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Abstract
Achieving sustainable agriculture and producing enough food for the increasing
global population will require effective strategies to cope with harsh
environments such as water and nutrient stress, high temperatures and
compacted soils with high impedance that drastically reduce crop yield. Recent
advances in the understanding of the molecular, cellular and epigenetic
mechanisms that orchestrate plant responses to abiotic stress will serve as the
platform to engineer improved crop plants with better designed root system
architecture and optimized metabolism to enhance water and nutrients uptake
and use efficiency and/or soil penetration. In this review we discuss such
advances and how the generated knowledge could be used to integrate
effective strategies to engineer crops by gene transfer or genome editing
technologies.
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Introduction
Current agricultural systems use numerous crop varieties that have 
been improved through traditional breeding, which has produced 
a substantial increase in the yields of many crops, particularly 
cereals1. However, high input agriculture has been conducted with 
the excessive use of agrochemicals, including phosphorus (P)- and 
nitrogen (N)-fertilizers, herbicides, and insecticides. Moreover, the 
harsh conditions that crops face, such as drought, soil elemental tox-
icities, extreme temperatures, and high soil impedance, merit spe-
cial attention because they drastically limit crop yields worldwide2,3. 
The predicted increase in the global population to over 9 billion 
by 20504 poses a critical challenge: how to develop effective stress-
resistant/tolerant crops that are more competitive and can grow in 
marginal soils to ensure food production.

The development of efficient gene transfer systems, together with 
combined “omics” platforms (e.g. genomics, transcriptomics, pro-
teomics and metabolomics), has facilitated the understanding of 
the physiology and biochemistry of plant adaptive responses to 
unfavorable environmental conditions and the identification of the 
key molecular players that control these responses. Several genes 
encoding transcription factors (TFs), transporters, and metabolic 
enzymes with a clear potential to improve crops have been identi-
fied. Agricultural schemes that use transgenic crops have proven to 
be effective and complementary alternatives because they provide 
multiple benefits for farmers (e.g. 37% less pesticide used, 22% 
higher yields, and 68% more profits); such crops are cultivated 
today on more than 180 million hectares globally5. The transgenic 
crops that are currently on the market address the crop yield per 
unit area by controlling insect attacks and weed competition; how-
ever, new transgenic crops that overcome the limitations caused 
by harsh environments are also starting to be deregulated for com-
mercial use5. In this review, we highlight some relevant transgenic 
approaches regarding nutrient use efficiency, abiotic stresses and 
soil physical degradation. These approaches have the potential to 
increase crop yields in marginal lands with poor soil fertility or 
low water availability and to expand cropping land into places in 
which the agro-climatic conditions are favourable but abiotic stress 
reduces yields and thereby discourages agricultural production.

The two most limiting nutrients for crop productivity: 
phosphorus and nitrogen
Among all of the nutrients required by plants, P and N are the most 
limiting factors for agricultural production in most soils; thus, large 
amounts of fertilizers are commonly applied to ensure high yields. 
Although plants are able to use different organic compounds as 
sources of nutrients, P can be assimilated only in the form of ortho-
phosphate (H

2
PO

4
-/HPO

4
-2, Pi), whereas N is predominantly taken up 

as nitrate (NO
3
-, Ni) or ammonia (NH

4
+)6,7. Moreover, the availability 

of Pi in the soil solution is drastically affected by the biogeochemical 
properties of the soil, making P-fertilization efficiency highly vari-
able and more dependent on external inputs. To ensure high yields, 
farmers usually apply excessive amounts of both P- and N-fertilizers. 
This practice is unsustainable because crops use only 20–40% of the 
applied nutrients; the remainder contributes to environmental pollu-
tion, toxic algal blooms, and global warming8. Whereas N-fertilizers 
are synthesized from atmospheric N through a process that con-
sumes at least 1% of global energy usage, P-fertilizers are produced 

from phosphate rock, a finite, non-renewable mineral resource. 
Consequently, both fertilizer and food prices will increase continu-
ously. Therefore, searching for integrated strategies to increase P, 
N, and water use efficiency is an issue of food security and sustain-
ability for all nations. The following paragraphs discuss the most 
relevant advances in engineering improved P and N uptake and use 
efficiency.

Manipulating key elements of phosphorus and nitrogen 
metabolism
How can we improve P and N uptake and/or use efficiency in 
crops? There is no simple answer. This issue is being addressed by 
attempting to identify the key genes that control the global adaptive 
responses that plants display to low availability of N and P and to 
investigate the possible contributions of these genes to enhancing 
nutrient uptake and use efficiencies. This set of responses includes 
profound morphological, physiological and metabolic changes, 
which rely on the induction and repression of numerous genes 
and allow plants to survive and reproduce under nutrient-deprived 
conditions9–12. For instance, under limited-P regimens, plants opti-
mize P use by activating metabolic pathways that require smaller 
amounts of P-containing compounds, reducing shoot growth and 
promoting root branching to enhance soil exploration10–12.

The uptake of N and Pi from the soil is critical and requires spe-
cialized transporter proteins6,13–18; therefore, overexpression of these 
transporters has been considered as a potential approach for plant 
improvement. However, overexpressing Pi transporters has either 
had little effect on Pi uptake or, in some cases, resulted in toxicity 
symptoms due to an excessive accumulation of Pi in the shoots19,20. 
Interestingly, overexpression of the Phosphate Transporter Traffic 
Facilitator 1 (PHF1) in rice, responsible for regulating the localiza-
tion of low- and high-affinity Pi transporters to the plasma mem-
brane21, results in enhanced low-Pi tolerance. Field data demonstrate 
that grain yield of PHF1-overexpressing plants in a low-Pi soil is 
higher than that of wild-type (WT) plants, suggesting that  post- 
transcriptional regulation of Pi transporters could also be considered 
to improve crop performance in soils with low-Pi availability22.

The generation of transgenic plants to improve the N use efficiency 
has also been attempted in a variety of crop plants by manipulat-
ing the flux-limiting enzymes involved in N assimilation23–25. How-
ever, except in the case of alanine aminotransferase (AlaAT)26, as 
described below, the overexpression of enzymes has not provided 
reproducible or robust results to indicate that it could be an effective 
strategy for improving the efficiency of N use.

In addition to transporters and key enzymes, some TFs that play 
crucial roles as master regulators of P and N metabolism have been 
identified. PHR1 is a member of the MYB transcription family that 
activates the expression of a large set of the Pi-responsive genes 
that participate in the low-Pi rescue responses in Arabidopsis, and 
it is evolutionarily conserved from algae to vascular plants27. Over-
expressing Phosphate Starvation Response 1 (PHR1) and other 
TFs, such as Phosphate Starvation-Induced Transcription Factor 1 
(PTF1) and OsMYB2P-1, in a variety of crops, such as wheat28, 
rice29, and maize30, appear to confer low-Pi tolerance and improved 
grain yield in greenhouse or field trials. Field-testing in different 
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geographical locations and different soil types is required to con-
firm that the overexpression of these TFs is a robust strategy for 
improving plant performance under Pi-limiting conditions without 
affecting performance under optimal Pi availability. Recently, it was 
reported that in Arabidopsis and rice, SPX1 and SPX2 repress the 
activity of PHR1 as a transcriptional activator in a Pi-dependent 
manner31,32. The data published in these reports strongly suggest 
that the PHR1-SPX1/SPX2 complex is one of the main sensors 
that regulate the plant response to low-Pi availability. Although no 
structure of the PHR1-Pi-SPX complex is available, regulation of 
the interaction between these proteins could become an important 
target for engineering plants with modulated responses to low-Pi 
availability. It could be possible to alter PHR1 or SPX1/SPX2 in 
such a way that the low-Pi response could be modulated to activate 
processes that enhance Pi uptake and assimilation while preventing 
the drastic reduction in shoot growth that is generally observed in 
Pi-starved plants (Figure 1).

In the case of N, overexpression of the TaNFYA-B1 TF in wheat 
improved the yield under different regimes of P and N inputs under 
field conditions33. These results were attributed to enhanced root 
growth and the up-regulation of N- and Pi-transporters. In addition, 
the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING 
CELL FACTOR1-20 (TCP20) TF was recently identified as a key 
element in the systemic signaling pathway that directs N foraging 
in Arabidopsis roots, thus opening up the possibility of controlling 
root plasticity to improve soil exploration capacity in crops34.

Overexpression of TF, transporters or enzymes generally used the 
CaMV35S promoter, which confers constitutive high expression 
levels, independently of nutrient availability in the soil, as well as in 
cells that normally do not express the overexpressed gene and lack 
the expression of other genes required for efficient nutrient assimi-
lation. Therefore, these approaches must consider cell-specific 
expression and/or modulation of inter-connected biochemical or 

Figure 1. Main targets for engineering crops for harsh environments. Engineering DRO1, AlaAT, PSTOL1, PTXD/Phi and the PHR1-Pi-SPX 
complex represent interesting approaches with the potential to improve crops for harsh environments. In addition, the identification and 
manipulation of genes involved in cell-wall components synthesis and stress-responsive epigenetic modifiers has great potential for 
developing optimal root systems and the improvement of plant responses to diverse stimuli. The simultaneous manipulation of some of these 
elements could bring robust effects to develop crops with high-yield performance, with a consequent decrease in P- and N-fertilizers input. 
C, cortex; E, endodermis; E´, epidermis; P, pericycle; VT, vascular tissue.
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regulatory pathways to ensure an appropriate phenotype. Recently, 
enhancer elements that regulate the transcriptional activation of 
Pi-starvation responsive genes were reported35. These enhancer 
elements could be used to design synthetic promoters that could 
direct high levels of expression while maintaining cell specificity 
and responsiveness to Pi- or N-deprivation. An additional phase 
for the improvement of nutrient uptake and use efficiency will be 
the understanding of the regulatory networks that orchestrate plant 
responses to nutrient deficiency. The integration of this knowledge 
will serve to design strategies to direct the enhanced expression of 
two or more TFs simultaneously, leading to more robust improve-
ments in the key traits to achieve a more sustainable agriculture 
(Figure 1). Altering expression of several TFs to have a higher level 
of induction upon the stress stimuli, or higher cell-specific constitu-
tive expression, could be feasible by introducing enhancer elements 
by genome editing using the CRISPR/Cas9 system that allows the 
simultaneous modification of several genes at the same time36.

Interestingly, TF-overexpressing plants that showed an increased 
yield under N- or Pi-limiting conditions generally developed a more 
robust root system. This finding corroborates the importance of the 
root system architecture in soil exploration and nutrient uptake. 
Therefore, the identification and molecular characterization of 
quantitative trait loci (QTL) and marker-assisted backcrossing of 
genes that regulate root traits that improve nutrient uptake and use 
efficiencies into modern varieties is of the highest importance37–40. 
Genes that are responsible for these QTL as well as superior allelic 
variations in candidate genes, identified in GeneBank collections 
for instance, could provide powerful potential tools for engineering 
crops for higher nutrient uptake efficiency in the same or other spe-
cies by gene transfer or genome editing technologies.

Improvements in P and N metabolism should come from enhanced 
nutrient uptake and assimilation and/or their subsequent remo-
bilization to support seed or fruit production. Among reported 
efforts to improve Pi and N use efficiency, we identify the follow-
ing three promising strategies to develop improved crops, which 
could make a real contribution to sustainable agriculture: the use 
of AlaAT to enhance N assimilation26, the use of PHOSPHORUS- 
STARVATION TOLERANCE 1 (PSTOL1) to enhance P  
assimilation41, and the development of a novel fertilization system 
based on the production of transgenic plants that are able to use 
phosphite (Phi) instead of Pi as a P source42 (Figure 1). Interestingly, 
each of these approaches is based on the manipulation of a single 
gene, but they have enormous potential to not only reduce Pi or N 
applications but also have a profound environmental impact. In the 
following paragraphs, these approaches and their implications are 
discussed.

Alanine aminotransferase. Alanine aminotransferase (AlaAT) 
plays an important role in carbon fixation and N metabolism because 
it catalyzes the reversible reaction between pyruvate and glutamate 
to produce alanine and oxoglutarate43. The potential effectiveness 
of this approach relies on the facts that amino acids act as signals 
controlling N uptake and that alanine is the only amino acid whose 
biosynthesis is not inhibited by N deficiency43. The development of 
the AlaAT technology started with the expression of barley AlaAT 
in canola using the btg26 root-specific promoter, which resulted 
in the production of increased biomass under low-N conditions26. 

Field evaluations showed that btg26:AlaAT canola plants exhib-
ited a 42% increase in seed yield under suboptimal N fertilization 
(56 kg ha-1). This yield increase correlated with lower levels of 
glutamine and glutamate in the shoot, increased N influx and 
higher levels of alanine in roots, and up-regulation of high-affinity 
N-transporters. The overexpression of barley AlaAT in rice, which 
was also driven using a root-specific promoter (OsANT1), also 
resulted in increased biomass and grain yield44. Recently, similar 
results have been reported for sugarcane45.

Interestingly, the btg26 promoter is expressed mainly in the cortex 
and lateral roots of transgenic plants26, which are fundamental for 
the uptake and loading of nutrients into the vascular system. It will 
be interesting to determine how robust the AlaAT-overexpressing 
phenotype is under different stress conditions and soil types.

Phosphorus-starvation tolerance 1. Because of the low mobility of 
Pi in the soil7, a well-developed and highly branched root system is 
a determinant for soil exploration and Pi uptake in soils with a low 
availability of this nutrient46. However, modern breeding programs 
have focused on developing high-yield crops by primarily selecting 
the above-ground phenotype and applying full fertilization during 
breeding processes, which probably selects against root traits that 
are important for nutrient uptake efficiency. The QTL Pup1 (Phos-
phorus Uptake1), which is responsible for low-Pi tolerance, was 
identified in a cross between a low-Pi-tolerant rice landrace with 
a low-Pi-intolerant modern rice variety41. Pup1 was found to con-
tribute to enhanced Pi uptake and grain yield by 170% and 250%, 
respectively, in low-Pi soils in the modern variety47. Recently, it 
was found that the PSTOL1 gene, which encodes a protein kinase, 
is responsible for the effect of the Pup1 QTL on Pi uptake and 
assimilation41. The overexpression of PSTOL1 under a constitutive 
promoter (CaMV35S) in two types of modern rice varieties (one 
indica and one japonica) that naturally lack the gene resulted in an 
increase of over 60% in grain yield in low-Pi soils41.

Interestingly, the low-P tolerance phenotype conferred by PSTOL1 
correlated with a more robust root system, as transgenic plants 
produced almost five times more root biomass than did the non-
transgenic plants. A global expression analysis of the PSTOL1-
overexpressing plants revealed a set of up-regulated genes that are 
related to root growth and stress responses, including a putative 
peptide transporter41. Because peptide transporters are included 
in the set of N-transporters (PTR/NRT1) in plants48, it would be 
interesting to determine whether PSTOL1-overexpression could 
also improve N uptake efficiency. Optimizing the cell-specific and 
regulated expression of PSTOL1 will probably have an even higher 
impact on grain yield.

The phosphite oxidoreductase/phosphite system. The high reac-
tivity of Pi with soil components and the constant competition of 
microorganisms and weeds with cultivated plants make agriculture 
highly dependent on P-fertilizers and herbicides. Recently, a phos-
phite oxidoreductase (PTXD) from Pseudomonas stutzeri was used 
to propose a re-design of the currently used agricultural systems42. 
PTXD oxidizes Phi using NAD+ as a cofactor and yields Pi and 
NADH as products49. The expression of PTXD in Arabidopsis and 
tobacco produced transgenic plants that are capable of using Phi as 
a sole P source.
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The importance of this approach relies on the fact that Phi has dis-
tinct chemical and biochemical properties compared with Pi, includ-
ing higher solubility and lower reactivity with soil components50; in 
addition, plants and most microorganisms are unable to metabo-
lize Phi as a P source51–53. Therefore, the system makes the PTXD- 
transgenic plants more competitive over other plants, including 
weeds, in low-Pi soils that are fertilized with Phi. PTXD-transgenic 
lines required 30–50% less P to achieve optimal productivity when 
they were fertilized with Phi instead of Pi42 and reduced the require-
ment of herbicides because of the poor growth of weeds in soils 
fertilized with Phi.

This technology is still in its infancy, and several questions need to 
be addressed before its real potential is uncovered. The promising 
results obtained under greenhouse and field conditions suggest that 
a potential reduction in production costs and energy consumption 
could be achieved by replacing the independent application of fer-
tilizer and herbicides with a single treatment and by reducing the 
cost of additional herbicides. It is important to consider that the 
PTXD/Phi system has the highest potential for use in acidic and 
alkaline soils that have very low-Pi availability and that, in spite 
of having appropriate climatic conditions and water availability to 
sustain high crop productivity, it has been used only as grassland 
for cattle. These areas are predominant in Brazil, China, Australia, 
India, and Russia, comprising over 350 million hectares that could 
be converted into highly productive cropping areas if the PTXD/Phi 
technology was incorporated into genotypes adapted to acidic and 
alkaline soils.

This technology provides sustainable management of P, and thus has 
the potential to prolong the lifetime of phosphate rock reserves and 
to reduce the environmental impact of eutrophication of lakes, seas, 
and oceans. Additionally, a paper published recently suggested that 
on the moon or other planets that lack oxygen in the atmosphere, 
on which P accumulates primarily as schreibersite mineral and that 
are rich in Phi, the PTXD/Phi technology could be an interesting 
alternative for establishing agriculture54.

Element toxicities that limit crop productivity
There are other nutritionally related stresses that have an impor-
tant impact on plant yield that deserve special attention, which we 
only briefly mention because they are outside the main scope of this 
review, namely aluminum (Al) and boron (B) toxicity. Al toxicity 
is a major constraint for plant yield on acidic soils, which com-
prise between 40 and 50% of the world’s potentially arable lands. 
At pH values below 5, Al3+ ions are dissolved from soil minerals 
and are highly toxic to plants, impairing root growth and function. 
Two main classes of Al resistance mechanisms have been reported: 
Al exclusion mechanisms, which prevent Al from entering the root 
apex, and Al tolerance mechanisms, in which Al enters the plant but 
is sequestered into the vacuole and detoxified. Since the root apex is 
the main site of Al toxicity, the most well-characterized exclusion 
mechanism involves the regulated release of organic acids (OAs) by 
the root tip, which chelate Al3+ ions forming non-toxic compounds 
that do not enter the root tip cells. Members of the Al-activated 
Malate Transporter (ALMT) family of anion channel transporters 
and the Multidrug and Toxic compound Extrusion (MATE) family 

of OA/H+ antiport transporters are responsible for plasma mem-
brane malate and citrate efflux, respectively, from root cells into 
the rhizosphere in response to the presence of toxic concentrations 
of Al3+ ions (for a review see 55). Several attempts have been made 
to show that overexpression of MATE and ALMT genes leads to 
enhanced Al tolerance56. However, the effectiveness of OA efflux 
transporters to confer an enhanced Al3+ tolerance remains to be 
demonstrated under field conditions and also to be agronomically 
relevant.

B is an essential micronutrient required for several physiological 
and developmental processes in plants, including meristem devel-
opment, but that can also be present in toxic levels in the soil. Typi-
cal B toxicity symptoms include necrosis of marginal leaves and the 
inhibition of root growth (for a review see 57). It has been revealed 
over the last 10 years that plants have B transporters that main-
tain B homeostasis. B tolerance loci have been identified in high 
B-tolerant barley and wheat genotypes, which encode B exporters 
to reduce B concentrations in roots and to alter cellular distribution 
of B in shoots that are absent in susceptible lines. In barley, toler-
ance to toxic levels of B is associated with four tandem copies of 
Bot1 (encoding a B efflux transporter), which is highly expressed in 
the tolerant landraces58, whereas B tolerance in wheat is associated 
with a B transporter-like gene (Bot-B5b) that has high root expres-
sion levels in tolerant genotypes as compared to susceptible lines59. 
The finding that high expression of B exporters reduces B concen-
tration in the plant, or that a decreased expression of the transport-
ers that facilitate B uptake could lead to tolerance to toxic B levels, 
opens up the possibility of using transgenic approaches or genome 
editing technologies to improve the yield of different crops in soils 
containing toxic levels of B.

Engineering tolerance to drought, salinity, and high 
temperatures
Drought, saline soils, and extreme temperature are abiotic stresses 
that adversely affect the growth and productivity of most crops. 
Drought is the most aggressive form of osmotic stress and lim-
its crop yield in approximately 50% of the total cultivated area 
worldwide60. Table 1 shows the numerous efforts to engineer crops 
for drought tolerance. Plants have evolved adaptive mechanisms to 
cope with abiotic stresses by remodeling morphological and physi-
ological processes, mainly by altering their metabolism to reduce 
transpiration and promote osmotic adjustment through the interac-
tion of multiple signaling pathways. Adaptive mechanisms that allow 
plants to cope with drought, salinity, and high temperatures include 
the production and accumulation of osmoprotectants, molecular 
chaperones, and antioxidants. Osmoprotectants are metabolites that 
protect cells by maintaining their water potential and by stabilizing 
membranes and scavenging reactive oxygen species (ROS)61. Heat 
shock proteins (HSPs) and late embryogenesis abundant (LEA) 
proteins also play crucial roles during seed desiccation and water 
stress by preventing protein denaturation and aggregation62. Addi-
tionally, several genes that encode TFs have been identified as key 
elements that possess the potential to improve crop performance 
under different abiotic stresses (Table 1). This section discusses the 
most promising approaches to engineering crops with enhanced tol-
erance to drought stress, extreme temperatures, and soil salinity.
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Table 1. Transgenic approaches to improve tolerance to drought and other abiotic stresses. Numerous genes have been shown to 
improve drought-tolerance in transgenic crops. In addition, some of these approaches have improved productivity and tolerance to other 
abiotic stresses, such as cold, heat, and high salinity. The gene source and the type of expression system—constitutive (C), inducible (I) 
or tissue specific (TS)—are indicated in each case. Positive and negative phenotypic alterations are also specified when data are available 
(GR, growth retardation; IB, increase biomass; PE, pleiotropic effect; SA, sensitivity to ABA; SOx, increased sensitivity to oxidative stress). 
Gene sources: Arabidopsis thaliana (At), Arthrobacter globiformis (Ag), Bacillus subtilis (Bs), Cynodon dactylon x C. transvaalensis (Cdt), 
Escherichia coli (Ec), Glycine max (Gm), Gossypium arboreum (Ga), Hordeum vulgare (Hv), Macrotyloma uniflorum (Mu), Malus domestica 
(Md), Medicago truncatula (Mt), Nicotiana tabacum (Nt), Oryza sativa (Os), Pisum sativum (Ps), Solanum habrochaites (Sh), Solanum 
lycopersicum (Sl), Solanum tuberosum (St), Thellungiella halophile (Th), Triticum aestivum (Ta), Vigna aconitifolia (Va). ND, not data.
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Reference

S
al

t

C
o
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H
ea

t

O
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s

Transcription 
factor 

AP2/ERF DREB1A Wheat At I 109

CBF3/
DREB1A Rice ✔ At C 110

OsDREB1 Rice ✔ ✔ Os C GR 111

AtDREB1A Peanut ✔ At I 112

OsDREB2A Rice ✔ Os I 113

TaDREB2 Wheat Ta I 77

TaDREB2 Barley ✔ Ta C 77

TaDREB3 Wheat Ta I 77

TaDREB3 Barley ✔ Ta C GR 77

HvCBF4 Rice ✔ ✔ Hv C 114

TaERF3 Wheat ✔ Ta C 115

OsERF4a Rice Os C, I SA 116

SlERF5 Tomato ✔ Sl C 117

AP37 Rice ✔ ✔ Os C ✔ ✔ 118

AP59 Rice ✔ Os C ✔ 118

TSRF1 Rice ✔ Sl C 119

JERF1 Rice Sl C 120

bZIP SlAREB1 Tomato ✔ Sl C 121

AtAREB1 
(active form) Soybean At C 122

ABF3 Rice At C 110

GmbZIP1 Wheat Gm C 123

OsbZIP16 Rice Os C SA 124

OsbZIP23 Rice ✔ Os C SA 125

OsbZIP46 
(active form) Rice ✔ Os C SA 126

OsbZIP72 Rice Os C SA 127
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NAC SNAC1 Rice ✔ Os C ✔ SA 71

SNAC1 Wheat ✔ Os C ✔ SA 128

SNAC1 Cotton ✔ Os C ✔ 129

MuNAC4 Peanut Mu C 130

OsNAC5 Rice Os C, TS ✔ ✔ 131

OsNAC6 Rice ✔ ✔ Os C GR 132

OsNAC9 Rice Os C, TS ✔ ✔ 133

OsNAC10 Rice ✔ ✔ Os C, TS ✔ ✔ 75

ONAC045 Rice ✔ Os C 134

TaNAC69 Wheat ✔ Ta I ✔ 135

NF-Y ZmNF-YB2 Maize Zm C ✔ ✔ 72

CdtNF-YC1 Rice ✔ Cdt C SA 136

MYB StMYB1R-1 Potato St C 137

OsMYB2 Rice ✔ ✔ Os C SA 138

OsMYB48-1 Rice ✔ Os C SA 139

MdoMYB121 Tomato and 
apple ✔ ✔ Md C 140

TaPIMP1 Wheat ✔ Ta C 141

WRKY OsWRKY11 Rice ✔ Os I 142

OsWRKY30 Rice Os C 143

Zinc finger ZFP252 Rice ✔ Os C 144

ZAT10 Rice ND C, I ✔ ✔ 145

Combination 
of different 

TFs 

AtDREB2A, 
AtHB7 and 

AtABF3
Peanut ✔ ✔ At C 146

Other 
transcription 

factors 

OsiSAP8 Rice ✔ ✔ Os C 147

WXP1 Alfalfa Mt C 148

Protein 
kinases

MAPKs OsMAPK5 Rice ✔ ✔ Os C 149

NPK1 Maize Nt C 150

DSM1 Rice Os C 151

CIPK MdCIPK6L Tomato ✔ ✔ Md C 152

OsCIPK12 Rice Os C 153

CDPK OsCDPK1 Rice Os C 154

OsCDPK7 Rice ✔ ✔ Os C 155

OsCPK4 Rice ✔ Os C 156

OsCPK9 Rice Os C SA 157

Other protein 
kinases OsSIK1 Rice ✔ Os C 158
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Functional 
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Gene 
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S
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t

C
o
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H
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t

O
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s

Metabolism of 
hormones 

ABA DSM2 Rice ✔ Os C 159

LOS5 Rice ND C, I ✔ ✔ 145

AtLOS5 Cotton At C ✔ 160

LOS5 Soybean At C ✔ ✔ 161

LOS5 Maize At C 162

Citokinin IPT Peanut ND I ✔ 163

IPT Rice ND I 164

IPT Cotton ND I 165

Auxin OsPIN3t Rice Os C 166

Osmolytes Trehalose OsTPS1 Rice ✔ ✔ Os C 161

otsA and 
otsB Rice ✔ ✔ Ec I, TS 68

TPS and 
TPP Rice ✔ ✔ Ec C 69

Proline P5CS Wheat Va I 167

Mannitol mtlD Wheat ✔ Ec C 168

Glycine 
betaine 

betA Maize Ec ND ✔ 169

codA Potato ✔ ✔ Ag I 170

codA Tomato ✔ Ag C 171

Responsive 
stress 
proteins 

LEA 
proteins 

OsLEA3-1 Rice Os C, I ✔ 63

OsLEA3-2 Rice ✔ Os C 172

HVA1 Rice ✔ Hv C ✔ 65

HVA1 Wheat Hv C 173

HVA1 Wheat Hv C ✔ ✔ 64

Dehydrin TAS14 Tomato ✔ Sl C 174

ShDHN Tomato ✔ Sh C 175

HSP GHSP26 Cotton Ga C 66

Cold 
shock 

proteins 

CspA and 
CspB Maize Ec, Bs C ✔ ✔ 67

CspA or 
CspB Rice ✔ ✔ Ec, Bs C ✔ 67

Transporters NHX1 Rice ND C, I ✔ ✔ 145

betA and 
TsVP Maize Ec, Th C ✔ 176

AVP1 Cotton ✔ At C ✔ ✔ 177

Antioxidant 
enzymes/
compounds 

OsSRO1c Rice Os C SOx 178

MnSOD Rice Ps I 179
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Manipulation of LEA and HSP genes
HSPs and LEA proteins from plants have been clearly shown to be 
involved in abiotic stress responses; however, as shown in Table 1, 
only limited attempts have been made to use the genes that encode 
these proteins to engineer abiotic stress tolerance in crops. Never-
theless, there are some examples that show the potential of over-
expressing LEA proteins in vegetative tissues. For instance, the 
constitutive expression of OsLEA3-1 in rice63 and HvLEA1 in 
wheat64 and rice65 resulted in improved yields under drought stress 
without impairing yield under control conditions. Similarly, over-
expressing GHSP26 resulted in improved drought and osmotic 
stress tolerance in cotton plants66. However, although transgenic 
plants that constitutively express LEA- and HSP-encoding genes 
have shown improved abiotic stress tolerance under both in vitro 
and greenhouse conditions, their efficacy under field conditions 
remains to be demonstrated (Table 1). Interestingly, the best results 
were obtained in transgenic plants expressing the cold shock protein 
A (CspA) and CspB genes from Escherichia coli and Bacillus sub-
tilis, respectively. These genes encode RNA-binding proteins with 
chaperone activity that confer drought tolerance in maize and rice 
under field conditions67. In fact, CspB-expressing maize is the first 
genetically modified (GM) crop with enhanced water use efficiency 
that has been deregulated for commercial use in the USA5.

The multiple pathways involved in plant adaptations to osmotic and 
water stress and the complexity of their interactions can explain, to 
some extent, the limited success under field conditions of manipu-
lating individual genes encoding chaperones or enzymes involved 
in the synthesis of osmoprotectants68,69. To develop crops with 
higher yields under drought, it will most likely be necessary to 
engineer metabolic pathways through the simultaneous manipula-
tion of multiple critical genes. In addition, it would be interesting to 
explore the mechanisms that regulate desiccation tolerance in seeds 
to obtain new insights into the adaptive stress response pathways 
and to identify new candidate genes for crop improvement.

Manipulation of regulatory genes
Manipulating proteins that regulate gene expression or the signal 
transduction of multiple metabolic pathways involved in abiotic 
stresses has proven to be useful for improving the stress tolerance 
of crops (Table 1). TFs that belong to the Dehydration-Responsive 
Element-Binding/C-repeat Binding Factor (DREBs/CBF)70, NAM-
ATAF and CUC (NAC)71, and Nuclear Factor Y (NF-Y)72 fami-
lies have been used to develop transgenic plants and study their 
performance under stress conditions. The expression of some of 
these TFs under drought-inducible or root-specific promoters has 
resulted in improved tolerance to drought, salinity, and temperature 
stress and a higher yield under water-limited conditions in rice73–76, 
wheat77, canola78, and maize72.

Genomic resources for breeding crops with 
enhanced abiotic stress tolerance
As observed for N and P improvement, hundreds of QTLs related 
to drought and heat tolerance traits have been identified. However, 
only a few of them have been implemented in appropriate breeding 
programs for improving crop abiotic stress tolerance. Efforts have 
been made to improve drought tolerance in rice by using marker-
assisted (MAS) breeding79 to identify and characterize the Deeper 

Rooting 1 (DRO1) QTL that controls the root growth angle80. Higher 
expression of DRO1 causes a more vertical root growth. Breeding 
DRO1 into a shallow-rooting rice line enables these plants to avoid 
drought by increasing the depth of their roots, resulting in a higher 
grain yield80. The DRO1 gene is the first drought tolerance QTL 
that was cloned, and its beneficial effects on plant growth further 
confirmed that the root system architecture plays a crucial role in 
abiotic stress tolerance. Interestingly, DRO1 has no homology to 
known proteins, which suggests that cloning genes associated with 
QTLs could provide completely novel genes for plant breeding. This 
example shows that a considerable improvement in drought toler-
ance can be achieved by altering root growth patterns and opens up 
the possibility of introducing DRO1 in shallow-rooting crops other 
than rice through the use of genetic engineering (Figure 1).

The phytohormone abscisic acid (ABA) regulates numerous proc-
esses in plants including seed dormancy and the plant responses 
to low water availability. ABA is perceived by soluble PYR/PYL/
RCAR (pyrabactin resistance1/PYR1-like/regulatory component of 
ABA receptor) receptors that belong to the START superfamily of 
ligand-binding proteins (for a review see 81). It has been shown that 
constitutive overexpression of ABA receptors improves drought 
tolerance; however, it negatively affects yield under non-stress 
conditions82. This suggests that the precise regulation of the activ-
ity of individual or multiple receptors will be required to achieve 
enhanced drought tolerance without a yield penalty. A novel alter-
native to actively control tolerance to abiotic stress is the use of 
chemicals that can activate or repress the receptors that sense the 
stress or the signaling pathways activated by hormones that mediate 
the corresponding stress responses. Recently it was shown that it 
is feasible for the case of drought tolerance. Drought tolerance in 
Arabidopsis was achieved using an engineered PYR1 ABA-receptor 
that can be activated by an existing non-herbicidal agrochemical 
that is not a natural inducer of ABA responses. This example opens 
up a new avenue of crop improvement to regulate abiotic or biotic 
stress responses at the beginning of, or prior to, the presence of the 
stress in a timely and quantitative manner by the application of a 
non-toxic compound, reducing potential yield reductions83.

The hidden enemy in the soil: mechanical impedance
Among the different types of soil physical degradation, soil com-
paction is considered one of the most serious problems in agricul-
tural fields because it directly alters the soil structure and modifies 
intrinsic soil properties, such as porosity, aeration, water potential, 
and soil strength84. Soil compaction increases soil impedance and 
thereby affects crop yield by decreasing the capacity of the root 
system to explore new soil horizons and absorb water and essential 
nutrients to sustain active growth and development. Several stud-
ies have shown that continuous mechanical impedance affects root 
system architecture by altering root diameter, total root length, and 
lateral root initiation85–87. Despite the increasing importance of soil 
compaction resulting from the mechanization of agriculture, this 
abiotic stress is the least studied to date.

Studying the genetic diversity of root penetration ability could per-
mit the identification and characterization of genes that allow roots 
to penetrate soils with high impedance. Genotypic variation in root 
penetration ability has been found in soybean88, rice89, and wheat90. 
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Our group has found that, among Arabidopsis ecotypes, there is 
wide variation in the capacity of the root system to penetrate sub-
strates with high mechanical impedance (Figure 2). At the molecular 
level, some studies have attempted to elucidate the detailed mech-
anosensing and mechanotransduction processes in roots by studying 
early signaling events during physical stimuli and the role of puta-
tive mechanoreceptors91–93. Although important advances have been 
made in this field, the precise mechanisms and specific root traits 
that enable roots to penetrate into hard soils remain largely unknown. 
Several interesting questions still need to be answered with regard to 
root penetration. Why can some plant species more efficiently pen-
etrate compact soil layers? Which genes are involved in the adaptive 
root traits that permit some plant species or genotypes to effectively 
cope with soil compaction problems? And what hormonal changes 
occur when a plant encounters a below-ground obstacle?

The use of image analysis techniques based on transparent sub-
strates and 3D imaging using X-ray and neutron tomography tech-
nologies or fluorescent and luminescent proteins in conjunction 
with specifically designed devices should improve our understand-
ing of how roots respond to high mechanical impedance with much 
better resolution, compared with that previously possible at the 
macroscopic level94–96.

The plant cell wall consists primarily of polysaccharides that can 
be broadly classified as cellulose, cellulose-binding hemicelluloses, 
pectins, and lignins, which confer mechanical stability and allow 
adequate cell expansion through the regulation of turgor pressure 
generated inside plant cells97,98. Enzymes, such as endoglucanases, 
xyloglucan-endotransglycoxylases and expansins, play crucial 
roles in mediating the rearrangement of the cell wall structure. 
Modulating the expression of the genes involved in the synthesis 

and remodeling of cell wall components could allow the modifica-
tion of root mechanical properties to produce stronger root systems 
that have a better capacity to penetrate compacted soils (Figure 1). 
In Arabidopsis, specific TFs, such as MYB58 and MYB63, have 
been found to activate lignin biosynthetic genes during secondary 
wall formation99. Therefore, the overexpression of these TFs under 
root-specific or stress-inducible promoters could result in plant 
roots that have strengthened cell walls with enhanced tolerance of 
mechanical restriction100 (Figure 1).

It is essential to consider root responses to soil compaction in cur-
rent and future breeding programs. In conjunction with genetic 
engineering and genome editing technologies, this approach will 
accelerate the development of crop varieties with enhanced per-
formance in soils degraded by compaction.

Concluding remarks
As discussed above, engineering for tolerance to abiotic stress by 
manipulating key genes and using multiple tools has allowed the 
generation of crop plants that are tolerant to drought, extreme tem-
peratures, and salinity, or that have a higher nutrient uptake and 
use efficiency. A remarkable contribution has resulted from stud-
ies with tolerant crop varieties to certain stresses instead of using 
model genotypes, such as the case of the PSTOL1, suggesting that 
we must encourage the use of tolerant genotypes in our research.

The pursuit of master regulators that control abiotic stress and deter-
mination of the best way to modulate their expression has been the 
most important challenge in engineering plant genetics to enhance 
abiotic stress tolerance. However, rapid advances in genomic tech-
nologies for the characterization of QTLs and performing genome-
wide association studies101 should facilitate the identification of 

Figure 2. Natural variation of Arabidopsis ecotypes in root penetration ability. A) Col-0, Kz-9 and Ler Arabidopsis ecotypes show a wide 
variation in penetrating hard agar layers. Screening test was carried out using a double-phase agar system, which mimics soil compaction 
condition. B) Quantitative analysis of the root penetration ability expressed as the root penetration percentage (%) in reference to that of 
Col-0, showed by nine different Arabidopsis ecotypes. (*) indicates statistically significant differences: *P<0.05, **P<0.01, and ***P<0.001 
level; n=120 seedlings per ecotype (one-way ANOVA).
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novel genes for engineering abiotic stress tolerance in crops. The 
use of systems biology that integrates “omics” data102 and gener-
ates mathematical models to achieve a more complete view of the 
interactions between plant responses to abiotic stress should also 
facilitate the design of effective strategies to engineer plants with 
enhanced performance under harsh conditions.

Epigenetic processes, such as DNA methylation, histone modifi-
cations, generation of small RNAs (sRNA), and transposable ele-
ment activity, play essential roles in modulating gene activity in 
response to environmental stimuli103,104. Indeed, it has been shown 
that drought adaptive-responses in plants can be transgenerationally 
transmitted through the action of these processes on specific genes105.  
Moreover, epigenetic processes are also involved in the switch from 
C3 to CAM photosynthesis and contribute to adaptation to salt stress 
in the halophyte Mesembryanthemum crystallinum106. In wheat, the 
use of the methylation inhibitor 5-azacytidine resulted in increased 
tolerance to salt stress at the seedling stage107. Therefore, under-
standing the epigenetic mechanisms that control gene expression 
in response to environmental cues could also become an important 
avenue for developing improved crops (Figure 1). However, more 
information is needed to clarify the complex interaction between 
abiotic stress responses and epigenetic changes and to identify 
potential stress-responsive epigenetic modifiers.

We believe that the most exciting transgenic approaches for produc-
ing plant varieties and hybrids that are much less dependent on the 
application of agrochemicals, including fertilizers and pesticides, 

have yet to be discovered. The engineering of crops for harsh envi-
ronments is evolving and will rapidly incorporate new breeding 
technologies, including genome editing, which has already pro-
duced its first commercial product (herbicide-resistant canola). The 
development of effective approaches for specifically and visibly 
monitoring certain environmental stresses, such as P deficiency, 
and timely indicating the degree of the stress is also emerging and 
providing additional tools for improving crops108. Furthermore, the 
possibility of activating or repressing the expression of specific 
genes by introducing site-specific epigenetic changes, such as DNA 
methylation or histone modifications using a modified version of 
the CRISPR/Cas9 system99, will drastically modify how agricul-
ture is developed by creating an integral, effective, and sustainable 
global agriculture. However, translating these approaches from the 
laboratory or the greenhouse to the field remains challenging. In our 
opinion, more interdisciplinary research and the active involvement 
of breeders and agronomists in project planning is necessary to 
better define project goals and align the interests of researchers with 
that of crop producers.
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