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Abstract

Background: Species interactions can promote mating behavior divergence, particularly when these interactions
are costly due to maladaptive hybridization. Selection against hybridization can indirectly cause evolution of
reproductive isolation within species, a process termed cascade reinforcement. This process can drive incipient
speciation by generating divergent selection pressures among populations that interact with different species
assemblages. Theoretical and empirical studies indicate that divergent selection on gene expression networks has
the potential to increase reproductive isolation among populations. After identifying candidate synaptic
transmission genes derived from neurophysiological studies in anurans, we test for divergence of gene expression
in a system undergoing cascade reinforcement, the Upland Chorus Frog (Pseudacris feriarum).

Results: Our analyses identified seven candidate synaptic transmission genes that have diverged between ancestral
and reinforced populations of P. feriarum, including five that encode synaptic vesicle proteins. Our gene correlation
network analyses revealed four genetic modules that have diverged between these populations, two possessing a
significant concentration of neurotransmission enrichment terms: one for synaptic membrane components and the
other for metabolism of the neurotransmitter nitric oxide. We also ascertained that a greater number of genes have
diverged in expression by geography than by sex. Moreover, we found that more genes have diverged within
females as compared to males between populations. Conversely, we observed no difference in the number of
differentially-expressed genes within the ancestral compared to the reinforced population between the sexes.
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Conclusions: This work is consistent with the idea that divergent selection on mating behaviors via cascade
reinforcement contributed to evolution of gene expression in P. feriarum. Although our study design does not
allow us to fully rule out the influence of environment and demography, the fact that more genes diverged in
females than males points to a role for cascade reinforcement. Our discoveries of divergent candidate genes and
gene networks related to neurotransmission support the idea that neural mechanisms of acoustic mating behaviors
have diverged between populations, and agree with previous neurophysiological studies in frogs. Increasing
support for this hypothesis, however, will require additional experiments under common garden conditions. Our
work points to the importance of future replicated and tissue-specific studies to elucidate the relative contribution
of gene expression divergence to the evolution of reproductive isolation during incipient speciation.

Keywords: Cascade reinforcement, Behavioral evolution, Mate choice, Transcriptomics, Neurotransmission, Synaptic
transmission, Weighted correlation networks, Gene modules

Background
Species interactions can lead to the divergence of repro-
ductive behaviors, thus reducing the probability of costly
hybridization, a process termed reinforcement [1–4].
Furthermore, as interacting taxa diverge, populations
within a hybrid zone (sympatry) may incidentally diverge
from populations in other hybrid zones or outside of the
hybrid zone (allopatry), leading to reproductive isolation
within species [3, 5–7]. Theoretical models indicate that
the latter process, cascade reinforcement [8], can act as
a species multiplier, increasing the rate of speciation
within a clade [9–11]. Specifically, as additional taxa
arise, novel and spatially-varying species assemblages are
formed leading to different selection pressures on repro-
ductive behaviors. The strength of the selection depends
upon the combination of closely-related species present
in each geographic area [12]. These varying selection
pressures may thus contribute to the rapid proliferation
of new species [13]. This process has been documented
to drive divergence across a broad spectrum of taxa, in-
cluding fish [14], frogs [15–17], Drosophila [18–23],
walking-stick insects [24], beetles [25], and flowering
plants [26, 27].
Systems experiencing cascade reinforcement provide a

unique opportunity to study the genetic changes that
occur during the first stages of speciation [28]. Although
little is known about the genetic targets of selection
underlying in this mechanism, some information is avail-
able from studies of the more general process of
reinforcement between species [26, 29–31]. For example,
previous work has identified signatures of selection, such
as selective sweeps, at documented [32] and candidate
[33, 34] reinforcement loci, under the assumption that
loci experiencing strong selection in sympatry should
show decreased genetic variation [28].
As predicted by theory [35], the evolution of repro-

ductive isolation during reinforcement can result from
structural changes at the genomic level [36, 37]. Diver-
ging species and populations are also likely to undergo
differentiation of gene regulation pathways [38, 39].

Because gene expression is regulated through complex
interactions of sequences and proteins within the cell,
these interacting regulatory elements are thought to be
co-adapted [40]. When these co-adapted complexes are
disrupted, such as in hybrids, the regulatory targets may
be mis-expressed, resulting in incompatibilities between
species or divergent populations [39, 41]. These incom-
patibilities are particularly likely to contribute to repro-
ductive isolation when selection targets different
components of a gene network [42], which can occur in
replicate sympatric populations during cascade
reinforcement.
In the well-studied European house mouse system

(Mus musculus spp.), Loire et al. [34] identified candi-
date mate recognition genes by studying gene expression
divergence during reinforcement. Specifically, they found
differential gene expression of candidate vomeronasal re-
ceptor genes between populations of the same subspe-
cies within and outside of a reinforced contact zone.
Loire et al. [34] expected to find divergence of these can-
didate genes because behavioral studies indicated that
mice use pheromone-based information in urine for dis-
criminating between subspecies [43–47]. Their findings
suggest that divergence of olfactory gene expression is
also contributing to the evolution of assortative mating
among populations within one of the subspecies [47]. In
the only study of gene expression in a frog system
undergoing reinforcement, the spadefoot toads (Spea
sp.), Seidl et al. [41] determined that divergence of gene
expression profiles accompanies divergence of repro-
ductive behaviors in sympatry. In spadefoots, the inter-
acting species have evolved increased species
discrimination within their contact zone, due to the
negative consequences of hybridization [48, 49] (but see
[50]). Seidl et al. [41] found that hybrids derived from
interspecific crosses of parents originating in sympatry
differed significantly in gene expression from their coun-
terparts generated from allopatric parents. They con-
cluded that ongoing hybridization in sympatry is driving
the divergence of gene expression between geographic
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regions. These empirical studies support theoretical pre-
dictions that reinforcing selection can contribute to di-
vergence of gene expression across populations, pointing
to the need for studies on additional non-model systems.
In the North American chorus frogs (genus Pseuda-

cris), reinforcement in contact zones has caused one spe-
cies (P. feriarum) to diverge in male acoustic signals and
female mating preferences from another species (P.
nigrita [51]). As a consequence, increased reproductive
isolation has evolved between the two species in sym-
patry [51, 52]. The lineages giving rise to Pseudacris fer-
iarum and P. nigrita diverged ~ 8 million years ago (ma)
based on estimates from mitochondrial markers, and the
two taxa have come into secondary contact more re-
cently [53, 54]. Phylogeographic evidence indicates that
P. feriarum expanded into the range of P. nigrita mul-
tiple times, by following the floodplains of river systems
that bisect the Coastal Plain of the southeastern United
States (Fig. 1 [55]). Thus, allopatric P. feriarum represent
the ancestral state for the species, whereas sympatric P.
feriarum represent the derived, reinforced state. Empir-
ical work indicates that populations within P. feriarum
are diverging via cascade reinforcement: sympatric P. fer-
iarum females have evolved strong preferences for sym-
patric over allopatric male signals, and male calls have
diverged substantially between regions [51]. Estimates of
the timing of secondary contact with P. nigrita are un-
certain; mitochondrial-based estimates range from 0 to 4
ma [56]. Within P. feriarum, genetic divergence between
allopatric and sympatric (with P. nigrita) regions

including the populations in this study are low (FST =
0.04), and less than between adjacent allopatric regions
of similar geographic distance (FST = 0.12 [55]). The sig-
nificant differentiation of both male and female repro-
ductive behaviors between ancestral and reinforced
populations suggests that the sexual decision-making
genetic pathways have diverged in the brains of sympat-
ric frogs [51]. Furthermore, because the cost of
hybridization is higher for females than males, female P.
feriarum may have diverged to a greater degree than
males, due to strong natural and sexual selection on fe-
male mate preferences [52].
Reinforcement selection may have driven divergence

in expression of genes involved with mating behaviors,
particularly within the auditory midbrain. Neuroetholo-
gical studies in another chorus frog species (P. regilla),
have revealed that critical elements of male acoustic sig-
nals are decoded in the inferior colliculus of the auditory
midbrain [57, 58]. Electrophysiological analyses have
identified two classes of pulse-rate selective neurons in
this brain region: interval-counting neurons (ICNs) and
long-interval neurons (LINs) [59–63]. ICNs show band-
pass selectivity for pulse rate and respond only after a
threshold number of pulses are presented with optimal
interpulse onset intervals [59]. Importantly, these two
acoustic characteristics of mating signals diverged be-
tween allopatric and sympatric populations of P. fer-
iarum [51]. The tuning of ICNs for pulse rate and
interval counting involves interplay between excitation
via AMPA-type and NMDA-type ionotropic glutamate

Fig. 1 Geographic locations of the collected specimens in this study within southeastern United States. The gray area indicates the distribution of
P. feriarum, whereas the area with diagonal lines represents that of P. nigrita. Allopatric frogs (red star) were collected in Macon County, Alabama.
Sympatric frogs were collected in Liberty County, Florida (blue star). The number of specimens from each sex is shown. The inset dashed box
shows all the comparisons performed to detect differentially expressed genes. This map was generated by the authors using QGIS v3.1
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receptors and inhibition via ionotropic GABAA receptors
[61, 64]. Our preliminary electrophysiological data sug-
gest that allopatric and sympatric P. feriarum differ with
respect to the tuning of ICNs in the auditory midbrain
(E. Lemmon and G. Rose, unpublished observations).
These differences may be mediated by divergence in
genes and/or their expression that govern the presence
and function of inhibitory and excitatory synapses. For
example, up-regulation of one or more genes that en-
code GABAergic receptors in ICNs may increase the
relative amplitude of inhibition and as a consequence in-
crease the number of pulses required for eliciting re-
sponses [64, 65] (G. Rose, unpublished observations).
Thus, changes in expression of ionotropic receptor genes
and other genes related to synaptic transmission
might underlie the observed differences in mating be-
haviors between ancestral and reinforced populations.
In this study, we aim to better understand the changes

that occur in the earliest stages of speciation via cascade
reinforcement in P. feriarum. Examining populations of
the same species that are experiencing different selection
pressures on their reproductive behaviors allows us to
focus more directly on early genetic changes as speci-
ation proceeds [28]. To this aim, we generate a compre-
hensive reference transcriptome for P. feriarum using a
variety of tissues, then use a hypothesis-testing approach
to narrow down a large set of candidate genes involved
in synaptic transmission in the brain to a smaller set that
have diverged between ancestral and reinforced popula-
tions. We predict that one or more genes involved in
synaptic transmission will be differentially expressed be-
tween ancestral and reinforced populations in one or
both sexes.
In order to understand the general patterns of diver-

gence across the entire transcriptome, we also study ex-
pression changes (between sexes and between
populations) for the entire set of genes expressed in the
brain. We make several predictions based on our current
understanding of the neurophysiology and evolutionary
history of these frogs. First, we expect that gene expres-
sion patterns have diverged to a greater degree between
ancestral and reinforced populations than between the
sexes, due to the effects of natural and sexual selection
via reinforcement [52]. Second, we predict that females
from ancestral and reinforced populations will show the
greatest divergence, since females experience a greater
cost to hybridization and thus stronger selection than
males. If the first prediction is upheld, the pattern could
alternatively be explained by differences in environmen-
tal selection (i.e., abiotic factors, such as climate, or
other biotic factors, such predator communities), or by
historical demographic differences between populations.
However, if the second prediction is also upheld, these
two alternative hypotheses would be less likely because

the sexes should be affected similarly by environmental
factors or demographic shifts. Third, we predict that
genes involved in synaptic transmission will be overrep-
resented in one or more gene networks that have di-
verged between ancestral and reinforced populations,
since neural processing by auditory neurons of the mid-
brain are thought to mediate mate choice in this system.

Results
Reference transcriptome assembly
We obtained a comprehensive reference transcriptome.
Before filtering and processing, we obtained between 28
million and 56 million read pairs from each tissue (brain,
eye, testis, liver, heart, lung, skin, and leg muscle) from
two individuals. In all cases, 98% of the reads had high
average quality with Phred score > 28 and average length
of 100 bp (Additional file 1: Table S1). Following trim-
ming and rRNA filtering our transcriptome data set con-
tained between 27 million and 55 million read pairs per
tissue type with 99% of the sequences showing Phred
score > 28. After assembly, we obtained 598,748 contigs
representing 387,298 unique transcripts with average,
median and N50 length of 639,325, and 1019 bp respect-
ively. This set of transcripts was considered as our as-
sembled reference transcriptome for all downstream
analyses. A different set of sequences (Results—Brain Ex-
pression Transcriptomes) was mapped to the reference
transcriptome to study gene expression. The BUSCO
(Benchmarking Universal Single-Copy Orthologs) search
for ortholog genes in the Tetrapod ortholog database
showed a coverage of 95.2% for the assembled transcrip-
tome, representing 3761 complete single-copy orthologs.
The mean and median length of the contigs matching
subjects in BUSCO was 2669 and 2272 bp, respectively,
meaning that contigs larger than the whole transcrip-
tome median contig length (~ 360 bp) contributed to
ortholog detection. Length coverage analyses to assess
protein length (based on blast searches; Methods—Refer-
ence Transcriptome Assembly) showed that 10,993 of the
UniProt/SwissProt and 13,779 proteins of the Xenopus
tropicalis databases matched more than 90% of their
aminoacidic lengths to transcripts in our assembled
transcriptome (Additional file 1: Table S2).
The annotation (performed in Trinotate; Methods—

Reference Transcriptome Assembly) based on the Uni-
Prot/SwissProt database yielded identification for 99,774
(26%) of the transcripts. Of those, 18,358 transcripts
were associated with Xenopus tropicalis. For the Uni-
Prot/SwissProt annotations, our reference transcripts
matched with 21,841 Gene Ontologies (GOs). Annota-
tion using the Pfam database for protein families yielded
48,469 annotations (12.5% of transcripts), of which 2283
were associated with GO terms. Overall, 11,512 different
GO terms were associated with biological processes,
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3995 with molecular functions, and 1751with cellular
components (Additional file 2: Fig. S1).

Brain transcriptomes
We quantified gene expression in 17 individual P. fer-
iarum from four groups: sympatric females (n = 5), sym-
patric males (n = 4), allopatric females (n = 5), and
allopatric males (n = 3). After processing and filtering,
the number of paired reads from each sample ranged
from 14.9 to 97.6 million sequences (Additional file 1:
Table S3). Of the 17 samples sequenced, all but one pro-
duced data of sufficiently high quality to be included in
downstream analyses (Additional file 3: Fig. S2); one
sympatric female sample produced substantially fewer
post-filter read pairs (14.9 million) than the remainder
of the samples (mean = 55 million, min = 34 million).
Data for this individual were not carried forward in the
downstream analyses presented below. On average, 64%
of the reads from each sample mapped to our reference
transcriptome (61–69%). Studies mapping expression
reads to a more comprehensive, pre-existing transcrip-
tome have achieved similar mapping percentages (e.g.,
[66]). None of the 16 samples appeared as outliers in the
multidimensional scaling (MDS) analysis of the
Trimmed Mean of M-values (TMM) log2 counts per
million (CPM) values (Additional file 4: Fig. S3).

Identification of candidate synaptic transmission genes
From published studies [61, 64, 65, 67, 68], we identified
39 target protein families associated with synaptic trans-
mission (Table 1; Methods—Identification of Candidate
Gene Transcripts Involved in Synaptic Transmission).
We obtained matches to 97% (38 of 39) of these target
protein families in the expression transcriptome: 1104
(~ 2%) of reference transcripts contained one or more
keywords. The one exception is, Pp60src, a tyrosine kin-
ase that phosphorylates synaptophysin and synaptogyrin.
The keywords matching this target gene were not found
in the annotation terms of any of the transcripts in the
reference transcriptome. Of the matching reference tran-
scripts, 554 were present in the expression data set (i.e.,
passed the quality/coverage filters). These transcripts,
which we hereafter refer to as the candidate synaptic
transmission genes, included 54 ionotropic receptors,
259 synaptic vesicle proteins, 126 proteins that associate
with synaptic vesicles, 99 synaptic plasma membrane
proteins, and 16 proteins that reversibly associate with
plasma membrane proteins [67].

Differential expression of candidate synaptic transmission
genes
Analysis of the candidate synaptic transmission genes re-
vealed seven genes with significant expression differ-
ences by geography between populations, two in males

only and five when both sexes were combined (Add-
itional file 1: Table S4). The log difference ratios of these
genes are highlighted in Fig. 2. Five of the differentially-
expressed (DE) genes are synaptic vesicle proteins:
Secretory carrier-associated membrane protein 3
(SCAMP3, False-Discovery Rate [FDR] = 0.5 × 10^-3),
Synaptotagmin-2-B (ESYT2-b, FDR = 0.038), GABA
transporter 2 (Slc6a13, FDR = 0.038), Sodium and
chloride-dependent betaine/GABA transporter (Slc6a12,
FDR = 0.038), and Zinc transporter ZIP10 (Slc39a10,
FDR = 0.038). The two remaining differentially-expressed
genes include a protein that associates with synaptic ves-
icles, kinesin-associated protein 3 (KIFA3, FDR = 4.87 ×
10^-6), and a synaptic plasma membrane protein,
cadherin-15 (CDH15, FDR = 0.038). Note that sampling
554 genes (candidate synaptic transmission genes) at
random from the entire set of genes results in 8.4 signifi-
cant genes on average, suggesting that the synaptic
transmission gene candidate set does not contain a
greater number of differentially expressed genes than
would be expected [P (number significant) > 6 = 0.634],
given the size of the gene set.

Comparing expression divergence among the four groups
Expression trees showing the relative divergence among
the four groups (Additional file 5: Fig. S4; Additional file
1: Table S5) did not identify a group in which expression
divergence was greatest (all FDR were greater than 0.08).
Moreover, when comparing the ratio of branch lengths
(representing the relative amount of evolution of two
groups) between the candidate genes and non-candidate
genes, we found no difference (all FDR were greater than
0.08), suggesting that the relative rates of evolution for
the four groups were not enhanced in the candidate
gene set.

Transcriptome-wide patterns of divergence
Our transcriptome-wide analysis, based on 48,254 genes,
(Methods—Evaluating Transcriptome-wide Patterns of
Divergence), revealed a substantial number of
differentially-expressed genes (Fig. 3), with the greatest
difference in expression seen between ancestral and rein-
forced populations (Fig. 4). Among the four Geography
x Sex comparisons, we detected 298 differentially-
expressed genes based on an FDR threshold of 0.05
(Additional file 1: Table. S6). The highest number of
differentially-expressed genes detected were between
sympatric and allopatric females (n = 196), however, a
substantial number was also identified between sympat-
ric and allopatric males (n = 78), 19 of which were
shared between these two comparisons. A multidimen-
sional scaling (MDS) plot based on pairwise log2-fold
changes of all DE genes separated the samples primarily
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Table 1 Categories of predicted differentially-expressed genes between allopatric and sympatric populations. Categories and genes
involved in synaptic transmission for the anuran auditory pathway are summarized from [67, 68]. Gene and protein names indicate
significant differentially-expressed transcripts between allopatric and sympatric populations for each gene/gene family after FDR
correction (0.05)

Categories of Predicted Proteins Diff. Expr. Gene
Name

Diff. Expr. Protein Name

1. Ionotropic receptors

Glutamate receptor ionotropic, NMDA – –

Glutamate receptor ionotropic, AMPA – –

Gamma-aminobutyric acid receptor (GABA) – –

2. Synaptic vesicle proteins

Neurotransmitter transporters Slc6a12; BGT1 Sodium- and chloride-dependent betaine transporter
/GABA transporter

Neurotransmitter transporters Slc6a13; GAT2 Sodium- and chloride-dependent GABA transporter 2

Cysteine string protein (CSP) – –

Cytochrome b561 – –

Rab and Ra1 proteins – –

Rabphilin-3A –

Secretory carrier membrane proteins (SCAMPs) SCAMP3 Secretory carrier-associated membrane protein 3

Synaptic vesicle protein (SV2) – –

Synapsins – –

Synaptobrevins – –

Synaptogyrin – –

Synaptophysin – –

Synaptotagmin ESYT2-b Extended synaptotagmin-2-B

Transport proteins (channels) for chloride and zinca SLC39A10 Zinc transporter ZIP10

Vacuolar proton pump – –

3. Proteins that associate with synaptic vesicles

Amphiphysin – –

Endophilin – –

AP2 and clathrin – –

Ca2+, calmodulin-dependent protein kinases I and II (CaMKI
and CaMKII)

– –

Dynamin-1 – –

Dynein – –

Kinesins KIFA3 Kinesin-associated protein 3

Guanine nucleotide exchange factor MSS4 – –

Pp60src (tyrosine kinase that phosphorylates synaptophysin and
synaptogyrin)

– –

Complexin/synaphin

4. Synaptic plasma membrane proteins

Munc13s – –

Neurexins – –

SNAP-25 – –

Syntaxins – –

Voltage-gated Ca2+ channels – –

RIM – –

Neuroligin
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by geography (sympatric versus allopatric populations)
and to a lesser degree by sex (Fig. 5).
The majority of differentially-expressed genes were

observed between populations. The results from the
LRTs (Likelihood ratio tests) showed 517
differentially-expressed genes between all allopatric
frogs and all sympatric frogs. Note that with the FDR
correction and an alpha threshold of 0.05, there is
only a 5% chance of one or more genes showing sig-
nificant differential expression. Of the genes differen-
tially expressed by geography, 166 were overexpressed
in sympatry and 351 were underexpressed in sym-
patry (see Additional file 1: Table S6 for effect sizes).
The hierarchical clustering analysis supported the sep-
aration between the two groups with an approxi-
mately unbiased p-value (AU, a multiscaled version of
bootstrap [69]), AU > 86% (Additional file 6: Fig. S5).
Between allopatric and sympatric females, 196 genes

were differentially expressed. A clustering analysis based
on those genes provided high support (AU > 89%) for
the separation of allopatric females from sympatric

females (Fig. 6A). Between allopatric and sympatric
males, 78 genes were differentially expressed that sepa-
rated these two groups (AU = 100%, Fig. 6B). As ex-
pected, differentially-expressed genes between females
and males allowed statistically significant clustering of
transcriptomic profiles based on sex (Additional file 7:
Fig. S6). The contrast between brains of all female
and all male frogs yielded 129 differentially-expressed
genes. Of those, 81 were underexpressed in females
and 42 were overexpressed in females. The hierarch-
ical clustering analysis supported a cluster including
most females except two from sympatry (AU = 88%;
Additional file 7: Fig. S6). The same two females were
included in a second cluster with the male samples
(AU = 73%). We found 24 differentially-expressed
genes between females and males in allopatry. Over-
all, these differences in gene expression did not form
hierarchical clusters as well supported as those ob-
served in the comparison between allopatric and sym-
patric frogs. Allopatric males and allopatric females

Table 1 Categories of predicted differentially-expressed genes between allopatric and sympatric populations. Categories and genes
involved in synaptic transmission for the anuran auditory pathway are summarized from [67, 68]. Gene and protein names indicate
significant differentially-expressed transcripts between allopatric and sympatric populations for each gene/gene family after FDR
correction (0.05) (Continued)

Categories of Predicted Proteins Diff. Expr. Gene
Name

Diff. Expr. Protein Name

Cadherin CDH15; M-cadherin Cadherin-15

5. Proteins that reversibly associate with plasma membrane proteins

Munc18s/syntaxin binding protein – –

N-ethylmaleimide-sensitive factor (NSF) – –

α/β/γ SNAPs – –
aMembers of the ZnT zinc transporter family are from Category 2, but those from the ZIP zinc transporter family, which occur in the plasma membrane instead,
are from Category 4 [94]s

Fig. 2 Differential expression of candidate synaptic transmission genes. Each point represents one of the 554 candidate transcripts for which
expression data were compared between ancestral (allopatric) and reinforced (sympatric) populations. Comparisons were made using all samples
(left graph), males only (center graph) and females only (right graph). Effect size (log2 fold change) is plotted against average expression (log2
counts per million). Genes identified as significant at 0.05 level (after FDR correction) are denoted by larger gray points

Ospina et al. BMC Genomics          (2021) 22:711 Page 7 of 23



formed two clusters supported by AU = 99% (Add-
itional file 8: Fig. S7).
More genes were differentially expressed by geography

than by sex, as indicated by our randomization tests (ra-
tio = 4.4737, p < 0.0001). The randomization tests also
demonstrated that females had more genes differentially
expressed by geography than males (ratio = 2.51, p <
0.0001). We did not, however, find a significant difference
between sympatry and allopatry in the number of genes
differentially expressed by sex (ratio = 1.4167, p = 0.1217).

Divergence of brain gene co-expression networks
The analysis of co-expression network yielded 25 mod-
ules (31 before merging) of genes with correlated

expression levels and high connectivity among them
(Additional file 9: Fig. S8; Additional file 1: Table S7-S8).
The co-expression networks were constructed from
4826 genes in the top 10% with respect to the amount of
among-sample variation in normalized CPM. The net-
work filtered at correlation coefficients (r) lower than
r = 0.05, contained 2871 transcripts with r ≥ 0.1, and 513
transcripts showing connections with r ≥ 0.3. The aver-
age degree of connectivity (number of connections) in
this co-expression network was 325.6, with average clus-
tering coefficient (C) and average neighborhood con-
nectivity (NC) of C = 0.7 and NC = 637.1, respectively,
indicating overall high connection among all genes and
their neighbors. A total of 372 differentially-expressed

Fig. 3 P-value distributions. Likelihood ratio tests were used to test for differential expression between ancestral (allopatric) and reinforced
(sympatric) populations (left graph) and between females and males (right graph). The increased number of transcripts in the left tail of the
distributions indicate the presence of genes that are significantly differentially expressed

Fig. 4 The number of differentially expressed genes among comparisons of P. feriarum brains (FDR < 0.05). Each comparison is depicted as an
oval and the category in parentheses indicates the data subset in which the comparison was made. In total 298 differentially expressed genes
were detected. Note that the highest number of differentially expressed genes (n = 196) was found between sympatric and allopatric females
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genes from any of the previously mentioned compari-
sons were included in this network analysis.
Correlation tests yielded four modules with signifi-

cant association between overall gene expression and
geography (Fig. 7; Fig. S8; Additional file 1: Table S8-
S9). Those modules were named darkred, purple, red,
and black following WGCNA’s module notation. One
of those modules, named darkred, included 71 genes
that showed expression levels associated with geog-
raphy (r = 0.65, FDR = 0.0260). This module showed
average connection degree of 9.0, C = 0.6, and NC =
13.7. The darkred module contained 14 differentially-
expressed genes. A second significant module, termed
the purple module, included 156 genes that exhibited
expression levels associated with geography (r = 0.93,
FDR < 0.0001). The purple module showed an average
degree of connectivity of 15.4 and C = 0.6, and NC =
28.9 and contained 63 differentially-expressed genes.
A third module, named red, contained 196 genes
showing association of expression levels with geog-
raphy (r = − 0.8, FDR = 0.0019). The average degree of
genes within this module was 41.6, C = 0.8, and NC =
81.3. The red module contained 39 differentially-
expressed genes. The fourth module, which was called
the black module, contained 190 genes with gene

expression patterns correlated with geography (r = 0.6,
p = 0.0260). The genes in this module had an average
degree of 39.6, C = 0.76, and NC = 68.2. The module
included 14 differentially-expressed genes.
Only the blue module had gene expression associated

with sex (Fig. 7; Additional file 9: Fig. S8; Additional file
1: Table S8-S9). The blue module included 575 genes
with expression levels correlated with a frog’s sex (r =
0.64, p < 0.0260). The genes in this module showed an
average degree of 279.2, C = 0.9, and NC = 381.0. Of the
575 genes in the blue module, 44 were differentially
expressed.
The 36 neurotransmission-related enriched GO

pathways identified (Additional file 1: Table S9)
were not randomly distributed across the modules
but are instead significantly concentrated in the
darkred module (15 of 28; FDR < 0.0001), the purple
module (9 of 27, FDR = 0.0088), and the white mod-
ule (11 of 40; FDR = 0.0125; note the white module
was not significantly correlated with geography or
sex; Fig. S8; Table S8-S9). Moreover, the modules
associated with geography contained significantly
more synaptic pathways than modules not associ-
ated with geography (randomization test, ratio =
3.40, p < 0.0001).

Fig. 5 Multidimensional Scaling Plot of pairwise expression differences, based on normalized log2 counts per million for the differentially
expressed genes in the transcriptome-wide gene set. Note the discrete break between the two populations (allopatric and sympatric). Also note
the higher level of dispersion for sympatric samples than allopatric samples. Numbers inside points correspond to the last two digits of the
sample IDs in Additional file 1: Table S10
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Discussion
Our study has revealed multiple candidate synaptic genes
and four gene modules that have diverged between ances-
tral (allopatric) and reinforced (sympatric) populations of
P. feriarum. Two of these modules are significantly
enriched for synaptic transmission functions. We found a
greater number of genes have diverged in expression be-
tween ancestral and reinforced populations than between
the sexes. Furthermore, we observed a significantly greater
number of genes that are differentially expressed by popu-
lation in females compared to males. In contrast, we found
no difference in the number of genes differentially
expressed by sex within the ancestral compared to the re-
inforced population. Although this study represents just
the first glimpse into brain gene expression divergence
during cascade reinforcement in this system, our results
are consistent with neurophysiological and behavioral
studies suggesting that changes in synaptic transmission

may lead to divergence of mate recognition mechanisms
during speciation.

Transcriptome-wide divergence of ancestral and
reinforced populations
Our data are consistent with the idea that natural and
sexual selection driving reinforcement in this system
have contributed to differential gene expression between
ancestral and reinforced populations. Support for this in-
terpretation comes from the patterns of greater gene ex-
pression divergence by geography than by sex and of
greater divergence by geography in females than males.
Together, these patterns suggest that environmental se-
lection and demographic processes may not be the only
factors contributing to divergence by geography, but ra-
ther, stronger selection against hybridization in females
than males may also underlie these differences [51, 52].

Fig. 6 Relative expression levels (log2 CPM) across all samples of 196 differentially expressed genes between sympatric and allopatric females (A),
and 78 differentially expressed genes between sympatric and allopatric males (B). The dendrograms resulted from hierarchical clustering of
expression levels after 100 replicates to estimate Approximately Unbiased p-values (numbers on nodes). Note that the differences between
dendrograms require that the individuals and groups be presented in different order at the bottom of the heatmaps

Ospina et al. BMC Genomics          (2021) 22:711 Page 10 of 23



Some of the observed gene expression divergence by
geography may be due to factors other than
reinforcement, such as environmental selection or
demographic history of the populations. For example, in
terms of environmental differences, sympatric P. fer-
iarum in Florida primarily breed in cypress-gum swamps
along river floodplains, whereas allopatric conspecifics in
Alabama utilize wetlands in more general mixed temper-
ate forest habitats. These differences suggest that sym-
patric frogs may be more restricted with regard to their
habitat requirements. A previous study of environmental
selection on acoustic signals found, however, that sen-
sory drive [70–72] is not driving divergence of these be-
haviors [73]. This study, which included the two
populations in the current study, suggests that habitat
selection has not contributed significantly to divergence
of acoustic signals between populations. Moreover, over-
all environmental conditions of the two locations are
similar (e.g., Level III Ecoregion [74]).
The two populations examined in our study may also

differ somewhat in their demographic histories. Repeated
contact zones have formed across P. feriarum and P.
nigrita distributions [55]. In these contact zones, P. fer-
iarum has expanded into the range of the latter species
multiple independent times by following different river

systems of the southeastern U.S. (e.g., Escambia, Apa-
lachicola, Altamaha, Edisto/Santee, and James/Anna Riv-
ers). In each contact zone, migration estimates point to
ongoing unidirectional gene flow, from the ancestral
allopatric region into the reinforced sympatric areas
[55]. Estimates of effective population sizes (NE) are
equivalent to or larger in replicate sympatric compared
to allopatric populations across all five river systems
[55], suggesting that that drift is not predicted to be
stronger in peripheral sympatric populations. Consistent
with the migration data, estimates of genetic divergence
between allopatric and sympatric regions including the
populations in this study are low (FST = 0.04), and less
than between adjacent allopatric regions of similar geo-
graphic distance (FST = 0.12 [55]).

Divergence of brain gene co-expression networks
Of the four genetic modules that diverged between the
ancestral and reinforced populations, two were enriched
for and showed significant concentration of terms re-
lated to neurotransmission (darkred FDR < 0.0001 and
purple modules FDR = 0.0088) compared to all other
network modules. Specifically, darkred module terms in-
cluded integral and intrinsic components of the pre-
synaptic and postsynaptic membrane, postsynaptic

Fig. 7 Representation of modules in the brain co-expression network that have significant association with A geography (sympatry/allopatry) or B
sex. Each node (circles) represents a gene, with larger colored nodes indicating DE genes resulting from any of the comparisons conducted
across all groups. The density of thin grey lines between the modules provides a visual representation of the connectivity within the
co-expression network
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density, and extrinsic component of plasma membrane,
among others (Additional file 1: Table S9). These terms
encompass the products of the candidate genes that
were found to be differentially expressed by geography
in this study (see below). Purple module terms involved
metabolism of the neurotransmitter nitric oxide (NO).
The NO pathway modulates the release of multiple neu-
rotransmitters [75, 76], and has been shown to be in-
volved in mating behaviors [77, 78]. Mate choice studies
in Drosophila have shown that in neurons of the ellips-
oid body of the brain, NO acts as a second messenger
after stimulation by GABA via GABA-A receptors to
contribute to activation of NMDA receptors, resulting in
the alteration of mate decisions by females [79, 80]. This
connection between nitric oxide, synaptic transmission
via ionotropic receptors, and mate choice is consistent
with computational models of how the temporal infor-
mation present in acoustic signals is processed in the
auditory midbrain [81].
Of the other two divergent modules that did not show

concentration of neurotransmission terms, one primarily
included terms for enzymatic activity (red module), and
another for transcription factor binding and citric acid
cycle (black; Additional file 1: Table S9). Overall, a var-
iety of synaptic pathways were concentrated in the sig-
nificant modules (p < 0.0001), suggesting that neural
pathways are diverging in gene expression between an-
cestral and reinforced populations. Note that the diver-
gent modules only contained a marginally significant
number of synaptic pathways (per module) compared to
the non-significant modules (p = 0.0561).
Although the other 21 modules did not show signifi-

cant divergence geographically, one of these was also
enriched for neurotransmission-related terms, including
inner ear receptor cell development and differentiation,
sensory organ development, neurogenesis, and mechano-
receptor differentiation (white). The only sex-associated
divergent module was enriched for terms such as trans-
membrane transporter activity of solutes, hormone activ-
ity, and neuroactive ligand-receptor interaction (blue;
Additional file 1: Table S9).

Divergence of candidate synaptic transmission genes
We predicted that gene expression has diverged between
ancestral and reinforced populations across five possible
categories of proteins involved in synaptic transmission
(Table 1). We identified seven candidate genes across
three categories, all of which were also present in our
transcriptome-wide set of differentially-expressed genes
(Additional file 1: Table S4). For the ionotropic receptors
(Category 1), we found no evidence of differential gene
expression. Because neurophysiological studies of mid-
brain neurons [57–60, 63–65] indicated that these re-
ceptors mediate excitation and inhibition of auditory

neurons, we hypothesized that down- or up-regulation
of one or more genes that code for these receptors may
alter how acoustic information is processed. We did not
find any evidence for expression changes in ionotropic
receptor genes, however, at the whole-brain level.
With respect to synaptic vesicle proteins (Category 2),

we found five genes that were differentially expressed
between the ancestral and reinforced populations. Two
of these genes were GABA transporters (Sodium- and
chloride-dependent GABA transporter [GAT2; Slc6a13]
and Sodium- and chloride-dependent betaine trans-
porter/GABA transporter [BGT1; Slc6a12]). The primary
function of GABA transporters in the brain is to recycle
GABA neurotransmitter from the extracellular space of
the synaptic cleft and through the cell membrane into
the presynaptic neuron [82]. Although expressed in
brain tissue, GAT2 and BGT1, are less common in
GABAergic synapses than other GABA transporters
(e.g., GAT1 and GAT3). GAT2 and BGT1 are not
thought to play a major role in GABA reuptake in neu-
rons compared to GAT1 and GAT3 due to lower ex-
pression levels, lower binding affinities to GABA, and
localization to other areas of the brain [83–86].
In regard to other synaptic vesicle proteins (Category

2), the other three differentially-expressed genes in-
cluded Secretory carrier-associated membrane protein 3
(SCAMP3), Extended-synaptotagmin-2-B (ESYT2-b),
and Zinc transporter ZIP10 (Slc39A1). The SCAMP3
gene encodes a secretory carrier membrane protein that
functions as a carrier to the cell surface in post-golgi re-
cycling pathways [87]. One function of SCAMP proteins
is to bind to neurotransmitter transporters (Slc6 genes,
see above) and regulate their expression at the cell sur-
face [88, 89]. Although little is known about the role of
SCAMPs in behavior, a study in Drosophila reported
multiple abnormal behaviors in SCAMP-null mutants,
underscoring the importance of this gene in neurotrans-
mission [90].
The extended-synaptotagmins (ESYTs) are a class

of endoplasmic reticulum (ER)-resident proteins
that are related to but predate the synaptotagmin
genes evolutionarily [91]. These proteins are
thought to coordinate membrane tethering and lipid
exchange between the endoplasmic reticulum and
plasma membrane. Studies in Drosophila melanoga-
ster of the single ESYT ortholog in this species
found that neurotransmission is reduced in ESYT
mutants, indicating that this gene is required to fa-
cilitate presynaptic release of neurotransmitter [92].
Furthermore, synaptic growth is promoted by over-
expression of this gene [92].
Zinc transporters of the zinc importer (ZIP or Slc39A)

family control the influx of zinc from outside the cell
into the cytoplasm and from vesicles to increase
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cytosolic zinc concentrations [93–95]. Unlike the second
family of zinc transporters (ZnT or Slc30), which can be
components of synaptic vesicles, ZIP family proteins can
be located in the plasma membrane of neurons [95].
Zinc plays a diversity of roles in the brain, influencing
neurotransmission and sensory processing and is of par-
ticular interest to the current study because its involve-
ment with inhibition of NMDA and GABA-A receptors
in the postsynaptic membrane [96–98]. Genome-wide
association studies have found a strong association be-
tween ZIP zinc transporters and several psychiatric dis-
orders [99, 100], indicating the key role of these
transporters for healthy functioning of the central ner-
vous system [97].
In terms of proteins that associate with synaptic vesi-

cles (Category 3), Kinesin-associated protein 3 (KIFAP3
or KAP3) was differentially expressed between ancestral
and reinforced populations. Kinesins are anterograde
(cell body to the synaptic junctions) motor proteins that
traffic vesicles by walking them along microtubules [101,
102]. The KIFAP3 gene encodes a non-motor accessory
protein that forms a complex (KIF3 complex) with two
kinesin 2 family proteins to generate a functional motor.
This complex provides essential transport of vesicles dur-
ing axonal elongation, conventional transport, and flagel-
lar transport [103]. The KIFAP3 protein is the element
within the motor complex that binds to the vesicle cargo
[103, 104]. Defects in the KIF3 complex can lead to neuro-
degenerative diseases that are caused by problems with
long-distance vesicle trafficking [105, 106].
With regard to synaptic plasma membrane proteins

(Category 4), Caherin-15 (CDH15) was divergently
expressed between populations. Cadherins are
calcium-dependent cell adhesion proteins occurring
on both pre- and postsynaptic membranes that align
the active zone to the postsynaptic membrane, thus
enabling efficient neurotransmission [107, 108]. These
proteins regulate dendritic and synaptic architecture
and influence function and plasticity in neurons
[109–111]. Cadherins have been associated with vari-
ous neural disorders, for example, deletion of CDH15
results in mental retardation [112, 113]. These studies
underscore the vital roles of cadherins in synapse
stabilization and gene regulation during neurotrans-
mission [109]. For the final category, proteins that re-
versibly associate with plasma membrane proteins
(Category 5), we did not recover any differentially-
expressed genes (Table 1).

Genetic basis of acoustic mating behaviors in other taxa
The genetic architecture of mating behaviors is under-
studied in anuran amphibians, with examples being
largely limited to visual signals [114, 115]. Information
regarding the genetic basis of acoustic signaling and

processing in frogs is even more scarce [116]. Nonethe-
less, insight can be gained from insects that exhibit tem-
poral variation in elements of acoustic mating signals in
a similar way to many frogs. This work has shown that
temporal variation has a polygenic genetic architecture
across diverse insect groups [117–127]. Studies in Dros-
ophila melanogaster found that candidate genes control-
ling pulse rate of acoustic signals include ion channel
genes, transcription factors, and regulators of transcrip-
tion and translation [128–131]. Quantitative trait map-
ping studies on Hawaiian crickets (genus Laupala) have
shown that candidate genes underlying temporal infor-
mation in acoustic signals include genes encoding a cyc-
lic nucleotide-gated ion channel, a calcium release-
activated calcium channel, a signal peptide peptidase-
like protein gene, a putative synaptic vesicle related pro-
tein [127], three of which fall within the bounds of syn-
aptic transmission gene categories targeted in this study
(Table 1). In frogs, [116], suggested that membrane cur-
rents of fast pulse rate neurons in the parabranchial nu-
cleus of the brain are likely to mediate divergence of
acoustic signals among Xenopus species and that these
differences probably involve differential expression of
ion channels. Though little is known about the genetic
basis for species-specific acoustic differences, their on-
going work will examine gene expression differences
within specific vocal and auditory neurons across this
genus [116].

Caveats
One of the limitations of our study was the lack of popu-
lation replication—we studied a pair of populations
representing a single shift of P. feriarum from allopatry
into sympatry along the Apalachicola River floodplain.
This experimental design limits our ability to infer gen-
eral, repeatable patterns of gene expression divergence.
Since we have shown previously that this species inde-
pendently formed contact zones with P. nigrita multiple
times [55], our future work will investigate whether gene
expression has diverged in a similar manner across con-
tact zones or if populations diversifying through cascade
reinforcement are undergoing non-parallel genetic diver-
gence [5–7, 10]. A second limitation is that individuals
were collected directly from the field under peak mating
conditions, rather than raised in a common garden set-
ting in the laboratory. Raising animals from different
population treatments under the same conditions in the
laboratory would remove confounding environmental
variation across geographic sites. In future work, we will
remove this source of variation by rearing experimental
animals in the same setting. A third limitation of this
study was our focus on whole brain gene expression,
since relevant shifts in expression may be most pro-
nounced in specific areas of the brain. Although this
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coarse-scale approach provided the first insight into ex-
pression divergence in this species, in future work we
will utilize the information gained here to predict pat-
terns of divergence in specific brain regions where
changes in neural gene expression are most likely to
have occurred [60, 116]. Comparing these patterns of di-
vergence to those seen in non-neural and non-
reproductive tissues could allow us to identify expected
levels of divergence due to geography and demographic
factors. We expect that this fine-scale targeted approach
will enable us to uncover additional genes underlying
the divergence of mating behaviors in this system.

Future directions
Systems undergoing cascade reinforcement provide an
exciting opportunity to study how speciation can be ac-
celerated by spatially-varying selection pressures on re-
productive traits generated through species interactions
[3, 5–7]. The diversification of populations that can re-
sult suggests that different genes may be the targets of
selection in different populations. Indeed, studies of par-
allel phenotypic evolution under similar selection pres-
sures have often uncovered as much or more evidence
of non-parallel than parallel divergence at the genomic
sequence and gene expression levels [132–135] (but see
[126]). In this way, the conditions of divergent selection
generated by cascade reinforcement may drive the evolu-
tion of reproductive isolation via mechanisms such as
gene expression divergence [38] or evolution of struc-
tural variants [36, 37] across conspecific populations.
Moreover, at the broader level of gene network evolu-
tion, different elements of the same gene networks or
even different networks may diverge in replicate popula-
tions, thereby accelerating the evolution reproductive
isolation [39, 42].
In the current study, we identified seven candidate

genes involved in synaptic transmission that are
differentially-expressed geographically. Five of these
genes encode synaptic vesicle proteins. Moreover, we
found two gene networks with a concentration of neuro-
transmission terms that have diverged between ancestral
and reinforced populations. Our future work will focus
on testing the repeatability of evolution with respect to
gene and gene network expression and genome structure
in naturally-replicated populations undergoing cascade
reinforcement. Moreover, by through examining specific
brain regions, we will gain insight into how the genetic
architecture underlying mate choice diverges during
speciation.

Conclusions
As Upland chorus frog (Pseudacris feriarum) popula-
tions experience strong selection via cascade
reinforcement, the genetic pathways underlying neural

processing of mating behaviors are predicted to diverge.
Using Illumina RNA-seq and a new reference transcrip-
tome for this species, we show evidence that multiple
candidate synaptic transmission genes have diverged in
expression between ancestral and reinforced popula-
tions. Moreover, gene networks with a significant con-
centration of neurotransmission enrichment terms have
also diverged between these populations. Overall, we
found greater divergence of gene expression between an-
cestral and reinforced populations, particularly in fe-
males, than between the sexes. Although some elements
of our study design limit the generality of our conclu-
sions, our results are consistent with the idea that diver-
gent selection on reproductive behaviors promotes the
evolution of expression in neural processing genes. Our
findings lay the groundwork for future studies in non-
model organisms that integrate neurogenetics, behavior,
and evolution to understand the origin of new species.

Methods
Reference transcriptome sequencing
Eight tissues (brain, eye, testis, liver, heart, lung, skin,
and leg muscle) from two adult allopatric male P. fer-
iarum (catalog numbers ECM7962 and ECM7965, Nash
County, NC, USA, N 35.95999°, W 78.07131°) were uti-
lized to generate a reference transcriptome. The frogs in
this study were wild-caught under the appropriate state
scientific collecting permits for Alabama and Florida and
procedures followed the Florida State University’s Ani-
mal Care and Use Committee Protocol #1747. Frogs
were dissected within 5 min of euthanizing via decapita-
tion, and tissues were immediately flash-frozen in liquid
nitrogen after dissection to minimize RNA degradation.
Nucleic acids were extracted using a phenol-chloroform
method briefly described here: Each tissue sample was
homogenized in 250 μL Trizol with a pestle and was
kept on dry ice throughout the procedure. Then 50 μL
of phenol-chloroform (pH 5.5) were added followed by
centrifugation (12,000 g × 15min, 4 °C) for phase separ-
ation. Nucleic acids were then precipitated with isopro-
pyl alcohol and sodium acetate, followed by
centrifugation (12,000 g × 10 min, 4 °C). The pellet was
washed in ethanol and remaining liquid was allowed to
evaporate at room temperature. Extracted nucleic acids
were then suspended in RNase-free water, flash frozen
in liquid nitrogen, and stored at − 80 °C. Quality analysis
of the extraction was made by quantitation via Nano-
drop (Thermo Fisher Scientific), Qubit (Thermo Fisher
Scientific), and Bioanalyzer 2100 (Agilent Technologies).
Samples with RNA Integrity Number (RIN) lower than
7.5 were discarded from further processing.
From the extracted RNA, sequencing libraries were

constructed at the Georgia Genomics and Bioinformatics
Core (Athens, GA, USA) using the KAPA Stranded
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mRNA-Seq Kit. Poly-T magnetic beads were used to
capture extracted mRNA. Heat fragmentation at 94 °C
for 6 min was carried out to obtain fragments 200-300
bp in length. Synthesis of the second cDNA strand in-
cluded the incorporation of dUTP for identification and
posterior selective amplification of 3′ cDNA. After amp-
lification, A-tails and Illumina Truseq LT adaptors were
added to the 3′ cDNAs, which were subsequently quan-
titated by Qubit and Fragment Analyzer (Agilent Tech-
nologies). Sequencing on an Illumina HiSeq 2500
platform (with 150 bp paired-end reads) was carried out
at Florida State University’s College of Medicine Trans-
lational Science Laboratory.

Reference transcriptome assembly
The processing, assembly, and annotation of the reads
followed a general protocol published elsewhere [136],
which is briefly described here. Raw sequence files were
inspected in FastQC v0.11 and MultiQC v1.7 [137, 138]
to verify their quality. All reads originating from the
same tissue were pooled together and trimmed with
Trim Galore! v0.6 [139] using a stringency of 3 bp and a
5′ hard trim of 9 bp to remove low quality bases. Reads
were not de-duplicated. Trimmed reads were passed to
SortMeRNA v2.1 [140] in order to filter out rRNA se-
quences based on similarity with the SILVA v111 and
Rfam v11.0 databases [141, 142]. Reads were inspected
again with FastQC and MultiQC to ensure quality of the
data [143, 144]. Normalization of the data set was per-
formed with the insilico_read_normalization.pl script
from Trinity v2.8 [145] to obtain a maximum coverage
of 50X. Normalized reads from each tissue were pooled
and transcripts were assembled with Trinity v2.8 using a
k-mer size of 25. Assembled transcripts were then vali-
dated with BUSCO v3 [146], run on transcriptome mode
against the Tetrapoda Ortholog Database v8 [147] and
with cutoff e-value = 1 × 10− 6. Other BUSCO parameters
were left as default. In addition, blastx searches (cutoff
E-value = 1 × 10− 20) were performed using the UniProt/
SwissProt v2019_04 and the Xenopus tropicalis protein
database (downloaded May 2019) to obtain estimates of
protein length coverage.
Trinotate v3.1 [148] was used to generate gene annota-

tions of the assembled transcripts. Annotations were col-
lected from the UniProt/SwissProt and Pfam databases
as provided by Trinotate v3.1 (updated to January 2015).
The entire annotation process was automated by using
the autoTrinotate.pl script included in the Trinotate dis-
tribution. The script used detection of long open reading
frames (“LongOrfs”) to identify candidate coding regions
in TransDecoder v5.5 [145]. The reference transcripts
and the predicted TransDecoder peptides were matched
against the UniProt/SwissProt database using blastx and
blastp searches (E-value = 1 × 10− 5). In addition, protein

family assignments were made by hmmscan v3.2 by
querying the Pfam database. The results of the blast and
hmmscan searches were then loaded into an SQLite data-
base included in Trinotate v3.1. The resulting annotations
were summarized with trinotateR [149] as implemented in
R v3.6 [150]. A flowchart of the reference transcriptome
assembly and annotation process is shown in the Supple-
mental material (Additional file 10: Fig. S9).

Brain gene expression sequencing and processing
To detect differences in brain gene expression associated
with reproductive character displacement, whole brains
were dissected from 20 P. feriarum, ten of which were
obtained from a population sympatric with P. nigrita
(Liberty County, FL, USA, N 30.10145°, W 85.09951°),
and ten of which were obtained from an allopatric popu-
lation (Macon County, AL, USA, N 32.44314°, W
85.65523°; Fig. 1, Additional file 1: Table S10). We refer
to the allopatric site as the ancestral population and the
sympatric site as reinforced population throughout this
paper because our phylogeographic and population gen-
omic analyses indicate that the historical pattern of
range expansion and current direction of gene flow is
from allopatric into sympatric regions [55].
Our experimental design corresponds to a single shift

by P. feriarum from allopatry to sympatry with P. nigrita
without replication along the Apalachicola River drain-
age, corresponding to one of the expansions identified
by Banker et al. [55]. Although more populations could
have been sampled within the immediate geographic
area to increase replication, sampling independent shifts
in other river drainages would not have been an appro-
priate approach to replication for the questions we ad-
dress in this study, due to the disparate phenotypic
outcomes observed [51] and divergent gene expression
profiles expected [42] in other contact zones. Frogs sam-
pled from each population represented the two sexes in
a 50:50 ratio. All frogs were captured in amplexus in the
field while mating and laying eggs. Pairs were separated
and immediately euthanized via decapitation as de-
scribed above (Methods—Reference transcriptome se-
quencing). Females were not acclimated to laboratory
conditions because we aimed to examine brain gene ex-
pression while frogs were at the breeding peak. Follow-
ing Florida State University’s Animal Care and Use
Committee protocol #1747, brains were removed in the
field within 1 min of decapitation, transferred to cryo-
tubes, flash-frozen in liquid nitrogen, and then stored at
− 80 °C. RNA extraction, quality analysis, and library
preparation were performed as described above. Three
of the samples (two allopatric males and one sympatric
male) produced poor-quality libraries and were not car-
ried forward in downstream processing analyses. Se-
quencing of the 17 remaining libraries was carried out
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on an Illumina NovaSeq 6000 platform, with a target se-
quencing effort of 200 million reads per sample.
After raw reads were quality checked with FastQC/Mul-

tiQC, a Bayesian approach [151] was used to remove of
adapters and merge of read pairs. Low quality bases at the
start of the reads were trimmed with hts_CutTrim v1.0
[152] by setting a hard trim of 10 bp on the 5′ end. After
PCR duplicates were removed with hts_SuperDeduper
v1.0 [152], a second quality check was performed using
FastQC/MultiQC. RNA reads were mapped to our P. fer-
iarum reference transcriptome by using HISAT v2.1
[137], then BAM files were produced in SAMtools v1.9
[138]. Raw read counts per reference transcript were ob-
tained directly from the BAM files using a custom script
(see Availability of data and materials). One sample con-
taining fewer than 20 million post-filtered read pairs was
removed from downstream analyses (see Results).
Raw read counts per gene/transcript were collated and

used as input for edgeR [139]. After CPM were calculated,
transcripts with average CPM< 1 across all samples were
discarded from the data set [153]. Calculation of CPM was
made using a prior.count = 2 in order to avoid undefined
logarithms when calculating log2 CPM. To account for
large differences in gene counts among libraries,
normalization factors for each sample were obtained by
applying a Trimmed Mean of M-values (TMM) [154].
The resulting values were visualized using multidimen-
sional scaling in order to check for outlier samples
(plotMDS function used in R). As no outlier samples were
obvious (Additional file 4: Fig. S3), the downstream ana-
lyses were conducted using all 16 of the samples.
Tagwise (gene-wise) dispersions were estimated and

outlier effects were reduced with the estimateDisp func-
tion in edgeR (using the robust = T option). Tagwise
(gene-wise) dispersions were estimated and outlier ef-
fects were reduced with the estimateDisp function in
edgeR (using the robust = T option). After calculating
the Biological Coefficient of Variation (BCV, Add-
itional file 11: Fig. S10), negative binomial generalized
linear models (GLM) were fitted for each gene. A flow-
chart of the RNA-Seq read processing into raw counts
and differential expression analyses is available in the
Supplemental material (Additional file 10: Fig. S9).

Identification of candidate gene transcripts involved in
synaptic transmission
We predicted that some genes involved in synaptic
transmission during the processing of acoustic informa-
tion should be differentially expressed between rein-
forced and non-reinforced populations. We compiled a
list of these genes based on Sudhof (Table 9–1 in [67])
and Luo (Table 3–1 in [68]). This list included synaptic
vesicle proteins, proteins that associate with synaptic
vesicles, synaptic plasma membrane proteins, and

proteins that reversibly associate with plasma membrane
proteins during synaptic transmission (Table 1). Because
ionotropic receptors (AMPA-type and NMDA-type glu-
tamate and GABAA-type receptors) have been shown ex-
perimentally to mediate processing of temporal
information in anuran acoustic signals [61, 64, 65], we
also included genes for these receptors (Table 1). We
identified candidate transcripts in our reference tran-
scriptome by searching for appropriate keywords (Add-
itional file 12) in the transcriptome annotation (see
Availability of data and materials). Some broad search
terms were restricted further if many irrelevant matches
were recovered in preliminary searches. These restric-
tions followed functional descriptions by Mignogna and
D’Adamo ([155]; Rab proteins), Hirokawa et al. ([103];
kinesins), and Pfister et al. ([156]; dyneins) and are de-
fined in Additional file 12.

Testing candidate synaptic transmission transcripts for
differential expression
We tested for significant differential expression between
three pairs of samples: sympatric vs. allopatric females,
sympatric vs. allopatric males, and all sympatric vs. all
allopatric frogs. Using the GLM model coefficients cor-
responding to these three comparisons, we tested
whether or not each candidate gene was differentially
expressed between each comparison. Likelihood ratio
tests (LRT) were carried out using the glmLRT function
from edgeR. Specifically, the LRT compared a GLM in-
cluding the average log-counts of two given groups as
coefficients to a null GLM in which both average log-
counts are equal [157]. False-discovery rate corrections
were applied to tests from each comparison [158]. Genes
with q < 0.05 in one or more comparison were regarded
as differentially expressed.

Testing for unequal expression divergence among the
four groups
We evaluated the magnitude of gene expression evolu-
tion in each of the four groups and compared the mag-
nitudes among the groups to determine if more
evolution had taken place in any of the groups. Follow-
ing [159], we performed the following steps: 1) we stan-
dardized the expression levels for each gene to a mean
of zero and a standard deviation of one, 2) we separated
the expression data into two sets, one for candidate and
one for non-candidate genes, 3) we computed the aver-
age expression level for each group/gene/set combin-
ation (producing eight values for each gene), 4) we
computed a distance matrix (using the dist function in
R) for each gene and for each set representing the pair-
wise divergence between four groups, and 5) we esti-
mated from each distance matrix an expression
divergence tree using neighbor joining (nj method in R).
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The resulting tip branch lengths were interpreted as the
relative contribution of each group to the overall expres-
sion divergence. In Additional file 5: Fig. S4, we repre-
sent for each group the relative contribution as the log2
ratio of the branch lengths for two groups. To test for
significance, we repeated steps 3–5 for each gene, com-
puted the average branch length difference across the
genes within the set (the test statistic), and performed
randomization test in which the assignment of candidate
and non-candidate was shuffled among the genes before
recomputing the test-statistic. The null distribution was
comprised of 10,000 replicates. In order to test whether
each difference was higher in the candidate than non-
candidate genes, we compared the difference (candidate
minus non-candidate) to a null distribution generated
using the approach above. Note that zero length
branches for individual genes required that differences
were used instead of ratios. The p-values from these
tests (8 tests corresponding to the group x set combina-
tions, and 4 tests to compare the two sets) were used to
compute FDR to correct for 12 total tests.

Evaluating transcriptome-wide patterns of divergence
In order to elucidate general expression patterns in the
entire transcriptome data set, we expanded our analysis
to all transcripts for the following 6 comparisons: (1) all
sympatric vs. allopatric frogs, (2) all female vs. male
frogs, (3) sympatric vs. allopatric females, (4) sympatric
vs. allopatric males, (5) male vs. female allopatric frogs,
and (6) male vs. female sympatric frogs. For the last four
comparisons, a group-based analysis was performed in
which each sample was assigned to a group by geog-
raphy and sex. As above, to ascertain whether or not
each gene was differentially expressed between each
comparison, likelihood ratio tests (LRT) were carried out
using the glmLRT function from edgeR. Specifically, the
LRT compared a GLM including the average log-counts
of two given groups as coefficients to a null GLM in
which both average log-counts are equal [157]. False-
discovery rate corrections were applied to each compari-
son and genes with FDR < 0.05 [158] were regarded as
differentially expressed. We used randomization tests
with 10,000 null replicates to determine: (1) whether
more genes are differentially expressed by geography
than by sex, (2) whether more genes are differentially
expressed by geography in females than in males, and
(3) whether more genes are differentially expressed by
sex in sympatry than in allopatry. In each case, we com-
puted the test statistic as the ratio of the number of dif-
ferentially expressed genes (e.g. nDiffExpressedGeo/
nDiffExpressedSex). To compute each sample from the
null distribution, we first randomly shuffled numbers be-
tween the first and second category for each gene separ-
ately (e.g., shuffled values horizontally in a table with

one column for each category and one row per gene),
then recomputed the test statistic using the permuted
Table. P-values were computed as the proportion of null
replicate values that were greater than or equal to the
test statistic.
Based on the resulting differentially expressed genes

from the four comparisons mentioned above, a multi-
dimensional scaling plot (MDS) was created to verify
concordance of group membership with expression pro-
files using the plotMDS function. Heatmaps were also
generated using normalized CPM of differentially
expressed genes using the Heatmap function from the
ComplexHeatmap and RColorBrewer packages [160,
161]. To obtain statistical support (approximately un-
biased, AU p-values) and improve clustering of samples
in the heatmaps, a hierarchical clustering function was
applied using the pvclust and dendextend packages [69,
151]. Detection of differentially-expressed genes associ-
ated with differences between sympatric and allopatric
frogs was also performed by pooling all sympatric sam-
ples in a single group, and all allopatric samples in an-
other group (comparison 1). Similarly, tests for
differences between females and males was carried out
(comparison 2). All analyses were performed in R and
graph support was provided by the gplots package [162].

Weighted correlation network of brain genes
A weighted correlation network analysis was performed
to detect groups of genes (modules) that showed pat-
terns of co-expression across samples, geography (allop-
atry or sympatry), and sex (male or female). Co-
expression networks were constructed with the R pack-
age WGCNA [163] as follows: TMM-normalized raw
counts were obtained from edgeR, and in order to re-
duce noise from low-variation transcripts as suggested
elsewhere [164], only the top 10% of genes with the
highest variation in CPM across samples were retained.
The resulting data set was checked for missing entries
and low-variation genes using WGCNA’s function good-
SampleGenes. In WGNCA, networks are assumed to fol-
low a scale-free topology fashion, a property of
biological networks in which only a few genes are highly
connected, resembling a power function [165]. A scale-
free topology is obtained by elevating gene correlations
coefficients to a power (β) that enhances the differences
between weak and strong correlations. The function
pickSoftThreshold was used to iteratively ascertain
which β approximated a scale-free network. The proced-
ure fits a curve between the number of connections and
the frequency of those numbers of connections in the
network. A threshold was set to obtain a correlation co-
efficient R2 > 0.9 for the aforementioned curve, resulting
in β = 6 (Additional file 13: Fig. S11). The transformed
correlations, representing the adjacency matrix, were
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then converted to a Topological Overlap Matrix (TOM)
which describes the overall degree of connectedness of
each gene to other genes.

Module identification—
Genes were clustered based on expression level similar-
ity using TOM and a hierarchical clustering method im-
plemented in the hclust function of R. Gene models
were defined by cutting the resulting dendrogram at a
height of 0.99 (R function cuttreeDynamic with module
size ≥40 genes and deepsplit = 3), Modules were further
merge by grouping highly correlated modules based on
overall module expression, with modules being merged
when eigengene dissimilarities were less than 0.3. The
correlation between the module expression levels and
the frogs’ geography or sex were also determined using
the eigengenes. The resulting p-values were corrected
for multiple tests (25 modules x two groupings = 50
tests) using the qvalue function in R. A threshold of α =
0.05 was used to determine significance.

Module analysis—
Each of the resulting modules was visualized in Cytos-
cape v3.7.2 [166] after filtering of low gene-gene correla-
tions (r < 0.05). Pathway enrichment analyses were
performed using gene annotations in the modules from
Uniprot using the R package g:Profiler2 [167]. The en-
richment analysis selected gene pathways enriched at an
FDR < 0.1 by obtaining annotations from the Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG), and TRANSFAC databases [168, 169].
The background gene set was all the annotated genes in
our reference transcriptome. The enrichment analyses
were made based on the unfiltered modules (i.e., low
correlations were not filtered out from modules).

Randomization tests pertaining to modules—
In order to determine if synaptic pathways were concen-
trated in each of the 25 modules and also overall, we
conducted randomization tests. To this aim, we per-
formed a search for each enriched pathway (Additional
file 1: Table S9) in the EMBL-EBI QuickGo database
(Binns et al. 2009). If the terms “synap-,” (for synaptic
transmission) or “neuro-,” or “neura-” (for neurotrans-
mission) was found in the Ancestor Chart or Child
Terms list or in the name of the enriched pathway itself,
we counted it as a synaptic pathway. To test for enrich-
ment of synaptic pathways in each separate module we
used (as the test statistic) the number of synaptic path-
ways for that module. To test if the differentially
expressed modules were enriched for synaptic pathways
overall, we used (as the test statistic) the total number of
synaptic pathways in the differentially expressed
modules.

To simulate the null distribution to evaluate these two
test statistics, we shuffled the assignment of pathway to
module (holding the total number of pathways per mod-
ule constant) and recomputed the test statistics (10,000
null samples were simulated). Finally, to test whether
the number of synaptic pathways per differentially
expressed module was higher than expected, we com-
puted as the test statistic the average number of synaptic
pathways per differentially expressed module. This test
statistic was evaluated by shuffling the designation of
significant/non-significant across the modules (while
keeping the number of synaptic pathways pathways con-
stant). Again 10,000 null samples were simulated. The
resulting p-values for the 25 individual modules were
corrected for multiple tests using the qvalue function in
R. A threshold of FDR < 0.05 was used to determine sig-
nificance in each test.
We also conducted an additional randomization test

to determine whether modules associated with geog-
raphy contained significantly more synaptic pathways
than modules not associated with geography. We
followed the same procedure described in the previous
test, but with a single test statistic being calculated:
meanNSynapticGeo/meanNSynapticNonGeo. Again, α =
0.05 was used to determine significance.

Abbreviations
ADP: Adenosine diphosphate; AMPA: α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; AU: Approximately unbiased p-value; BCV: Biological
coefficient of variation; BUSCO: Benchmarking Universal Single-Copy Ortho-
logs; cADPR: Cyclic ADP ribose; CPM: Counts per million; DE: Differentially
expressed gene; FDR: False-discovery rate; FST: Fixation index; GABA: Gamma
aminobutyric acid; GAT: GABA transporter; GLM: Generalized linear model;
GO: Gene ontology; IEG: Immediate early gene; KEGG: Kyoto Encyclopedia of
Genes and Genomes; LRT: Likelihood ratio tests; LTD: Long-term depression;
LTP: Long-term potentiation; MDS: Multi-dimensional scaling;
NADH: Nicotinamide adenine dinucleotide; NC: Neighborhood connectivity;
NE: Effective population size; NMDAr: N-methyl-D-aspartate receptor;
NO: Nitric oxide; ORF: Open reading frame; RIN: RNA integrity number;
SGN: Spiral ganglion neuron; SLC: Solute carrier; SNARE: SNAP receptor;
SPG: Synaptic plasticity gene; TE: Transposable element; TMM: Trimmed
mean of M-values; TOM: Topological overlap matrix; WGCNA: Weighted
correlation network analysis

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-07995-3.

Additional file 1: Table S1. Number of read pairs, average sequence
length, and percentage of sequences with Phred Score. Table S2.
Coverage of assembled trancripts against proteins in the Uniprot/
Swissprot and Xenopus tropicalis databases. Table S3. Sample
information and statisticts of brain RNA-Seq reads used in the differential
expression analysis. Please see the main text Methods for detail on read
processing and quality control. Table S4. Differential Expression of Can-
didate Synaptic Transmission Genes between reinforced (sympatric) and
ancestral (allopatric) populations. The 554 candidate transcripts for which
expression data were availble are shown. Signifcance of likelihood ratio
tests conducted were corrected for multiple tests within each of the
three sets of samples: 1) both sexes combined (left section), 2) females
only (center section), and 3) males only (right section). Q-values resulting
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from the correction were compared to alpha = 0.05 for significance (high-
lighed). Note that log fold change (logFC) is expressed so that positive
values mean that sympatric poplations are overexpressed relative to al-
lopatry, whereas negative values mean that sympatric populations are
underexpressed relative to allopatry. Table S5. Results of randomization
tests comparing divergence evolution. The test statistic for the first eight
tests is the difference between the branch lengths for the 2 compared
groups, averaged across the genes in the set. Qvalues were obtained by
correcting the p-values for twelve tests. Table S6. Differential Expression
of all Transcripts between reinforced (sympatric) and ancestral (allopatric)
populations (left three sections), as well as between males and females
(right three sections). Signifcance of likelihood ratio tests conducted were
corrected for multiple tests within each of the six sets of samples. FDR
values resulting from the correction were compared to alpha = 0.05 for
significance (FDR shown for significant tests only). Note that log fold
change (logFC) is expressed so that positive values mean that sympatric
populations are overexpressed relative to allopatry, whereas negative
values mean that sympatric populations are underexpressed relative to al-
lopatry. Note LogFC is the effect size, with positive values corresponding
to overexpression in sympatry. Table S7. Identity, gene ontology (GO)
pathways, and co-expression network module membership of differen-
tially expressed genes. Table S8. Module properties and hub genes. The
hub genes were selected via the chooseTopHubInEachModule function
in WGCNA. The secondary annotated hub gene was defined as the gene,
other than the hub gene, with the highest degree (number of connec-
tions) that included annotation. Neighborhood connectivity of a node re-
fers to the average connectivity of all its neighbors. The clustering
coefficient of a node is the ratio of connections of its neighbors and the
maximum number of possible connections between neighbors. The
number of differentially expressed genes bewteen any comparison is
shown for each module, as well as the number of possible social/mate
preference, synatic plasticity (SPG), and immediate early genes (IEG).
Table S9. Trait-Module correlation analysis and enriched pathways
(based on the Xenopus tropicalis and Homo sapiens Gene Ontology data-
bases) at FDR < 0.1 via g:Profiler2. Signicance of correlation with Geog-
raphy and Sex were corrected simultaneously (50 tests) to produce q-
values. Pathway terms containing keywords (“synap-” in red and “neuro-”
and “neura-” in green in Enriched pathways column) were analyzed to
determine whether they were concentrated in each module (see
Methods). Significance values, based on randomization tests (see
Methods), for these 25 tests were corrected for multiple tests to procude
q-values that were compared to 0.05 to determine significance. Table
S10. Information of the samples used in the differential gene expression
analyses. The RIN (RNA Integrity Number) are provided as measured in a
Agilent Bioanalyzer. Ratios are showed as measured from Qubit (Thermo
Fisher).

Additional file 2: Figure S1. The number of transcripts from the
reference transcriptome mapping to each Gene Ontology category after
gene annotation with Trinotate.

Additional file 3: Figure S2. Number of reads post filter for the 17
samples for which data were collected. The bottom-most sample was ex-
cluded from downstream analyses because it produced substantially
fewer reads than the other 16 samples. Each bar is labeled with the cor-
responding Sample IDs from Additional file 1: Table S10.

Additional file 4: Figure S3. Multidimensional scaling (MDS) plot of
pairwise expression differences, based on normalized log2 counts per
million for genes in the transcriptome-wide gene set. This plot was used
to verify that no outliers existed. Numbers inside points correspond to
the last two digits of the sample IDs in Additional file 1: Table S10.

Additional file 5: Figure S4. A comparison of expression evolution. Tip
branch lengths on the two neighbor joining trees at the top represent
the amount of expression evolution in each of the four groups
compared: sympatric males (SM), allopatric males (AM), sympatric females
(SF), and allopatric females (AF). The bar graph below indicates the ratios
of branch lengths used to compare the relative expression evolution
between two groups. Error bars show the 95% bootstrap confidence
interval for each comparison. Additional file 1: Table S5 presents results of
randomization tests used to determine if each ratio was significantly
different from zero and if ratios for candidate loci were significantly

greater than corresponding ratios from non-candidate loci. None of the
tests were significant at the 0.05 level after correcting for multiple tests.

Additional file 6: Figure S5. Relative expression levels (log2 CPM) of
517 differentially expressed genes between sympatric and allopatric frogs.
The dendrograms resulted from hierarchical clustering of expression
levels after 100 replicates to estimate Approximately Unbiased p-values
(numbers on nodes). Gene names are Uniprot identifiers and can be
found in the reference transcriptome annotation file (see Availability of
data and materials).

Additional file 7: Figure S6. Relative expression levels (log2 CPM) of
129 differentially expressed genes between female and male frogs. The
dendrograms resulted from hierarchical clustering of expression levels
after 100 replicates to estimate Approximately Unbiased p-values
(numbers on nodes). Gene names are Uniprot identifiers and can be
found in the reference transcriptome annotation file (see Availability of
data and materials).

Additional file 8: Figure S7. Relative expression levels (log2 CPM)
across all samples of 24 differentially expressed genes between females
and males in allopatry (A), and 34 differentially expressed genes between
females and males in sympatry (B). The dendrograms resulted from
hierarchical clustering of expression levels after 100 replicates to estimate
Approximately Unbiased p-values (numbers on nodes). Gene names are
Uniprot identifiers and can be found in the reference transcriptome
annotation file (see Availability of data and materials).

Additional file 9: Figure S8. Correlations of geography (left column;
allopatry/sympatry) or sex (right column; male/female) with each of the
module’s eigengenes (rows). The color of the cells indicates positive
(orange) or negative (blue) correlations. The numbers in the cell are
Pearson’s coefficients with associated FDR in parentheses, which were
computed by correcting p-values for the 50 tests. Significantly correlated
traits are shown in bold and italics.

Additional file 10: Figure S9. Flowchart describing computational
steps to process, annotate, assemble RNA-Seq reads for the reference
transcriptome (green boxes), and steps to process and count reads of
brain RNA-Seq for analysis of differential gene expression analysis of can-
didate transcripts (orange boxes) and all transcripts (blue boxes).

Additional file 11: Figure S10. Biological Coefficient of Variation (BCV)
for each transcript in the data set. Each dot represents the average
variation in transcript counts among samples (tagwise dispersion). The
baseline reference used to adjust tagwise variation is indicated by dark
gray line, showing the common dispersion. The model used to adjust the
tagwise variation yielded a trend variation (light gray line).

Additional file 12. List of keywords used in the detection of synaptic
transmission genes within the reference transcriptome. The list was
created by querying the existing literature (see Methods-Identification of
candidate genes transcripts involved in synaptic transmission).

Additional file 13: Figure S11. The effect of raising node correlations
in the WGCNA analysis to a power β (soft threshold) on the fit (R2) to the
assumption of a scale-free topology network. In a scale-free topology net-
work, some nodes are highly connected (hub genes). The red line indi-
cates a fit of R2 = 0.9 to a scale-free topology, indicating that gene-
correlations should be elevated to a β = 6.
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