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Ribonucleic acid sequencing (RNA-seq) has become an important alternative to
traditional expression arrays in gene expression studies. Challenges exist in adopting the
existent algorithms to RNA-seq data given the intrinsic difference of the technologies
and data. In RNA-seq experiments, the measure of gene expression is correlated with
gene length. This inherent correlation may cause bias in gene set analysis.

Results: We develop SeqGSA, a new method for gene set analysis with length bias
adjustment for RNA-seq data. It extends from the R package GSA designed for
microarrays. Our method compares the gene set maxmean statistic against
permutations, while also taking into account of the statistics of the other gene sets. To
adjust for the gene length bias, we implement a flexible weighted sampling scheme in
the restandardization step of our algorithm. We show our method improves the power
of identifying significant gene sets that are affected by the length bias. We also show
that our method maintains the type | error comparing with another representative
method for gene set enrichment test.

Conclusions: SeqGSA is a promising tool for testing significant gene pathways with
RNA-seq data while adjusting for inherent gene length effect. It enhances the power to
detect gene sets affected by the bias and maintains type | error under various situations.

Keywords: RNA-seq, Gene set analysis, Gene length bias, Maxmean statistic,
Restandardization

Background

Ribonucleic acid sequencing (RNA-seq) is a revolutionary tool for gene expression pro-
filing. It has become an important alternative to traditional expression arrays in varieties
of studies. How to adopt the existent algorithms for expression arrays to RNA-seq data is
a challenge in data analysis. In microarrays the gene expression is a continuous number,
while in RNA-seq it is a non-negative integer indicating the number of reads of a gene.
More importantly some inherent biases in RNA-seq experiments need to be accounted
for. Given the protocol of RNA-seq, it is reasonable to expect that a longer gene will have
more counts than an equally expressed short gene. The length effect will cause bias in
gene set analysis [1-3].
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We use the lymph node carcinoma of the prostate (LNCaP) cells RNA-seq data set [4]
as an example to show the gene length bias. The data set contains the RNA sequencing
profiles of 3 androgen-treated samples and 4 control samples. For every gene we calculate
the average count of the 7 samples. Figure 1 shows the smooth scatterplot of gene length
vs average count on a log-log scale. A smooth spline is fit to the scatterplot, suggesting
a strong positive correlation between counts and gene length. The dependence of counts
and gene length introduces a bias in the test of DE genes such that discoveries will favor
long genes over short genes. We rank the genes by their length and divide them into 10
groups, with each group containing 10% of the total genes. We use the exact test in the
R package edgeR to obtain the p-value (unadjusted) for every gene. Figure 2 shows the
percentage of DE genes (p-value < 0.05) in each group increases with gene length. Given
the definition in (1), a set consisting of primarily long genes will have a greater maxmean
statistic than an equally expressed set of short genes. As a result, the test will have bias
that favors sets of long genes.

There are a number of well-established gene set analysis methods for expression arrays.
Most of these tests can be roughly classified into two groups, over-representation analysis
(ORA) and functional class scoring (FCS) [5]. In ORA, the genes are labeled as differ-
entially expressed (DE) or null based on thresholding their test statistics or p-values.
Then we test the gene sets for over-representing the DE genes. The most common tests
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Fig. 1 Correlation of count and gene length. The scatterplot of gene length vs average counts (log-log scale)
for genes in the LNCaP data set [4]. Darker color indicates higher scatter density. The red curve is a smooth
spline with 7 degrees of freedom, showing a positive correlation between count and gene length
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Fig. 2 Gene length bias in RNA-seq data. The LNCaP data set [4] shows the probability of significant p-values
(p < 0.05) increases as gene length. Group 1 is the genes of shortest length and Group 10 is the genes with
longest length

are based on hypergeometric, Chi-square or binomial distribution [5]. Despite the wide
usage, ORA approaches have a few limitations. First, some information is discarded in
ORA as it ignores the continuous measurement of the test statistics and treats the data as
binary outcomes (DE or null). Second, the test for over-representation assumes the genes
are independent of each other, which is unlikely to hold given the complex interactions
between genes, especially for genes in the same pathway.

The FSC approaches overcome the aforementioned limitations of ORA. First the test
statistics are computed for individual genes, e.g. correlation [6], ANOVA [7], Q-statistic
[8], signal-to-noise ratio [9], t-statistic [7, 10], z-statistic [11]. Then these gene-level
statistics are aggregated into a pathway-level summary statistic e.g. Kolmogorov-Smirnov
statistic [9, 12], sum, mean or median [13], the Wilcoxon rank sum [14] and the maxmean
statistic [15]. By keeping the gene-level statistics, FSC can detect weak but coordinated
changes in gene pathways. In assessing the significance of the pathway statistic, the
hypothesis test can be classified into two major categories, self-contained or competitive.
A self-contained test permutes sample labels and compares the pathway with its permu-
tations, while a competitive test randomizes genes for each pathway, and compares the
pathway with others. The self-contained test maintains the correlation structure between
genes, but ignores the other pathways. On the other hand, the competitive test takes into
account the other pathways but ignores the gene correlation.
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Several gene set/pathway analysis methods have been developed for RNA-seq data, e.g.
GOSeq [16], GSVA [17], SeqGSEA [18], CAMERA [19]. GOSeq employs a revised hypergeo-
metric test for DE gene enrichment with the sampling probability adjusted to gene length.
GSVA estimates variation of pathway activity over a sample population and it is able to
detect subtle changes of gene expression in the pathway. SeqGSEA adopts DSGseq [20]
and DESeq [21] for gene level test and uses the GSEA method [9] for functional enrich-
ment analysis. CAMERA [19] estimates the inter-gene correlation and accordingly adjusts
the gene set test statistic.

We propose a new functional scoring method SeqGSA for gene set analysis with
RNA-seq data. Our method adopts the maxmean statistic in R package GSA [15] as the
gene-set-level statistic. Comparing with the more commonly used method GSEA [9], it is
argued that the maxmean statistic used in GSA is more powerful than the Kolmogorov-
Smirnov statistic in GSEA [15]. The fundamental idea of GSA is that it combines the
features of both self-contained test and competitive test through a restandardization
procedure. As the original GSA, our method maintains the correlation of genes in per-
mutation tests while also taking into account the competition of other random gene sets.
We implement a flexible weighted restandardization scheme to adjust for the gene length
bias. It works with any gene-level DE test e.g. [21-23]. We show in the presence of a length
bias our method improves the power of identifying significant gene sets and controls type
I errors. We also compare our method with GOSeq [16] and CAMERA [19], two represen-
tative methods for gene set enrichment test. We show that the maxmean statistic is more
appropriate in detecting small changes of expression. Our method also maintains the type

I error more accurately when genes are correlated.

Methods

Maxmean statistic and restandardization in GSA

In GSA the gene-level test statistics are first converted to z statistics using quantile func-
tions, and then the z values are aggregated into a gene-set-level maxmean statistic. A
restandardization procedure compares the maxmean statistic against permutations while
also taking into account sets formed by random selections of genes. Given gene-level z
statistic z;,i = 1,...,n, let S be the indices of the gene set and #ns be the size of S. The
maxmean statistic S is defined as,

1
S, = H—Zzil{zi > 0},
S ies

S_

1

—— > zil{z <0, (1)
s ieS

S = max(S4,S-).

Assessing statistical significance of the maxmean statistic requires a null distribution.
There are two operations considered to obtain such null distribution, randomization or
permutation. For randomization, the null is constructed by randomly sampling a large
number of gene sets (row sampling). The problem of randomization is that random sets
do not maintain the correlation structure among genes as in real sets. For permutation,
the null is estimated by column (sample labels) permutations so that genes still remain in
the same set. It maintains the correlation structure. The problem of permutation is that it
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ignores the distribution of the maxmean statistics of the other gene sets. The restandard-
ization procedure in GSA combines randomization and permutation. Given z statistic z;
(i=1,...,n) and gene set S with ng genes, the algorithm works as follows,

1) Randomization: calculate the mean and standard deviation of the maxmean statistics
of randomized gene sets, denoted by ' and o 7.

2)  Standardization: compute standardized maxmean S*, $* = (S — u¥) /o .

3) Permutation: permute sample labels B times and compute the standardized
maxmean for each permuted data as in 1) and 2), $*/,b = 1,...,B.

To assess how significant a gene set is associated with the outcome, the p-value is cal-
culated by comparing S* against the permutations, p = Zle I{s** > §*}/B. With
restandardization, the null distribution for S is essentially the permuted maxmean statis-
tic rescaled by o' and relocated by u'. Therefore the maxmean statistic is compared
against the permutations while also considering the distribution of the randomized sets.

Restandardization weighted by gene length

In the randomization step of GSA, all genes are sampled with equal probability. In particu-
lar, two sets with the same number of genes will have the same 1" and o' regardless of the
length of genes in the set. As the method was originally developed for microarrays, it does
not consider the potential bias in RNA-seq, as shown in the introduction. To adjust for
gene length bias we propose a weighted restandardization algorithm. The weighted algo-
rithm uses the similarity of gene length as sampling weight in the randomization step of
the restandardization. The empirical cumulative distribution function (CDF) of the gene
length is:

Fa) =) I <x)/n, (2)
i=1

where /; is the number of base pairs of gene i and # is the total number of genes. Note /;
for gene length can be retrieved from public databases e.g. Ensembl (http://www.ensembl.
org/) and refSeq (http://www.ncbi.nlm.nih.gov/refseq/).

For a set S, the process of constructing randomized set can be viewed as stepwise
replacing genes in S with genes from all the genes. Instead of assigning equal probabil-
ity to all genes, we let g;; be the probability of replacing gene i in S by gene j, which is
weighted by 1 — |F(l;) — F(J))],

wj=1—|F(ly) —Flp| V ieS and j=1,...,n,
Wij (3)
9 = 0 .
j=1Wij
The probability g;; is large when gene i and gene j have similar length and it is small
when their lengths are very different. For a set S, let gs; be the probability of selecting
genej (j = 1,2,...,n) into a randomized set. Since ns << # in practice, the following
approximation can be made,
a5~ nZieS %
D=1 2ies dij

Random sets are constructed from a multinomial distribution with probability gs; for

(4)

gene j. To differentiate from u and o in the previous section, we denote the mean
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and standard deviation of weighted randomization by u:ﬁ, and a‘j,. We use /Li, and o,j, to
standardize the maxmean statistic of S,

Sy=(s=ul) /o). (5)

Permutation maxmean statistics Sj,b ,b = 1,...,B, are computed in the same fashion
from permuted data sets. The p-value for S is calculated by comparing S}, and Sf;b ,

p=i1[5;b>sz;}/3. (©)

b=1

Justification of weighted restandardization
In this section we present a model for RNA-seq testing that accommodates a gene length
bias. Under the gene length bias, we show our weighted method has more power to detect
gene sets consisting of short length genes.

We begin with the two group model proposed in [24] where we assume there are n
cases (genes) that are each either null or non-null with probability pg and p; and with z-
values having density either fy(z) or fi(z). We assume fy(2) is the standard normal density
and fi (z) is some no-null density. As mentioned in previous section, RNA-seq tests are
not based on traditional z-values and hence we transform the p-values to z-values, via
z; = ®~1(p;) where ®(-) is the standard normal CDF. We have,

zi ~ f(2) = pofo(2) + p1fi(2), (7)

where f(z) is the mixture density composed of fy(z) and fj (z). The setting in (7) has proven
very useful in microarray analysis, e.g. see [25—28]. To obtain more specific results we also
assert the assumption of independence that z;’s are independent.

We propose the following twist on this model for RNA-seq analysis. Assume genes are
ordered according to the gene length, then in light of RNA-seq, we propose the following

more general model,

zi ~ pofo(2) + p1fii(2) . (8)

In short, we allow each gene to follow a different alternative distribution. This flexibility
allows us to characterize a gene length bias.

To accommodate the gene length into the model in (8), we assume fj; has the following
form,

fiid) = 1f ;@ + (1 = nfif @), 9)

where f;; and f;" are densities with means ;1]; < 0 and p]; > 0, respectively. To impose

the gene length bias we will further require
il =z pyjand py < pyy Vi) (10)

For our purposes it is not important to determine the parameters in (9) and (10), how-
ever, we will need the assumption in (10) to justify our method. The specification in (10)
allows us to handle a gene length bias where, by nature of a gene’s length, it is more likely
to have extreme z values than a DE gene of shorter length. For simplicity in the following
calculations we also assume fj; is symmetric, that is,

fii(® =fi(—=2) Y z. (11)
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The assumption in (11) is plausible, since a priori, it is reasonable to expect a DE gene
to be equally likely to be overexpressed as it is to be underexpressed between two condi-
tions. We proceed in the following manner, we derive the asymptotic distribution of the
maxmean statistic in (1). We then examine the restandardization procedure and show
that our method yields a more accurate restandardization mean for gene sets.

Under (7), by the Lindeberg-Feller theorem [29] if the Lindeberg condition holds, S+
and S_ in (1) asymptotically follow a bivariate normal distribution for adequately large

Tt
S_ . Cov(S4,S-) fo gt

where p4 = E(S4) and a?r = V(S4) and similarly for S_. Note that under (8)

ns,

[o¢] pl o0
= dz + (2)d.
[ po/O zp (2)dz + s Z/O #f1i(2)dz

ieS

. N (13)
— |2 L PL 4
_po\/;—f— s ,623:/0 zf1;(2)dz,
and due to the symmetry of f1;, u— = 4.
For completeness the other quantities in (12) are,
02 =02= <1>2 Z 1% (z?*)
T ns) s
1\2
- () Zle(E) - €]
ieS
(14)
12 o0
= () > [( / V2 (Pod (V2) + prfii(V/2)) dz)
ns ieS 0 2
2 o 2
- (Po[ +P1/ Zf1i(Z)dZ>
T 0
Cov(S54,8-) = E(S+5-) — E(S4)E(S-)
2
= — <1> E |:<Z zil (z; > 0)) (Z zil (z; < 0)):| — (/L+)2
ns ieS ieS
1\
=_ <> Z E(zizil (zi > 0)1 (z7 < 0)) | — (u4)?
"8/ | iges
1\ 15
=- <> Y E@l(zi > 0)E (5l (z < 0)) | — (n4)? (15)
NS/ | iges
1 2 i o]
=- <> > (PO\/Z/W +p1/ Zfli(Z)dZ>
NS/ | iges 0

0
X <p0v2/ﬂ +p1/ Zfl,«(Z)dZ> — (uy)?
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From the work in [30, 31] on order statistics, the pdf of S is derived as,

fs(s) = 1¢<_S+M+) « ® n(=s+mpny)  —s+p-
o+ o+ or/1—n* o7/1—n?

+1¢(—S+M—> N G
(o o o_J1—n% o./1—1n2

where 7 is the correlation of S; and S_, ¢ is the pdf for the standard normal distribution.

(16)

The mean of S (computed via moment generating functions as in [32]) is

E(S) = s (“*;’“‘) +uo (“;“*) + 69 (“;”*) : (17)

where § = (0 — 20+ 03)1/2 and 07, 02 and 7 are given in (14) and (15). Hence, we can
simplify (17) such that

1 1
E(S) =5(M+) + i(ﬂ_) +60¢(0),

=1 + 0.400

- \F+m2/wzf (2)dz + 0.400
=pPo T ns 0 1i . )

ieS

(18)

where each quantity in (18) has been previously derived.

We would like S to be large for DE sets and small for null sets. Given (18) we see that, on
average, S will be large for a set of long genes in the presence of a strong gene length bias
where jboo zf1;(z)dz increases with the length of gene i. This event does not represent a
true biological gene set enrichment and thus we would consider detecting this set a false
positive. On the other hand, S could also be large if p; is large for the genes in S relative
to p; for the genes not in S. This situation does reflect true biological enrichment and
therefore we would like our procedure to detect significance in this setting.

So in light of the magnitude of S and its randomized distribution for comparison here
is the problem: consider a biologically enriched gene set S consisting of primarily short
genes in the presence of a strong gene length bias. While p; is large for § it will not
be detected because 1/ns Y ;cs [y 2f1;(2)dz is relatively large for randomly assembled
gene sets S'. Likewise, for null sets with long genes fooo zf1;(z)dz will be large relative to
other random sets and we would like a scheme with a low probability of calling this null
set significant. Our weighted randomization scheme is designed to increase (relative to
the unweighted procedure) the probability of detecting the truly enriched gene set while
decreasing the probability of detecting the unenriched gene sets.

Recall the algorithm compares the maxmean statistic against a distribution of permuted
maxmean statistics that are centered and scaled according to the mean (117) and variance
(o) of maxmean statistics chosen at random. Hence in order for S to be enriched, S must
be significantly different than permuted maxmean values and random maxmean values.
Hence, in light of the scheme above, we would like 117 to be small for truly differentially
enriched sets and large for truly null sets. Heuristically the main difference between the
two methods is in the computation of 11}, and x.f. Under the weighted resampling scheme,
with K resamplings, we have

K

1
i 1k
M =% kE_l Sy - (19)
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Hence, the difference between u:ﬂ, and u' can be studied by examining E(S;]f ) against
E(S’) from the unweighted approach.
From (18) we have

E(Sy) = ftqw + 0.406,, (20)
where for the unweighted resampling we have,
E(S) = nuy +0.400 (21)

We expect the difference between the second order effects 0,, and 6 will be minor relative
to the first order effects (11, 1+) between the two methods.
From (13) with the weighted scenario we have

_ \/7+ p1 Z/"Ozf (@)dz (22)
H4+w = Po . ns o 1i 4

7 !
w €S,

where the weighted scenario is based on choosing genes in S),. The unweighted scenario
is equivalent except the genes are from S’. By design, the genes in S|, are chosen to have
a similar length to the genes in S, while the genes in S’ are chosen with equal proba-
bility. Hence if i < j then in the presence of a gene length bias in (9) and (10), we have
fo #f11(@dz < [§” zf1j(2)dz. Therefore, if the weighted process is biased to choose genes
of smaller length relative to the unweighted process, we are likely to obtain p4, < p4.
Hence, on average S, will be smaller relative to the unweighted scenario of " and thus
the p-values in the weighted approach will be larger.

This feature produces the following effect: for enriched gene sets consisting primarily
of short length genes, the weighted restandardization procedure will be more powerful
than the unweighted procedure, while in the same way, the weighted method may also
increase the type I error. On the surface this does not seem like an appealing solution.
However, we will show in several simulations, our method increase the power while still
maintaining the type I error under the controlled level.

Results and discussion

Simulation

To assess our method, we compare the type I error and power of the two versions
of SeqGSA (weighted restandardization and the unweighted restandardization). The
unweighted version is similar to the original GSA, except that the ¢ test is replaced with the
exact negative binomial test of edgeR, as the latter is considered a more appropriate test
for RNA-seq count data. In addition, we compare SeqGSA with two gene set test meth-
ods, GOSeq [16] and CAMERA [19]. GOSeq tests for higher proportion of DE genes in a
set using a modified hypergeometric test, with adjustment to gene length bias. CAMERA
compares the ¢ statistics of genes inside the set and genes outside the set with adjustment
to the intra-correlation of the gene sets. It is embedded in the widely used limma pack-
age [33]. We conduct two simulations. In simulation 1, the count data is generated from
a Poisson model in which the mean parameter is associated with gene length. The gene
sets are constructed without consideration to intra-correlation. In simulation 2, we use
the data of an RNA-seq experiment. The gene sets are constructed such that genes in a
set are correlated. In both simulations, we let the size of gene set ns = 50. For GOSeq,
the enrichment test requires a threshold of the exact test p-values for DE genes. For our
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simulations, the threshold is determined by controlling false discovery rate at 0.1 with the
Benjamini-Hochberg procedure [34].

Simulation 1: sets of uncorrelated genes

We randomly sample n = 1000 genes from the LNCaP data set [4] with gene length
between 1000 and 3000 base pairs. Let [;(i = 1,2,...,1000) be the length of gene i. The
1000 genes are grouped into 20 non-overlapping sets according to gene length, with 50
genes in every set. Thus set 1 contains the shortest 50 genes, set 2 contains the next
shortest 50, and so on. This would generate length bias in gene set analysis. For each set,
we let some number of genes be up-regulated and down-regulated. Let p; = /;/10. In
control samples, count x;; ~ Poisson(ji;). In treatment samples, x;; ~ Poisson((1 + B)u;)
for up-regulated genes, x;; ~ Poisson((1 — B)u;) for down-regulated genes and x; ~
Poisson(;) for null genes, where 8 (8 = 0.15,0.3) indicates the effect of DE at the gene
level.

We first compare the type I error. Let 1, = 2 be the number of up- and down-regulated
genes for all 20 sets. Thus all sets are considered as null. Table 1 summarizes the type I
error (p-value < 0.05) in selected sets. Results shows the type I error is under control for
all sets. In particular, under small DE effect (8 = 0.15), comparing with the unweighted
method, weighted SeqGSA reduces the type I error in sets of long genes (set 15 and set
20), but increases the error in sets of short genes (set 1). GOSeq has higher type I error
for set 1 but it is very conservative for all other sets. Under large DE effect (8 = 0.3),
all methods are conservative in terms of type I error control and the difference is small.
Similarly, CAMERA is very conservative under all settings.

Next we compare the power of identifying DE sets that are undermined by the length
bias. We let n,, be a greater number (14, = 6,8, 10) in set 1, thus set 1 becomes the DE
set. An ideal test should have small p-values for set 1 and non-significant p-values for the
others. Table 2 shows that the weighted algorithm increases the power of detecting set
1. In particular, SeqGSA (both weighted and unweighted algorithms) is more powerful
under small DE effect (8 = 0.15), while GOSeq is more powerful under more significant
change of gene expression (8 = 0.3). On the other hand, CAMERA was unable to detect
such DE effect, indicating the test statistic of CAMERA is insensitive to small changes of
expression under independence.

In addition we compare the power under no length bias, i.e. genes are grouped randomly
thus no length bias exists among the gene sets. In such case, the weighted algorithm does
not have advantage over the unweighted version. There is a slight compromise in the
power, but the difference is negligible.

Table 1 Type | error of simulation 1

B =015 p=03

Set 1 Set5 Set 10 Set 15 Set 20 Set 1 Set5 Set 10 Set 15 Set 20
Weighted 0.007  0.007  0.006 0.009 0.017 0 0 0 0.001 0.001
Unweighted ~ 0.002 0007  0.008 0.014 0.022 0 0 0 0 0.003
GOSeq 0019 0 0 0 0 0 0 0 0 0
CAMERA 0 0 0 0 0 0 0 0 0 0

Type | error of selected sets (p-value < 0.05) under different B. All four methods maintain the type | error under the controlled
level (0.05)
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Table 2 Power of simulation 1

With length bias No length bias

B =015 =03 B =015
Nde = 6 8 10 6 8 10 6 8 10
Weighted 0.36 048 0.77 0.81 0.95 0.98 0.61 0.93 0.96
Unweighted 0.29 045 0.75 0.77 0.90 0.96 061 0.94 097
GOSeq 023 038 0.56 0.97 1.0 1.0 0.96 1.0 1.0
CAMERA 0.01 0 0 0 0 0 0.02 0.01 0.02

Power of identifying set 1 as DE (p-value < 0.05) under different 8 and length bias. The weighted SeqGSA increases the power of
the unweighted procedure for detecting set 1. SeqGSA is more powerful with small DE effect (8 = 0.15), while GOSeq is more
powerful with large DE effect (8 = 0.3). The two procedures of SeqGSA perform similarly under no length bias

Simulation 2: sets of correlated genes

In simulation 2, we use a public data set with simulated gene sets that contain length
bias. The data is a subset of the human prostate cancer data [35] downloaded from the
European Bioinformatics Institute (EBI) server (http://www.ebi.ac.uk). There are 11 nor-
mal and 12 tumor samples in the subset data. The reads were aligned to the human
genome reference sequence (version b37 from http://www.1000genomes.org) by TopHat
v2.0.8 [36] and Bowtie v2.1.0 [37]. Gene length is retrieved with the getlength function in
GOSeq.

Genes with average count less than 1 or with unretrievable length are filtered out.
The 23396 remaining genes are divided into four groups by length with each group con-
taining 25% genes. We use edgeR to calculate the z values and label gene i as DE for
|zi| > ®71(0.975), where ®~! is the quantile function of standard normal distribution.
The standard deviations of the z values from group 1 to group 4 are 1.76, 2.02, 2.09, 2.08
respectively, showing the scale of z values of group 1 is significantly smaller than others.
As a result, the proportion of DE genes (|z| > ®~1(0.975)) of the group 1 is lower than
the others (26.7% vs 31.1%, 33.6%, 32.9%). Gene sets from group 1 will be affected by the
length bias.

Different from simulation 1, the sets in simulation 2 are generated with intra-
correlation. We first compare the type I error under correlation. A null gene set is
constructed as follows. First a null gene is sampled from the null genes in group 1 as the
hub gene [38]. The simulated gene set contains ns genes that are sampled from group 1
that have high correlation with the null hub gene (correlation coefficient > 0.4). The cor-
relation violates the independence assumption of GOSeq, resulting in an inflated type I
error (0.105). On the other hand, the gene correlation is taken into account in the per-
mutation tests of SeqGSA, thus the type I errors are under control for both the weighted
algorithm (0.014) and the unweighted algorithm (0.011).

Due to inflated type I error of GOSeq for correlated gene sets, we only compare SeqGSA
to CAMERA. A DE hub gene is sampled from DE genes in group 1. The simulated gene set
contains a high proportion of DE genes (40 to 70%) that are sampled from DE genes in
group 1 and have high correlation with the DE hub gene (correlation coefficient > 0.4).
The other genes in the set are sampled from the null genes in group 1. The weighted
method improves the power for identifying the simulated DE sets (Table 3). Both the
SeqGSA methods have higher power than CAMERA, suggesting the maxmean statistic is
more sensitive to subtle change of expression on the gene-set level.
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Table 3 Power of simulation 2

Proportion of DE genes 04 0.5 0.6 0.7

Weighted 0.22 0.53 0.71 0.87
Unweighted 0.16 041 067 0.73
CAMERA 0.09 0.19 0.26 039

Power of identifying DE sets (with correlation) in group 1 (p-value < 0.05). The DE sets are constructed with a high proportion of
DE genes in group 1

Simulation 3: power on sets of long genes

As the weighted method samples more often from genes with similar length, we expect
it should also result in a decrease of the power on sets with long genes. In simulation 3
we evaluate how significant the effect is. The same strategy of simulation 2 on was run on
group 3 and 4 for the long genes. Results show although there is a slight decrease in the
power for group 3 and 4 overall, the decrease is very minimal compared with the increase
on the short gene sets in simulation 2 (Table 4). Therefore the weighted method should
increase the overall power of all gene sets.

Application to RNA-seq data set

In this section we first assess the effectiveness of gene length adjustment of SeqGSA with
true biological gene sets. Again we use the LNCaP data set [4]. The genes are mapped
to the GO categories [39] via R package biomaRt [40] on ENSEMBL (www.ensembl.org)
homo sapiens database. The mapped GO categories are filtered by their size. The 1585
categories with 20 to 200 mapped genes are used for the analysis. Small categories are
filtered out to prevent outliers in gene length for small gene sets. Large categories are
filtered out to avoid slow computation. These categories are grouped into 25 bins of
approximately equal size by their median gene length. Figure 3 compares the correlation
between the proportion of DE categories and the median length of the bin. A straight line
is fit with the slope and its p-value shown on the figure. For the unweighted method the
correlation is on the borderline of significance (p = 0.068) while for weighted method the
correlation is not significant (p = 0.117).

Next we apply the methods to another public RNA-seq data set. The data set is from the
Center for the Study of Human Polymorphisms (CEPH) HapMap samples [41]. It contains
17 female and 24 male human B-cell samples. Genes with average count less than 1 or with
unretrievable gene length by the getlength function in GOSeq are filtered out. We map
the genes to the 229 KEGG pathways via the getgo function in GOSeq. Only 2549 genes
can be mapped to the KEGG pathways. We further filter out pathways with 5 or fewer
mapped genes. We run SeqGSA and GOSeq to test DE between male and female group
on the remaining 208 pathways. Controlling FDR at 0.1, the weighted SeqGSA identifies
the hsa04810 pathway, regulation of actin cytoskeleton. The pathway contains 214 genes,
94 of which are mapped to the data set. It is associated with multiple genetic diseases

Table 4 Power of simulation 3

Proportion of DE genes 04 0.5 0.6 0.7
Weighted 0.45 0.75 0.90 0.95
Unweighted 049 0.76 0.88 0.95

Power of identifying DE sets (with correlation) in group 3 and 4 (p-value < 0.05)
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Fig. 3 Proportion of DE of GO categories for unweighted and weighted SeqGSA. Genes in the LNCaP data set
in [4] are mapped to the GO categories. The 1585 mapped GO categories are grouped by median gene
length from low to high. For the unweighted method (left), the correlation of the proportion of DE categories
and gene length is on the borderline of significance (p = 0.068). For the weighted method (right), the
correlation is not significant (p = 0.117)

including sex-linked disorders as the non-syndromic X-linked mental retardation. Stud-
ies have shown the pathway is related to sex steroids regulation of cell morphology and
tissue organization that may play an important role in gender-specific differences of brain
dysfunction [42, 43]. Figure 4 is the heatmap of the hsa04810 pathway for the 41 samples.
The genes are ordered by their z-values. The significance of the pathway is driven by gene
TMSB4Y (Ensemble gene ID ENSG00000154620) that lies on the forward strand of chro-
mosome Y. Its homolog on chromosome X escapes X inactivation and encodes an actin
sequestering protein (provided by RefSeq, Jul 2008). The TMSB4Y gene is shown in rela-
tion to multiple biological activities including actin polymerization and depolymerization
in non-muscle cells [44], activation of natural killer cell cytotoxicity [45] and minor his-
tocompatibility antigen encoding [46], etc. The unweighted procedure also identifies the
same pathway. Figure 5 compares the standardized maxmean statistic for hsa04810 path-
way and its permutation statistics of the two algorithms. The two versions of permutation
statistics overlap, while the standardized maxmean S}, (red tick) by the weighted method
falls further away from the permutation comparing with the unweighted S* (black tick),
suggesting that our weighted method is more powerful in finding the pathway. On the
other hand, GOSeq and CAMERA do not find any pathway at FDR = 0.1. This example
demonstrates our method is easy to implement and gives favorable results in detection of
small but coordinated change in gene sets.

Discussion

We propose SeqGSA, an extension of the GSA method for RNA-seq data. To calculate
maxmean statistics from the RNA-seq count data, we replace the ¢ test in the original
GSA with a count based test, e.g. the negative binomial test in edgeR. The users can also
substitute it with custom defined methods for the gene-level test. More importantly we
propose a weighted restandardization approach to accommodate the gene length bias in
RNA-seq data. Different from traditional expression arrays, gene length effect generally
exists in RNA-seq data sets. To compute the null distribution of the maxmean statistic,
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Fig. 4 Heatmap of hsa04810 KEGG pathway. The heatmap of the 94 mapped genes in the hsa04810 KEGG
pathway for the CEPH HapMap data [41]. The count data is log-transformed and row-scaled

GSA employs a randomization strategy that randomly samples genes with equal weights.
However, having equal sampling weights ignores the length effect in the data. To adjust
for the bias, we use the similarity of gene length as the sampling weight instead, so that the
randomized sets will be more likely to consist of genes with similar length. This reduces
the bias and yields more accurate null distribution of the maxmean statistics. A DE set
comprised mainly of short genes will be more likely called significant in our weighted
approach. On the other hand, a null set comprised of long genes will be less significant
so that type I error is reduced for these sets. We show by simulations that our method
reduces the length bias in RNA-seq data. In addition, we show that the weighted and non-
weighted approaches have very similar results when there is no length bias present in the
data.

There have been several other methods proposed to remove the length bias in enrich-
ment testing with RNA-seq data [2, 3, 16]. In those works, the enrichment test employs
the modified hypergeometric test, Wilcoxon rank sum test or logistic regression. These
methods fall in the category of over-representation analysis (ORA) that compares the
set against randomized sets. A fundamental difference of our method is that it works
under the permutation scheme while also taking into account gene set randomization. An
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Fig. 5 Standardized maxmean and permutations of hsa04810 pathway. The standardized maxmean statistic
and permutations of the hsa04810 pathway for the CEPH HapMap data [41]. The standardardized maxmean
Sk, (red) by the weighted method falls on the right of the unweighted $* (black), while the permutation
statistics of the two methods overlap

advantage of the permutation test is that it considers the correlation in a gene set and the
correlation structure is maintained during sample label permutations. We compare our
method against GOSeq in two simulations. GOSeq also implements a procedure for length
bias adjustment. In GOSeq, the adjustment occurs on the gene level. A spline is fit to the
proportion of DE genes and gene length. This spline is used to correct the sampling prob-
ability of the hypergeometric test. In our method, we adjust the bias on the gene set level.
We recalculate the randomization mean and standard deviation based on weighted sam-
pling so that it compares against gene sets of similar length. In the simulations, we control
the level of DE by the parameter 8. The value of § is chosen to represent two settings,
B = 0.15 for weak DE and 8 = 0.30 for moderate DE, each representing the strength
of the two methods. In simulation 1, the gene sets are sampled independently. We show
that our method is more powerful in finding sets of genes with weak changes. In partic-
ular, when expression of genes is weakly changed, the test statistics for many DE genes
fall below the threshold of multiple test adjustment in GOSeq. As a result, the power of
detecting set of weakly DE genes is undermined. On the other hand, our method aggre-
gates the weak signals of individual genes and increases the power of detecting such DE
sets. When there is no correlation among the simulated gene sets, the type I errors of all
methods are under the controlled level. In simulation 2, we use the data of an RNA-seq
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experiment and compare the three methods on simulated gene sets. The gene sets are
constructed such that the genes are strongly correlated. This simulates the fact that many
of the pre-defined gene sets are identified by gene-gene correlation. The hypergeomet-
ric test of GOSeq is based on the assumption that genes are independent. As a result of
violated assumption, the type I error of GOSeq is inflated. On the other hand, the permu-
tation test in SeqGSA takes into account the correlation structure within a gene set and
thus maintains the type I error more accurately. We also compare SeqGSA with CAM-
ERA, a competitive gene set test also based on sample permutations with adjustment to
gene-set intra-correlation. We show that the maxmean statistic in SeqGSA is more sensi-
tive to subtle but synchronized changes in the gene sets, which has been shown as one of
the advantages of the original GSA method [15]. In both simulations, CAMERA has limited
power to detect small to moderate changes on the gene-set level.

There are some limitations to our length-weighted method. First there are other sources
of bias existent in the RNA-seq data, such as “GC-content” It has been shown that
genes with a large number of guanine (G) and cytosine (C) bases are preferentially read
by sequencing machines and the effect may not be monotone [47]. A solution to such
bias issues is to correct the bias at the gene level by modeling the number of reads or
test statistics by gene length or GC content. However this method has its own prob-
lem since the true expression level is unknown. Without a comparison experiment, it is
difficult to tell whether the difference in reads and test statistics results from true bio-
logical expression or biases. Second, the resampling step in SeqGSA weighted by the
empirical CDF of gene length is a simple solution, but it does not completely remove
the length bias. To improve the performance of the weighted restandardization, we may
consider using tunable parameters to adjust the weight. Determining tuning parameters
requires further exploration and assumptions. Third, our method improves the power
for sets comprised of short genes, but it may slightly compromise the power to detect
enriched sets comprised of long genes. This compromise is common for all methods of
length bias adjustment. We feel this comprise is scientifically justifiable since the gain
in power for small length gene pathways is much larger than the loss of power for large
length gene pathways. The effect of this bias on the family-wise error rate or false discov-
ery rate in multiple gene set testing needs further investigation and is part of our future
work on this topic. Fourth, in this paper we focus on the exact binomial test in edgeR
for gene-level test. However, there are many other tests that can be considered, e.g. see
[21, 23, 48-51]. Alternatively, log fold change can be considered as it is not affected by
length. This motivates a question for future work on an optimal test statistic for gene set
analysis. Last, the computation performance of the weighted algorithm is slightly slower
than the unweighted algorithm as it estimate mean and standard deviation using differ-
ent weights, but the speeds are comparable as the most computationally intense step,
computing the permutation z values, is the same for both methods.

Conclusions

We develop a gene set analysis method for RNA-seq data affected by gene length bias.
This novel approach is designed to enhance the power to detect DE gene sets comprised
of mainly small length genes. Importantly, we justify our method and demonstrate that it
controls the type I error comparing to a representative ORA method for RNA-seq. Also,
we show that without the presence of a gene length bias, our approach still performs
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nearly the same as the original unweighted algorithm in GSA. We expect our gene set
analysis method will be of great utility to researchers performing gene set analysis with
RNA-seq datasets.
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