and

voltage-clamp phenotypes (categorized by color) against genotypic

variables (red). The axes show correlations between a PLS component and
each genotypic or phenotypic variable. The circles indicate 50 and 100%

variance explained by the pair of components; labels near the center are
dimmed. Variable identifiers are centered over their respective points. For the
action potential (AP) and calcium transient (CT), TTP means time to peak, and
lines connect the phenotypes for time to 25, 50, 75, 90% recovery. For the
voltage-clamp phenotypes, lines connect the range of transmembrane
voltages to which a cell was depolarized.

THE GENETIC BASIS OF AN IN SILICO DISEASE PHENOTYPE
We believe that defining disease phenotypes in silico holds great
potential for improving understanding of different proximate
causes underlying medical signs and symptoms, and of the interac-
tions between genetic and environmental parameters that under-
lie epistasis and incomplete penetrance. In our study, simulated
genetic variation had strong effects on the viability of in silico
heart cells, as measured by their calcium handling (Figure 8).
Among the genotypic scenarios that did converge, increasing
the parameter d_Na3 ran the risk of reducing peak calcium to
an unviable level, while reducing the voltage-sensitivity could
maintain base calcium so high as to prevent proper relaxation
(Figure 8). However, model dynamics failed to even converge
in almost all cases for certain combinations of the genes for
da_1Na13 and d_Na3, which modify the fast sodium channel’s
voltage-dependency of rates of opening and recovery from inac-
tivation, respectively (Figure 1; Table 1). The epistatic inter-
actions between these simulated genes were not simple; gene
substitutions for d_Na3 that were harmful alone could com-
pensate for problems arising from substitutions of da_1Na13

(Figure 8), or only had an impact under stress such as fast pacing
(Figure 4).

Although simple, this example points to the possibility of classi-
fying diseased and healthy individuals based on clinically relevant
phenotypic measures, while obtaining more refined insight by ana-
lyzing the high-dimensional phenotypic variation underlying the
binary classification. Highly complex interactions between genetic
factors and environmental challenges may be a generic feature of
complex diseases, in which case cGP models can shed light on the
interplay between genetic, age-related, and lifestyle factors, based
on how disease manifests at multiple phenotypic levels in a causally
cohesive model.

VARIANCE DECOMPOSITION
Traditional variance decompositions can provide helpful indica-
tions of how phenotypic variability arises from genotypic and
other variation in parameters. In our study, the analysis was com-
plicated by the fact that AP and CT phenotypes were not well
defined in cases of alternans (Figure 8). For simplicity, we con-
trasted variance decompositions for two well-behaved subsets of
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A B

C

D

FIGURE 8 | Simulated disease phenotype based on the calcium transient,

a proxy for muscle contraction, in scenarios with stable dynamics at

200 ms pacing. (A) The gray area shows failure to contract (bottom), failure to
relax (right), or insufficient calcium transient amplitude (near diagonal). Color
indicates levels of d_Na3, the voltage-sensitivity of the opening rate of the fast

sodium channel. (B) Interaction of d_Na3 and da_1Na13 (voltage-sensitivity of
the rate of recovery from inactivation) with respect to the proportion of
simulated genotypes that converged to stable dynamics. The middle and
bottom panels show the proportion of stable scenarios suffering from
excessive base levels of cytosolic calcium (C) or insufficient peak calcium (D).

the data, namely baseline and low d_Na3 at baseline values of
da_1Na13. We fitted linear regression models (function lm in
R) for each scalar measure of the action potential and calcium
transient, with genotypic variables as predictors, including second-
order interactions and quadratic terms. In the resulting variance
decompositions (Figure 9), phenotypes ranged from being mono-
genic to oligogenic to polygenic, even under the conservative
assumption that low-level parameters were strictly monogenic.

Figure 9 illustrates the potential of cGP models in system-
atically assessing the degree to which the –genicity of complex
traits and associated penetrance patterns are likely to change as a
function of the genetic background. Action potential phenotypes
appeared largely monogenic (due to Ko, with very non-additive
effects, e.g., on APD90) at baseline d_Na3, but di- or trigenic at
low d_Na3. The AP amplitude and early-stage AP duration var-
ied by Km_Nai (in the sodium–potassium pump component),
whereas AP durations were also influenced by y_gate_tau_const1
(in the L-type calcium current component). (AP time to peak
had zero variability at low d_Na3, because repolarization was
already underway by the end of the stimulus.) The two back-
grounds showed also very different major determinants of calcium
transient phenotypes. Under baseline d_Na3, the greatest vari-
ance component was due to tau_xfer (affecting calcium release
from subspace to cytosol), whereas vmup_init (affecting calcium
re-uptake from cytosol) dominated at low d_Na3. These results

suggest that varying –genicity and penetrance may be generic
features of complex physiological traits, and that these features can
be systematically and meaningfully studied by use of cGP models.

For example, findings of quantitative trait loci (QTLs) under-
lying complex traits are often not consistent across populations
(Beavis, 1998). cGP models may shed light on whether QTLs
for variation in lower-level processes are likely to manifest in
higher-level phenotypes and to assess the associated penetrance
characteristics, informing the interpretation of empirical data and
guiding experimental search for putative QTLs.

PARAMETERS ARE PHENOTYPES
From the assumption that low-level parameters were strictly
monogenic, emerged a polygenic basis for phenotypes such as the
characteristic time-scale of ion channels; phenotypes that might
be used as parameters in more aggregate models (Rajasingh et al.,
2008). Similarly, many parameters that we assumed monogenic
and constant could instead be derived from mechanistic submod-
els. For instance, the output of gene regulatory models for the
expression levels of ion transport proteins corresponds directly to
model parameters that scale ion currents, such as V_max_NCX or
vmup_init in Table 1 (see, e.g., Gjuvsland et al., 2006) An example
of gene regulatory responses was seen with conditional knockout
of the SERCA channel, which was partially compensated for by
increased expression of other calcium channels (Andersson et al.,
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A B

FIGURE 9 | Effect of a hypothetical gene (d_Na3) on variance

decompositions of action potential (AP), calcium transient (CT), and

voltage-clamp (VT) phenotypes, based on linear regression against

genotypic parameters including second-order and quadratic terms

to capture genetic interactions and intralocus non-additivity.

Simulated genes with large variance components are labeled; Ko:Ko
denotes the quadratic term for Ko. Second-order interactions were minor
in this case except those of tau_xfer and Km_Nai (labeled I1), tau_xfer

and Ko (I2), Km_Nai and Ko (I3), or tau_xfer and vmup_init (I4).
Higher-order terms are lumped in “Residuals.” Voltage-clamp phenotypes
include the characteristic time-scale (tau) for the L-type calcium and fast
sodium currents after a step depolarization (e.g., to −50 mV for
tau_i_Na.m50). To restrict the illustration to well-behaved subsets of the
data, only scenarios with baseline (A) or low (B) levels of d_Na3,
baseline levels of da_1Na13, and a stimulus period of 200 ms (for AP and
CT) are shown.

2009). Modeling signal transduction and gene regulation (Cooling
et al., 2009), electromechanical coupling (Niederer and Smith,
2007) and whole-organ phenomena (Nordsletten et al., 2011) are
further promising targets for realistic gene-to-parameter mapping
in cGP modeling. The requisite data and tools are just becom-
ing available through databases, coding standards, and ontologies
such as those promoted by the Physiome Project (Hunter and
Borg, 2003) and the Virtual Physiological Human (Hunter et al.,
2010). For example, the knowledge in genomic and phenomic
databases can become vastly more usable through annotation
with biologically meaningful, yet machine-processable descrip-
tors. Phenotypic assays can be linked to models by complementing
model repositories (Le Novere et al., 2006; Lloyd et al., 2008)
with simulation experiment descriptions in appropriate languages
(Köhn and Novère, 2011).

CONCLUDING REMARKS
In their commentary entitled “Life after GWA studies,” Dermitza-
kis and Clark (2009) conclude that “A major breakthrough will
be to predict and interpret the effect of mutational and bio-
chemical changes in human cells and understand how this signal
is transmitted spatially (among tissues) and temporally (span-
ning development).” Causally cGP modeling addresses exactly
this vision by bridging the gap between genomic information and
the high-dimensional phenotypes of individuals. The physiolog-
ically validated cell model in our case study exhibits many well-
known genetic phenomena such as variable penetrance of a binary
disease phenotype, intralocus dominance, non-linear responses,
interlocus epistasis, varying degrees of phenotypic correlation

(Figure 6), and a range from monogenic to oligo- and polygenic
traits (Figure 9). Thus, model results are amenable both to stan-
dard quantitative genetic methods (Lynch and Walsh, 1998) and
novel applications of high-dimensional data analysis (Martens and
Næs, 1992). The close parallel between empirical and cGP stud-
ies makes for a tight link to experimental work (cf. Figure 3).
Whereas passive observation may not provide the most informa-
tive phenotypes, experiments (real and virtual) can be designed
to bring into play system components whose importance mani-
fests only under certain conditions or perturbations. Because the
parameter-to-phenotype model is based on physiological prin-
ciples and empirical data (Hunter and Borg, 2003), a cGP study
generates experimentally verifiable hypotheses for both physiolog-
ical and genetic studies at multiple phenotypic levels (Rajasingh
et al., 2008) in a way that statistical-genetic studies cannot (Der-
mitzakis and Clark, 2009). In personalized medicine, this approach
can lead toward a systemic understanding of what it takes to force
a diseased system into a healthier state. Incorporating the effects
of environmental and lifestyle variation on parameters and phe-
notypes is an important next step. A computational physiological
genomics will have to involve a whole range of theoretical method-
ologies and approaches, but we find it hard to envisage how we can
achieve a deep understanding of the genotype–phenotype rela-
tionship without letting cGP modeling become a key element in
this emerging discipline.
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