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Abstract: The pathological accumulation of α-Synuclein (α-Syn) is the hallmark of neurodegen-
erative α-synucleinopathies, including Parkinsons’s disease (PD). In contrast to the mostly non-
phosphorylated soluble α-Syn, aggregated α-Syn is usually phosphorylated at serine 129 (S129).
Therefore, S129-phosphorylation is suspected to interfere with α-Syn aggregation. Among other
kinases, protein kinase CK1 (CK1) is known to phosphorylate α-Syn at S129. We overexpressed CK1
binding protein (CK1BP) to inhibit CK1 kinase activity. Using Bimolecular Fluorescence Complemen-
tation (BiFC) in combination with biochemical methods, we monitored the S129 phosphorylation
and oligomerization of α-Syn in HEK293T cells. We found that CK1BP reduced the overall protein
levels of α-Syn. Moreover, CK1BP concomitantly reduced S129 phosphorylation, oligomerization
and the amount of insoluble α-Syn. Analyzing different α-Syn variants including S129 mutations, we
show that the effects of CK1BP on α-Syn accumulation were independent of S129 phosphorylation.
Further analysis of an aggregating polyglutamine (polyQ) protein confirmed a phosphorylation-
independent decrease in aggregation. Our results imply that the inhibition of CK1 activity by CK1BP
might exert beneficial effects on NDDs in general. Accordingly, CK1BP represents a promising
target for the rational design of therapeutic approaches to cease or at least delay the progression of
α-synucleinopathies.

Keywords: CK1BP; CK1; α-Synuclein; α-Synuclein oligomerization; α-Synuclein aggregation; Parkin-
son’s disease; serine 129 phosphorylation; BiFC

1. Introduction

Abnormal protein deposition in the central nervous system (CNS) is a common
pathologic feature of many neurodegenerative diseases (NDDs). α-Synuclein (α-Syn) is a
soluble, presynaptic protein that is found abundantly in neuronal presynapses through-
out the brain [1]. Aggregated α-Syn represents the pathological hallmark of so-called
α-synucleinopathies. These include Parkinson’s disease (PD), dementia with Lewy bodies
(DLB) and multiple system atrophy (MSA) [2,3]. α-Syn abundance appears to be causatively
linked to these pathologies. For example, certain mutations in the α-Syn-encoding SNCA
gene or SNCA duplication/triplication cause familial PD [4–7]. In addition, the presence of
insoluble α-Syn correlates with disease in α-synucleinopathies [8–10]. Still, the presence
of α-Syn inclusions, so-called Lewy bodies (LBs), is not necessarily associated with neu-
rodegeneration in the human brain [11]. Moreover, several studies reported a dissociation
between the aggregation and toxicity of α-Syn [12–14]. In the course of α-Syn aggregation,
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a variety of oligomeric species form that differ in structure and solubility, comprising
potential precursors of aggregated α-Syn [15,16]. Simultaneously, α-Syn oligomers are
specifically increased in diseased brains [15,17–19] and displayed neurotoxicity in various
research models [20–22], underscoring their pathogenic relevance. Thus, identifying the
modulators of α-Syn oligomerization and aggregation is crucial to improve our under-
standing of α-Syn-related neurodegeneration.

Phosphorylation at serine 129 (S129) is the major modification of α-Syn found in
LBs, though there is conflicting evidence on how it relates to α-Syn accumulation in
NDDs [8,23]. For example, S129 phosphorylation seemed to enhance α-Syn aggregation and
altered α-Syn fibril morphology in some studies [9,24]. In contrast, others suggested that
S129 phosphorylation was not responsible for the increased aggregation of α-Syn [25,26].
Over the years, a number of kinases have been reported to phosphorylate α-Syn at S129,
including members of the polo-like kinase (PLK) and G-protein coupled receptor kinase
(GRK) families as well as protein kinases CK1 and CK2 [27–30]. CK1 is an ubiquitously
expressed Ser/Thr kinase involved in several intracellular signaling pathways. In particular,
six genetically different human isoforms have been described, named CK1α, γ1-3, δ and
ε. While all six isoforms show highly homologous kinase domains, they differ in the
C-terminal regulatory region. In general, CK1 has been the subject of oncological research.
Furthermore, the isoforms CK1δ and CK1ε are involved in the regulation of the circadian
rhythm (for a detailed review, see [31]) and have been linked to Alzheimer’s disease as well
as α-Syn pathology [32–35]. However, the role and regulation of CK1 kinase activity in
α-synucleinopathies is still unclear. Therefore, we used the CK1 binding protein (CK1BP)
to study the impact of CK1 kinase activity on the S129 phosphorylation and accumulation
of α-Syn.

CK1BP is a 27.8 kDa protein that is found under various names in the literature. CK1BP
is also referred to as uncharacterized hypothalamus protein 1 (HSMNP1) or C20orf35
according to the gene locus. Furthermore, the protein was named dysbindin-containing
domain 2 (DBNDD2) as CK1BP shares sequence homology with the acidic C-terminal
domain of dysbindin [36]. To date, very little is known about the cellular functions of
CK1BP. The limited available data on CK1BP suggest a potential relevance of CK1BP
expression for apoptosis induction in hematopoietic stem cells or place it in the context of
colorectal cancer [37–39]. More importantly, CK1BP is highly expressed in human brain
and binds to CK1 δ and ε isoforms in close proximity to the catalytic domain [36,40]. In
2006, Yin et al. showed that CK1BP thereby inhibits CK1 kinase activity and subsequent
substrate phosphorylation in a dose-dependent manner without affecting CK1 protein
levels [36].

In vitro, CK1BP impaired the CK1-mediated phosphorylation of α-Syn [36]. As S129
phosphorylation might alter the aggregation propensity of α-Syn, we therefore hypothe-
sized that the overexpression of CK1BP might reduce S129 phosphorylation and decrease
α-Syn accumulation in a cellular context (Appendix A, Figure A1).

Here, we show that CK1BP indeed reduced S129 phosphorylation and α-Syn oligomer-
ization in our model. However, the observed decrease in α-Syn protein levels was indepen-
dent of S129 phosphorylation as examined by the expression of mutated α-Syn variants
that prevented phosphorylation at position 129. Moreover, CK1BP also decreased the
aggregation of proteins other than α-Syn. In summary, we show that CK1BP reduced the
oligomerization of disease-associated aggregating proteins in a cellular model.

2. Materials and Methods
2.1. Cell Culture and Transfection

Human embryonic kidney 293T (HEK) cells (HEK293T; Leibniz Institute DSMZ-
German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany)
were cultured at 37 °C and 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM;
PAN-Biotech, Aidenbach, Germany) supplemented with 10% fetal bovine serum (FBS;
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PAN-Biotech, Aidenbach, Germany) and 0.5% Penicillin/Streptomycin (PAN-Biotech;
Aidenbach, Germany).

For transient transfection, cells were seeded with 3.2 × 104 cells per cm2. After 24 h,
cells were supplemented with fresh medium and transfected with equal amounts of DNA
using Metafectene (Biontex Laboratories, München/Laim, Germany) according to the man-
ufacturer’s instructions. Subsequently, cells were cultured for 48 h before further analysis.

α-Syn constructs for Bimolecular Fluorescence Complementation assays (BiFC-α-Syn)
were co-transfected as a pair of fusion proteins consisting of the respective α-Syn variant
tagged with a non-functional half of the Venus fluorophore on either the N- (VN-α-Syn) or
the C-terminus (α-SynVC) [41].

2.2. Cell Lysis and Sample Preparation

Forty-eight hours post-transfection, cells were washed thrice with PBS (PAN-Biotech,
Aidenbach, Germany) and resuspended in Radio-Immunoprecipitation (RIPA) lysis buffer
(pH = 8, 50 mM Tris, 0.1% SDS, 150 mM NaCl, 1% TritonX-100, 0.5% sodium deoxycholate,
protease inhibitor cocktail (complete EDTA-free, Roche, Mannheim, Germany)). Cells were
incubated for 30 min on ice and cell lysates were centrifuged at 17,000× g for 20 min at
4 °C for protein fractionization. The supernatant was collected as RIPA-soluble protein
fraction and stored at −20 °C until further use. All following steps were performed at 4 °C.
The RIPA-insoluble pellet was washed with RIPA under agitation for 30 min, followed by
centrifugation at 17,000× g for 30 min. The supernatant was discarded and the remaining
pellet was dissolved in UTC buffer (pH = 8.5, 30 mM Tris, 2 M thiourea, 7 M urea, 4%
CHAPS). After 1 h of incubation under agitation, samples were sonicated for 10 min and
centrifuged for 30 min at 17,000× g. The supernatant containing the urea-soluble protein
fraction (=RIPA-insoluble protein fraction) of the cell lysates was collected and stored at
−20 °C until further use.

2.3. Western Blot

Protein concentrations of RIPA-soluble cell lysates were determined using the DC Pro-
tein Assay Kit (Bio-Rad, Feldkirchen, Germany) following the manufacturer’s instructions.
An amount of 15–30 µg of protein was volume-adjusted, substituted (5:1) with 5× Laemmli
buffer (pH = 6.8, 250 mM Tris-HCl, 10% SDS, 1.25% bromophenol blue, 10 mM EDTA,
0.03% β-mercaptoethanol, 50% glycerol) and heated at 95 °C for 5 min. For RIPA-insoluble
protein fractions, equal amounts of urea-soluble probes were loaded relative to the protein
concentration of the respective RIPA-soluble sample fraction. Samples were loaded on
a 12% SDS-polyacrylamide gel and size separation was performed at 100 V for 130 min.
Separated proteins were transferred to a nitrocellulose membrane (0.2 µm pore size, GE
Healthcare Life Science, Marlborough, MA, USA) by semi-dry transfer. The membrane
was washed thrice for 5 min in 1× Tris-buffered saline (pH = 7.5, 25 mM Tris-HCl, 140 mM
NaCl) with 0.05% Tween20 (TBS-T) and blocked for 1h at room temperature (RT) with
5% skim milk (Carl Roth, Karlsruhe, Germany) in TBS-T. The membrane was incubated
overnight with primary antibody in TBS-T at 4 °C. Primary antibodies used were rabbit
anti-pS129-α-Syn (pSer129; 1:2000; Abcam #ab51253, Cambridge, UK), mouse anti-α-Syn
(1:2000; BD Transduction Laboratories #BD610786, Franklin Lakes, NJ, USA), mouse anti-
polyQ (polyglutamine; 1:2000; Merck Millipore #MAB1574, Darmstadt, Germany) and
rabbit anti-CK1BP (DBNDD2; 1:2000; Proteintech #27623-1-AP, Rosemont, IL, USA). Mouse
anti-β-Tubulin (E7-s; 1:2000; Developmental Studies Hybridoma Bank, Iowa City, IA, USA)
or mouse anti-Actin (ACTN05; 1:2000; Abcam #ab3280, Cambridge, UK) was used for
normalization of RIPA-soluble samples. All primary antibodies were kept in TBS-T with
0.02% sodium azide or 2.5% skim milk (pSer129). After incubation with primary antibodies,
membranes were washed in TBS-T three times for at least 5 min and incubated for 1 h
at RT with respective secondary antibodies (sheep anti-mouse (1:10,000; GE Healthcare
#NXA931V, Little Chalfont, Buckinghamshire, UK) or donkey anti-rabbit (1:10,000; GE
Healthcare #NA934V, Little Chalfont, Buckinghamshire, UK)) coupled to horse-radish
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peroxidase (HRP). After washing membranes thrice for at least 5 min in TBS-T, HRP-signal
was detected via ECL SuperSignal (Thermo Fisher Scientific, Waltham, MA, USA) in combi-
nation with a chemiluminescence detection apparatus (Alliance LD4.77WL.Auto; Biometra,
Göttingen, Germany). Measurement of immunoblot band intensities for assessment of
protein levels was performed with ImageJ Software (ImageJ 1.53a bundled with Java
1.8.0_112, National Institutes of Health, Bethesda, MD, USA). Intensities of protein bands
from Western Blot membrane images were determined using the option “mean gray value”
in ImageJ measurement settings. For soluble protein fractions, the indicated intensities of
specific protein bands (α-Syn, polyQ) were normalized to the respective loading control
(intensity of the same lane’s protein band for β-tubulin). Intensities of protein bands from
the urea fractions were not normalized to housekeeping proteins (β-tubulin, α-Actin etc.)
because these proteins do not aggregate and were not stably detectable in the insoluble
protein fraction (data not shown). As reported by others, C-terminally tagged BiFC-α-Syn
constructs (α-SynVC) showed reduced stability and detection varied between samples
compared to N-terminally tagged α-Syn constructs (VN-α-Syn) [42]. For better comparison
between samples and experiments, only protein levels of VN-α-Syn (corresponding to
37 kDa band) were shown and quantified for all BiFC-α-Syn variants.

2.4. Fluorescence Microscopy

Cells were seeded on cover slips and transfected as described above. After fixation
with 4% PFA in PBS for 10 min, cells were blocked and permeabilized simultaneously in
PBS with 2% bovine serum albumin (Albumin Fraction V; Roth, Karlsruhe, Germany) and
1% TritonX-100 for 1 h. Cover slips were washed thrice with PBS. DNA was stained with
DAPI (1:200 in blocking solution; Carl Roth, Karlsruhe, Germany) for 1 min, followed
by three washing steps and F-actin staining with Alexa Fluor 568 Phalloidin (1:200 in
blocking solution; Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) for 20 min.
Cover slips were washed two times with PBS and once with dH2O. Cells were mounted
in FluoromountG (Southern Biotech, Birmingham, AL, USA) and imaged using an epi-
fluorescence microscope (20× and 40× objectives of Olympus BX51TRF, Tokio, Japan).
Similar microscope settings were used for all conditions of the same experiment. Images
were recorded with a digital camera (Olympus DP72, Tokio, Japan) and cell^F imaging
software (Olympus Soft Imaging Solutions, Münster, Germany). ImageJ software (ImageJ
1.53a bundled with Java 1.8.0_112, National Institutes of Health, Bethesda, MD, USA) was
used for image processing and analysis.

2.5. Flow Cytometry and FACS Analysis

Forty-eight hours after transient transfection, cells were washed with PBS, trypsinized
(Trypsin/EDTA, PAN-Biotech, Aidenbach, Germany) for 5 min and centrifuged in cold
culture medium for 5 min at 400× g. After washing with FACS buffer (2% FBS, 2 mM EDTA
in PBS), cell pellet was resolved in FACS buffer and directly subjected to flow cytometry or
fixed in 2% PFA in PBS and stored for up to 24 h until FACS analysis at a FACSCantoTM II
(BD Transduction Laboratories, Franklin Lakes, NJ, USA). Forward and side scatter signals
were used to restrict the analysis to viable cells. Venus/GFP fluorescence intensity (FL1, x-
axis) was plotted on a log scale against FL4 (y-axis), which was not used for the experiments.
Signal amplification was set so that background fluorescence of non-expressing cells was
below 100. In total, 50,000 cells per sample were acquired. Data were processed using
FlowJo software (Treestar Inc., Ashland, OR, USA). Fluorescence measurement is presented
as a one-dimensional histogram. Cells were gated based on signal intensities and the
number of cells in each population was counted separately. A GFP-transfected positive
control condition served as template for the identification of fluorescent cells in every
experiment. Fluorescent cell fractions (FCFs) were indicated as proportion of fluorescent
cells of each sample and included cells with a fluorescence intensity of <103 (low FCF),
103–104 (medium FCF) and >104 (high FCF) on a logarithmic scale.
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2.6. Statistical Analysis

Data analysis was carried out using GraphPad Prism software (GraphPad Prism version
8.0.2 for Windows, GraphPad Software, San Diego, CA, USA). Outliers in Western Blot band
intensity quantification datasets were excluded, as identified by ROUT method. Differences
in the percentages of fluorescent cells between CK1BP and the respective control groups were
determined with one-tailed Wilcoxon matched-pairs signed rank test. Differences in FCFs
between conditions of CK1BP co-expression and the matched control groups were determined
with two-way ANOVA followed by Tukey’s multiple comparisons test. Values of p < 0.05
were considered significant. The number of experimental replicates and the statistical tests
applied are indicated in the respective figure legends.

3. Results
3.1. Monitoring Intracellular α-Syn Oligomerization with BiFC

Human embryonic kidney 293T (HEK) cells were reported to abundantly express
endogenous protein kinase CK1 (CK1) [36]. Moreover, endogenous α-Syn protein levels in
HEK cells are not detectable without the special treatment of Western Blot membranes [43]
(see Supplementary Materials). Thus, HEK cells form a controlled cellular environment
without endogenous α-Syn that would obscure subsequent analyses. Accordingly, HEK
cells provide an ideal tool to assess the impact of changes in CK1 kinase activity on α-Syn
S129 phosphorylation and α-Syn aggregation propensity.

We used Bimolecular Fluorescence Complementation (BiFC) to visualize intracellu-
lar α-Syn oligomerization. BiFC relies on α-Syn constructs that are linked to the non-
fluorescent halves of the Venus protein. Here, one half is fused to the N-terminus and
the corresponding counterpart is fused to the C-terminus of α-Syn. Due to antiparallel
α-Syn oligomerization, the formation of an α-Syn dimer reconstitutes a functional Venus
fluorophore (Appendix A, Figure A2B and [42]). Accordingly, BiFC is an established
method for the direct visualization of α-Syn multimer formation [34,41,44,45]. Since only
non-monomeric α-Syn contributes to Venus fluorescence signals, increased fluorescence
intensity corresponds to an increase in α-Syn multimerization.

Using epifluorescence microscopy, HEK cells transfected with BiFC-α-Syn[WT] in
combination with CK1BP or an empty vector control showed fluorescent signals, indicating
α-Syn multimerization. Venus fluorescence appeared mainly diffuse in the cytoplasm
and nucleus (Figure 1A) as reported previously [41,45]. Additionally, fluorescent cells
expressing BiFC-α-Syn[WT] alone regularly displayed intracellular foci with increased
Venus fluorescence signal intensities (“Venus puncta”) 48 h after transfection, which could
indicate the sites of increased α-Syn accumulation. Co-transfection with CK1BP reduced
the frequency of these sites, resulting in a predominantly diffuse green fluorescent signal.
This observation suggested that the abundance of α-Syn[WT] multimers was reduced with
the overexpression of CK1BP.

BiFC-α-Syn combined with flow cytometry allowed us to analyze Venus signal inten-
sities in an unbiased fashion in large numbers of individual cells. In a representative FACS
analysis of cells transfected with GFP, fluorescent cells were separated from non-fluorescent
cells (Appendix A, Figure A2A). Previously, BiFC fluorescence has been quantified by
determining the mean fluorescence intensity of cells as a measure for protein oligomer-
ization [41,45]. Given the wide range of α-Syn oligomers detected in cells, we chose a
two-step approach to analyze BiFC fluorescence. We determined the total percentage of
fluorescent cells and then further divided this population into three subgroups according
to fluorescence intensity. Low, medium and high fluorescent cell fractions (FCFs) were
expressed as proportions relative to all fluorescent cells in a sample to allow a better com-
parison between conditions (Appendix A, Figure A2A). Thus, this approach permitted us
to quantify and compare intracellular α-Syn oligomerization between different conditions.

First, we wanted to rule out any non-specific effects of CK1BP on general protein
turnover. The concomitant expression of CK1BP and green fluorescent protein (GFP) did
not alter the distribution of fluorescent cells with regard to their fluorescence intensities
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as fluorescent cells formed bell-shaped slopes in the absence (Figure 1B) and presence
of overexpressed CK1BP (Figure 1C). This finding suggested that CK1BP did not affect
general protein turnover. The similar percentage of fluorescent cells in mock and CK1BP
co-transfected cells also implied that CK1BP did not affect transfection efficiency in HEK
cells (Appendix A, Figure A3C). Moreover, the quantification of cells within the FCFs
showed no significant differences comparing cells with and without CK1BP (Figure 1D,
high FCFs: p = 0.3453).

Next, we analyzed cells expressing BiFC-α-Syn by flow cytometry to monitor the
impact of CK1BP on α-Syn oligomerization. In addition to α-Syn[WT], we used the
α-Syn[A53T] variant that is associated with familial PD and suspected to have aggregation-
enhancing properties [7,19,20,46].

First of all, we realized that the overexpression of CK1BP caused a small but sig-
nificant reduction in the percentage of fluorescent cells in FACS analysis (Appendix A,
Figure A3A,A’). Cells expressing BiFC-α-Syn[WT] in the absence of CK1BP displayed a
peaked distribution of fluorescent cells when plotted against fluorescence signal inten-
sity (Figure 1E). The co-expression of CK1BP changed the slope of the curve, as highly
fluorescent cells were less abundant (Figure 1F, arrow). The quantification of cells within
the different FCFs exposed a significantly decreased proportion of highly fluorescent cells
upon CK1BP overexpression compared to the control (Figure 1G, high FCFs: p = 0.0001;
Figure 1G’, high FCF: p < 0.0001). This reduction in high FCF coincided with a significant
increase in the relative amount of cells within the medium FCF for both α-Syn variants
(Figure 1G, medium FCFs: p = 0.0194; Figure 1G’, medium FCFs: p = 0.0036). At the
same time, the proportion of low-fluorescence cells was not significantly altered by CK1BP
overexpression (Figure 1G). Similarly, the co-expression of CK1BP significantly reduced
the high FCF of cells expressing α-Syn[A53T] while increasing the proportion of cells
with medium fluorescence signal intensities (Figure 1E’–G’). Thus, a shift in cell fractions
with high and medium fluorescence signal intensities was observed independent of the
BiFC-α-Syn variant tested.

In addition to FACS analysis, we performed SDS-PAGE and subsequent immunoblot-
ting to determine solubility of BiFC-α-Syn (Figure 2A,A’ and Appendix A, Figure A2C).
After cell lysis with RIPA buffer, we performed a differential extraction of RIPA-soluble and
RIPA-insoluble protein fractions to distinguish detergent-soluble from detergent-insoluble
forms of α-Syn via a Western Blot (Appendix A, Figure A2C). The RIPA-soluble protein
fraction contained α-Syn species of low to middle molecular weights (MWs) whereas α-Syn
oligomers of higher MWs were most likely present in the RIPA-insoluble lysate fraction
that was dissolved in UTC buffer [10,23]. The quantitative analysis showed that CK1BP
overexpression considerably reduced the total amount of soluble α-Syn in comparison to
the control (>50% reduction; Figure 2B,B’). When we analyzed the soluble protein levels in
both conditions, we observed a strong decrease in the abundance of S129-phosphorylated
α-Syn (>70% reduction; Figure 2C,C’) induced by CK1BP overexpression. The protein lev-
els of RIPA-insoluble α-Syn were also reduced (>50% reduction) for both BiFC-α-Syn[WT]
and BiFC-α-Syn[A53T] (Figure 2D, D’) in the case of CK1BP co-expression. In summary, the
overexpression of CK1BP strongly reduced the amount of BiFC-α-Syn in the RIPA-soluble
as well as in the RIPA-insoluble fraction. This effect was independent of the α-Syn variant
(WT and A53T) used.

To reject the proposal that the Venus tags might have contributed to the observed
CK1BP-mediated decrease in BiFC-α-Syn levels, we performed the same experiments
using untagged α-Syn[WT] (Figure 2A”–D”). Similar to the effects observed with BiFC-
α-Syn, we found that co-expression of the untagged construct with CK1BP caused a
significant reduction in α-Syn abundance compared to the control. This reduction was
observed for total α-Syn (Figure 2B”) and S129-phosphorylated α-Syn (Figure 2C”) in the
soluble fraction as well as for RIPA-insoluble α-Syn (Figure 2D”). This finding suggested
that the reduction in RIPA-soluble and RIPA-insoluble protein levels of α-Syn in CK1BP-
overexpressing cells was unaffected by the Venus tags. Taken together, these results
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supported the hypothesis that the CK1BP-mediated inhibition of CK1 kinase activity
decreased α-Syn S129 phosphorylation as well as the abundance of non-monomeric α-Syn.

Figure 1. Monitoring intracellular α-Syn oligomerization with Bimolecular Fluorescence Comple-
mentation (BiFC). Fluorescence of cells expressing BiFC-α-Syn[WT] and BiFC-α-Syn[A53T] was
assessed to measure the effect of CK1 binding protein (CK1BP) on α-Synuclein (α-Syn) oligomeriza-
tion. (A) Epifluorescence microscopy of HEK cells transfected with green fluorescent protein (GFP)
(upper panel) or cells co-transfected with BiFC-α-Syn[WT] without (middle panel) or with CK1BP
(lower panel). Representative images show nuclear DNA (DAPI, blue), F-actin (Phalloidine, red) and
endogenous fluorescence signal (green). Arrows indicate Venus fluorescent foci (“Venus puncta”).
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Scale bar = 20 µm. (B) Representative histogram of GFP-transfected HEK cells demonstrating FACS
analysis. Fluorescent cells (right peak) were subdivided into three fluorescent cell fractions (FCFs)
with high (white), medium (light grey) or low (dark grey) fluorescence intensity. (C) Representative
histogram of cells co-transfected with GFP and CK1BP. (D) FACS analysis of cells co-transfected
with GFP and empty vector control (left bar) or CK1BP (right bar). Bars show FCFs relative to
fluorescent cells of the respective condition. FCFs are presented as mean ± SD of six independent
experiments with three replicates each. Representative histograms of HEK cells co-transfected with
(E,F) BiFC-α-Syn[WT] or (E’,F’) BiFC-α-Syn[A53T] and (E,E’) empty vector control or (F,F’) CK1BP.
Arrows in (F,F’) indicate decreased high FCF in CK1BP groups. FACS analysis of cells co-transfected
with (G) BiFC-α-Syn[WT] or (G’) BiFC-α-Syn[A53T] and empty vector control (Ctrl; left bar) or
CK1BP (right bar). Bars show FCFs relative to fluorescent cells of the respective condition. FCFs
are presented as mean ± SD of five independent experiments with two replicates each. Two-way
ANOVA followed by Tukey’s multiple comparisons test was used to determine statistical significance.
Significant differences (p < 0.05) between FCFs of the respective Ctrl and CK1BP groups are indicated
with * comparing high FCFs and # comparing medium FCFs.

Figure 2. CK1BP decreases S129 phosphorylation and total abundance of α-Syn in the soluble
and insoluble protein fraction. Biochemical analysis of differentially fractionized cell lysates was
performed to investigate the impact of CK1BP on α-Syn S129 phosphorylation and abundance of
detergent-soluble and insoluble α-Syn species. Protein levels of samples co-transfected with CK1BP
were compared to α-Syn-only transfected controls (Ctrl). Representative immunoblots displaying
protein abundance of α-Syn and S129-phosphorylated α-Syn in the RIPA-soluble and in the urea
protein fraction for (A) BiFC-α-Syn[WT], (A’) BiFC-α-Syn[A53T] and (A”) untagged α-Syn[WT].
Quantification of protein levels of soluble (B,B’,B”) α-Syn and (C,C’,C”) S129-phosphorylated α-Syn
as well as (D,D’,D”) RIPA-insoluble α-Syn in the urea fraction for (A–D) BiFC-α-Syn[WT], (A’–D’)
BiFC-α-Syn[A53T] or (A”–D”) untagged α-Syn[WT]. A total of three to four independent experiments
with three technical replicates per experiment were plotted. Outliers in Western Blot band intensity
quantification datasets were excluded as identified by ROUT method.
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3.2. CK1BP Reduces α-Syn Accumulation Independent of S129 Phosphorylation

To further investigate the relevance of S129 phosphorylation for α-Syn oligomerization,
we analyzed the effect of CK1BP on BiFC-α-Syn with S129 mutations. We used a phos-
phomimetic α-Syn variant with serine 129 mutated to aspartic acid (BiFC-α-Syn[S129D])
to mimic the constitutive phosphorylation of amino acid 129. In addition, we used α-
Syn[S129A], where serine is replaced by alanine to abolish phosphorylation at position
129. We chose both variants to determine whether the observed CK1BP-mediated decrease
in α-Syn levels depended on the presence of a phospho(mimetic) site of α-Syn at amino
acid 129.

Biochemical analyses confirmed the specificity of our pS129 antibody. In the Western
Blot analysis, the pS129-specific antibody detected α-Syn[S129D] (although with reduced
efficacy compared to a genuine S129 phosphorylation of α-Syn) and obviously failed to
detect α-Syn[S129A] (Appendix A, Figure A3E).

We used FACS analysis to determine the fluorescence intensities of cells expressing
these BiFC-α-Syn variants with (Figure 3A,A’) or without (Figure 3B,B’) the concomitant ex-
pression of CK1BP. Interestingly, CK1BP altered the fluorescence signals of cells expressing
BiFC-α-Syn[S129D] as well as BiFC-α-Syn[S129A]. The co-transfection of CK1BP slightly,
but significantly, reduced the amount of fluorescent cells for both α-Syn phosphomutants
(Appendix A, Figure A3B,B’). The same effect had been observed with aSyn[WT] and
aSyn[A53T] (Appendix A, Figure A3A,A’), but not in cells expressing non-aggregating GFP
(Appendix A, Figure A3C). Moreover, CK1BP significantly reduced the proportion of cells
with high fluorescence intensities in cells overexpressing α-Syn[S129D] or α-Syn[S129A]
compared to control conditions (Figure 3C, high FCFs: p = 0.0009; Figure 3C’, high FCFs:
p < 0.0001). Similar to α-Syn[WT] and α-Syn[A53T], this decrease in high FCF went
along with a relative increase in the amount of cells within the medium FCF for both
α-Syn[S129D] (Figure 3C, medium FCFs: p = 0.0315) and BiFC-α-Syn[S129A] (Figure 3C’,
medium FCFs: p = 0.0037).

The corresponding biochemical analyses demonstrated that CK1BP reduced α-Syn
abundance in both the RIPA-soluble and urea protein fractions of cells expressing either
BiFC-α-Syn[S129D] (Figure 3D–F) or BiFC-α-Syn[S129A] (Figure 3D’–F’).

In experiments using BiFC-α-Syn, the characterization of the respective fluorescent
cell populations by FACS analysis allowed a clear distinction between control conditions
and samples co-transfected with BiFC-α-Syn and CK1BP. The differences observed were
similar for all α-Syn variants studied (about 50% reduction in high FCF). Moreover, the
biochemical analyses of RIPA-soluble and insoluble α-Syn implied similar protein levels
of overexpressed α-Syn and a comparable reduction in multimeric α-Syn upon CK1BP
co-expression for α-Syn[WT] and α-Syn[A53T] as well as α-Syn[S129D] and α-Syn[S129A]
(Appendix A, Figure A3E,F).

We initially hypothesized that, by inhibiting CK1 kinase activity, CK1BP would reduce
the S129 phosphorylation of α-Syn and thereby might affect intracellular α-Syn accumula-
tion (scheme in Appendix A, Figure A1A). Indeed, the abundance of S129-phosphorylated
α-Syn was reduced in cells co-expressing CK1BP and α-Syn[WT] or α-Syn[A53T]. In paral-
lel, we observed a reduction in highly fluorescent cells and a decrease in insoluble a-Syn
levels when overexpressing CK1BP (Figures 1 and 2). However, we obtained similar results
when co-expressing CK1BP with α-Syn[S129D] or α-Syn[S129A] (Figure 3). Here, we could
exclude changes in the phosphorylation status of α-Syn at position 129. Nevertheless,
the overexpression of CK1BP caused a reduction in multimeric α-Syn in FACS analysis
and a decrease in insoluble (aggregated) α-Syn. These findings suggested that the CK1BP-
mediated effects on α-Syn accumulation might be independent of the S129 phosphorylation
of α-Syn.
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Figure 3. CK1BP reduces α-Syn accumulation independent of S129 phosphorylation. Cells expressing
BiFC-α-Syn[S129D] or BiFC-α-Syn[S129A] were analyzed to determine the relevance of α-Syn S129
phosphorylation for the CK1BP-related decrease in α-Syn accumulation. Representative histograms
of HEK cells co-transfected with (A,B) BiFC-α-Syn[S129D] or (A’,B’) α-Syn[S129A] and (A,A’) empty
vector control or (B,B’) CK1BP. Arrows in (B,B’) indicate decreased high FCF in CK1BP groups.
FACS analysis of cells co-transfected with (C) BiFC-α-Syn[S129D] or (C’) BiFC-α-Syn[S129A] and
empty vector control (left bar) or CK1BP (right bar). Bars show FCFs relative to fluorescent cells
of the respective condition. FCFs are presented as mean ± SD of five independent experiments
with two replicates each. Two-way ANOVA followed by Tukey’s multiple comparisons test was
used to determine statistical significance. Significant differences (p < 0.05) between FCFs of the
respective Ctrl and CK1BP groups are indicated with * comparing high FCFs and # comparing
medium FCFs. Representative immunoblots displaying protein abundance of (D) BiFC-α-Syn[S129D]
or (D’) BiFC-α-Syn[S129A] in the RIPA-soluble and in the urea protein fraction. Quantification of
protein levels of (E,E’) soluble α-Syn and (F,F’) RIPA-insoluble α-Syn in the urea fraction of cells
expressing (D–F) BiFC-α-Syn[S129D] or (D’–F’) BiFC-α-Syn[S129A]. A total of three (E,E’) or four
(F,F’) independent experiments with three technical replicates per experiment were plotted. Outliers
in Western Blot band intensity quantification datasets were excluded as identified by ROUT method.
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3.3. CK1BP Decreases Accumulation of a Polyglutamine Peptide

To further elucidate the role of CK1BP in intracellular protein accumulation, we ex-
tended our analysis to another aggregating protein. We chose a polyglutamine (polyQ)
peptide as it lacked a Ser/Thr phosphorylation site. A common feature of polyglutamine
diseases is CAG repeat expansions within the coding regions of the respective disease-
linked genes. As CAG codes for glutamine, elongatd polyQ stretches are the main charac-
teristic of disease-associated proteins. The lengths of these polyQ stretches in the respective
disease-associated proteins determine clinical manifestation and correlate with disease
onset and severity. Thus, elongated polyQ stretches and subsequent protein misfolding are
the common pathological hallmarks of polyglutamine disease, an otherwise heterogenic
group of NDDs [47].

We used a Huntingtin exon 1-derived peptide with a polyQ stretch of 103 repeats fused
to a green fluorescent protein (GFP) (GFP-polyQ). This construct was used to analyze the
effect of CK1BP on polyQ protein aggregation. HEK cells expressing GFP-polyQ presented
with large, highly fluorescent intracellular inclusions 48 h after transfection (Figure 4A).
This accumulation was triggered by the polyQ peptide as cells transfected with GFP alone
displayed an evenly distributed green fluorescence signal and lacked highly fluorescent
protein accumulations (Figure 1A). The co-expression of CK1BP and GFP-polyQ decreased
the number of cells displaying fluorescent inclusions and considerably reduced the sizes of
these fluorescent foci (exemplarily shown in Figure 4A).

As for BiFC-α-Syn variants, we quantified fluorescence signal intensities by FACS
analysis (Figure 4B,C). The co-expression of CK1BP significantly reduced the proportion of
highly fluorescent cells (>80% reduction) compared to cells expressing GFP-polyQ alone
(Figure 4D, high FCFs: p < 0.0001). This mirrored the trend observed in our previous
analyses using BiFC-α-Syn variants. However, there were differences in the distribution
of cells in the other FCFs. In the case of BiFC-α-Syn, the CK1BP-mediated decrease in
the high FCF went along with an augment in the medium FCF. In cells expressing GFP-
polyQ on the other hand, the CK1BP-mediated reduction in cells within the high FCF was
accompanied by a relative increase in the amount of low-fluorescence cells (Figure 4D, low
FCFs: p < 0.0001, medium FCFs: p = 0.9761).

Additionally, the overexpression of CK1BP significantly decreased the relative amount
of fluorescent cells when using BiFC-α-Syn variants (Appendix A, Figure A3A–B’). In
contrast, the co-expression of CK1BP with GFP-polyQ did not reduce the percentage of
fluorescent cells compared to the control (Appendix A, Figure A3D). This is in line with
our previous observations when analyzing GFP expressing cells with or without the co-
expression of CK1BP (Appendix A, Figure A3C). Note that, unlike BiFC-α-Syn, monomeric
GFP-polyQ also contributed to the fluorescence signals obtained by flow cytometry. Thus,
FACS analysis suggested that CK1BP did not seem to affect the monomeric species of the
aggregating GFP-polyQ protein. We therefore hypothesized that the regulation of protein
expression was not a major mechanism responsible for the reduced levels of aggregation-
prone proteins seen with CK1BP overexpression. Conversely, CK1BP seemed to specifically
affect protein aggregation as CK1BP overexpression did not alter the fluorescence intensity
of cells transfected with GFP.

The biochemical analysis of GFP-polyQ protein levels (Figure 4E) in fractionized cell
lysates indicated a reduced abundance of RIPA-soluble polyQ (>40%, Figure 4F) upon
CK1BP co-transfection. In addition, CK1BP co-transfection strongly reduced polyQ protein
levels in the RIPA-insoluble fraction (>75%, Figure 4G) compared to the control.

In summary, our analyses showed that CK1BP reduced the oligomerization of α-
Syn[WT] and α-Syn[A53T]. The observed reduction in multimeric α-Syn levels was inde-
pendent of S129 phosphorylation as similar results were obtained with S129 phosphomu-
tants α-Syn[S129D] and α-Syn[S129A]. Moreover, CK1BP also reduced the aggregation of a
polyQ peptide. Taken together, our results suggest that CK1BP overexpression affected the
intracellular accumulation of aggregation-prone proteins that are of pathological relevance
in NDDs.
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Figure 4. CK1BP decreases accumulation of a polyglutamine (polyQ) peptide. Fluorescence and
biochemical analysis were used to investigate the impact of CK1BP on intracellular abundance of an
aggregating GFP-polyQ fusion protein. (A) Epifluorescence microscopy of HEK cells co-transfected
with GFP-polyQ and empty vector control (upper panel) or CK1BP (lower panel). Representative
images show nuclear DNA (DAPI, blue), F-actin (Phalloidine, red) and endogenous fluorescence
signal (green). Scale bar = 100 µm. Representative histograms of HEK cells co-transfected with
GFP-polyQ and (B) empty vector control or (C) CK1BP. Arrow in (C) indicates decreased high FCF in
CK1BP group. (D) FACS analysis of cells co-transfected with GFP-polyQ and empty vector control
(left bar) or CK1BP (right bar). Bars show FCFs relative to fluorescent cells of the respective condition.
FCFs are presented as mean ± SD of three independent experiments with three replicates each.
Two-way ANOVA followed by Tukey’s multiple comparisons test was used to determine statistical
significance. Significant differences (p < 0.05) between FCFs of the respective Ctrl and CK1BP
groups are indicated with * comparing high FCFs and § comparing low FCFs. (E) Representative
immunoblots displaying protein abundance of GFP-polyQ in the RIPA-soluble and in the urea protein
fraction. Quantification of protein levels of (F) soluble polyQ and (G) insoluble polyQ in the urea
fraction. A total of three independent experiments with three technical replicates per experiment were
plotted. Outliers in Western Blot band intensity quantification datasets were excluded as identified
by ROUT method.
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4. Discussion

Conformational changes in soluble α-Syn are thought to initiate α-Syn aggregation
by enabling the oligomerization and eventual deposition of α-Syn species in insoluble
aggregates [15,19]. In vitro data on and observations of living cells suggest a highly
dynamic process of oligomer formation of varying sizes and morphologies that progress
into larger aggregates. At the same time, the accumulation process seems to be reversible
and already formed α-Syn multimers can disintegrate into smaller species [14,16]. In
view of the dynamics and complexity of the α-Syn aggregation process, we used BiFC to
assess the oligomerization of different α-Syn mutations in vivo. We evaluated the effect of
CK1BP overexpression on α-Syn multimerization by semiquantitative FACS analysis and
biochemical analyses of fractionized cell lysates.

BiFC was originally developed as a screening system to identify protein–protein
interactions [48]. In 2008, Outeiro et al. were the first to use BiFC for the monitoring of
intracellular α-Syn oligomerization [41]. Since then, the technique has been continuously
modified and improved to study α-Syn accumulation in various models [34,44,45]. Recently,
it has been questioned whether BiFC is a fitting tool to model disease-relevant α-Syn
aggregation [42]. BiFC signals in cell culture experiments were mostly homogenous and it is
unclear to what extent BiFC oligomers proceed into disease-like α-Syn aggregates [41,45,49].
Instead, inclusion formation was often achieved by applying additional methods to BiFC
systems [45]. However, punctate fluorescence signals and aggregated α-Syn were observed
in BiFC animal models [34,44,50,51]. By using the epifluorescence microscopy of cells
transfected with BiFC-α-Syn[WT], we detected fluorescent foci that were not present in
cells expressing soluble GFP (Figure 1A). In view of the time-dependent multimerization
of α-Syn, the Venus puncta detected in our system 48 h after transfection most likely
represented higher-ordered oligomers of BiFC-α-Syn [16,19,34]. Although fluorescence
microscopy allows us to visualize fluorescent patterns in individual cells, the quantification
of fluorescent cells from microscopical images meets certain challenges. First, the correct
allocation of fluorescence signals to single cells relies on optimal cell distribution within
the culture area. Second, the manual categorization of cells according to criteria such as
cell fluorescence and the presence of a certain number or size of fluorescent foci per cell
depends on stable fluorescent signals and is prone to observation bias.

FACS analysis, however, represents an objective method for fluorescence detection in
high cell numbers. While also detecting fluorescence signals from individual cells, automa-
tization ensures minimal bleaching of fluorescent complexes in the measurement process.
Therefore, we used FACS analysis to investigate how CK1BP might affect multimerization
and the corresponding fluorescence signal of cells expressing BiFC-α-Syn. Moreover, FACS
analysis allows one to generate a fluorescence profile of a cell population by enabling the
precise detection of single-cell fluorescence intensities. For better comparison between
different conditions and experiments, we grouped fluorescent cells into three fluorescent
cell fractions (Appendix A, Figure A2A). This allowed us to assess potential changes in
fluorescence intensities independent of transfection efficiencies. At the same time, the
FACS analysis of BiFC-expressing cells as performed here did not provide information
on the specific nature of the multimeric α-Syn species. However, an increased amount
of at least dimerized α-Syn will increase the fluorescence intensity of an individual cell.
Accordingly, in our FACS analysis of BiFC experiments, the highly fluorescent cell fraction
(FCF) represented cells with elevated levels of non-monomeric α-Syn. Based on the stated
conversion of small oligomeric α-Syn species into larger accumulations, we speculated that
higher ordered forms of α-Syn would also be enriched in these cells compared to cells with
lower fluorescence intensities. In cells expressing BiFC-α-Syn[WT], the overexpression of
CK1BP caused a relative reduction in highly fluorescent cells (Figure 1E’,F’). This decrease
might reflect either a simple reduction in the amount of α-Syn multimers per cell or a
concomitant reduction in the size of intracellular α-Syn oligomers.

To assess this question, we used a different fluorescence-based reporter system and
analyzed a polyQ fusion protein (Figure 4). As observed with BiFC-α-Syn, there was
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a decrease in the high FCF of cells expressing GFP-polyQ after CK1BP co-transfection
(Figure 4B–D). The microscopical images of the respective conditions suggested that CK1BP
reduced the abundance and fluorescence intensity of GFP-polyQ accumulations (Figure 4A).
These analyses on GFP-polyQ imply that CK1BP most likely decreased both the abundance
and size of intracellular α-Syn oligomers. This conclusion was consolidated by the decrease
in protein levels that we observed for both soluble and insoluble BiFC-α-Syn and GFP-
polyQ (Figures 2–4). Thus, the immunoblotting of fractionized cell lysates revealed the
effect of CK1BP overexpression on α-Syn oligomers of different solubilities, comprising
potentially pathogenic species [20–22]. However, the sample preparation performed here
prevented the size differentiation of α-Syn species in the respective protein fractions as well
as the individual detection of monomeric or dimeric α-Syn [43]. Nevertheless, we observed
a significant reduction in the relative amount of fluorescent cells in CK1BP/BiFC-α-Syn
co-expressing conditions (Appendix A, Figure A3A–B’). In our BiFC system, fluorescence
signals are only detected upon α-Syn dimerization or the formation of higher ordered
α-Syn multimers, whereas GFP is fluorescent as a monomer. Accordingly, CK1BP did
not affect transfection efficiency as cells expressing GFP or GFP-polyQ showed a stable
proportion of fluorescent cells regardless of co-transfection with CK1BP (Appendix A,
Figure A3C,D). Furthermore, CK1BP did not alter the distribution of fluorescent cells when
co-expressed with GFP alone (Figure 1B–D). These findings suggest that CK1BP specifically
affects aggregated proteins. In particular, CK1BP appears to promote α-Syn degradation or
impede α-Syn oligomerization at a stage as early as dimer formation.

Another issue of BiFC systems is the fact that the Venus tags could alter the stability of
α-Syn and fluorophore complementation might be at least partially irreversible [41,48,52].
While the extended half-life of BiFC constructs facilitates the detection of weak protein–
protein interactions, it might also stabilize protein oligomers. In our study, protein lev-
els of VN-α-Syn were more stable and readily detected than α-SynVC (Appendix A,
Figure A3E,F), a frequently reported imbalance that cannot be compensated by the plasmid-
specific adjustment of protein expression [42]. Likewise, concerns have arisen regarding
a suspected tendency of VN constructs to self-oligomerize and the risk of VC monomer
entrapment in VN accumulations [42,53]. This might produce fluorescence signals that are
not directly attributable to the formation of α-Syn dimers. Although not stoichiometric
in nature, such BiFC signals reflect α-Syn accumulation and thus can be compared be-
tween conditions with the same baseline. Moreover, VN-α-Syn/α-SynVC dimers were
detected in brain lysates of BiFC-α-Syn transgenic (tg) mice and corresponding Venus
signals strongly colocalized with oligomeric species and S129-phosphorylated α-Syn [44].
Furthermore, the BiFC-α-Syn tg mice displayed critical genetic alterations characteristic of
a PD phenotype [44]. Thus, this BiFC-α-Syn tg mouse model succeeded in reproducing
key features of α-Syn pathology. In our study, α-SynVC protein levels—if detected—were
affected by CK1BP overexpression to the same extent as VN-α-Syn constructs (shown
exemplarily for BiFC-α-Syn[S129A] in Appendix A, Figure A3F). Moreover, the decrease
in soluble and insoluble species of BiFC-α-Syn paralleled the changes in protein levels
of untagged α-Syn[WT] observed with CK1BP co-expression (Figure 2). Regarding the
CK1BP-mediated decrease in α-Syn accumulation, we therefore conclude that the outcome
of our experiments was not affected by the aforementioned distinct features of BiFC-α-Syn
and VN-α-Syn.

Previous research suggested that familial PD α-Syn[A53T] mutation might alter α-Syn
aggregation, thereby potentially contributing to increased in vivo neurotoxicity [19,20,46].
In our model, the overexpression of CK1BP reduced the oligomerization and abundance
of both α-Syn[A53T] and α-Syn[WT]. In particular, there was a marked CK1BP-induced
decrease in α-Syn[A53T] levels in the insoluble protein fraction (Figure 2D’), similar to the
trend observed with α-Syn[WT] (Figure 2D,D”). Furthermore, both BiFC-α-Syn variants
showed a clear reduction in α-Syn multimers upon CK1BP overexpression, as reflected by
the shifts in fluorescence intensities (Figure 1, Appendix A, Figure A3A,A’). Nonetheless,
our study did not provide insight into the specific oligomerization process as we only
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compared α-Syn protein level and solubility at a specific time point. Although our findings
suggest otherwise, we therefore cannot fully exclude potential differences between α-
Syn[WT] and α-Syn[A53T] in the way that CK1BP affects oligomer formation.

One of our objectives was to determine whether CK1BP affected the accumulation of
α-Syn by inhibiting S129 phosphorylation via CK1. Although the S129 phosphorylation
of α-Syn has been the subject of extensive research, the function of this modification and
its relevance for α-Syn pathology remain elusive. Moreover, the phosphorylation of Y125
in α-Syn has been identified as a priming event that is required for S129 phosphorylation
by CK1 [54]. Accordingly, S129 phosphorylation appears to be the last step of α-Syn
modifications, which are suspected to alter α-Syn properties. Therefore, we decided to
concentrate on S129 phosphorylation. We found that the overexpression of CK1BP reduced
S129 phosphorylation as well as the total abundance of both α-Syn[WT] and α-Syn[A53T]
(Figure 2). In addition, CK1BP has also been reported to inhibit the phosphorylation of
α-Syn as well as tau by CK1 in vitro [36]. These observations led us to hypothesize that
the inhibition of CK1 kinase activity and a subsequent decrease in S129 phosphorylation
might mediate the reduction in α-Syn protein levels induced by the overexpression of
CK1BP (Appendix A, Figure A1). To test this hypothesis, we used α-Syn phosphovariants
that either mimic or abolish phosphorylation of α-Syn at S129. Phosphomimetics such
as α-Syn[S129D] provide a valuable tool to study the effects of S129 phosphorylation
and show structural homology to natively S129-phosphorylated α-Syn [25]. Still, they
fail to reproduce the exact conformational changes and behavior of the protein that is
induced by genuine S129 phosphorylation [25]. The phospho-dead mutant α-Syn[S129A]
might help to identify cellular processes that are linked to pathological forms of α-Syn and
depend on phosphorylation at S129. However, these phosphomutants cannot replicate the
dynamic process of in vivo phosphorylation and dephosphorylation. We analyzed cells
expressing α-Syn[S129D] or α-Syn[S129A] with or without CK1BP (Figure 3). Interestingly,
we observed a marked CK1BP-induced decrease in oligomerization of the S129 variants
as reflected by a reduced proportion of highly fluorescent cells (Figure 3C,C’). Moreover,
biochemical analyses revealed that CK1BP reduced the amount of soluble and insoluble
α-Syn species of both α-Syn[S129D] (Figure 3D–F) and α-Syn[S129A] (Figure 3D’–F’). If
S129 phosphorylation mediated the effect of CK1BP on α-Syn aggregation, the latter should
not have been altered by CK1BP overexpression when using S129 phosphomutants instead
of α-Syn[WT]. Nevertheless, CK1BP reduced α-Syn accumulation for all the α-Syn variants
analyzed (Figures 1–3, Appendix A, Figure A3E).

In summary, we show that the overexpression of CK1BP impacted on S129 phospho-
rylation of α-Syn and also affected its solubility. Our findings are in line with the available
evidence suggesting that CK1BP might act via the inhibition of CK1 kinase activity [36].
The overexpression of CK1BP induced a marked reduction in multimeric and insoluble
α-Syn species. At the same time, we have recently shown that the co-expression of the
fly orthologue of CK1 (Dco) and human α-Syn enhances α-Syn aggregation and toxicity
in flies [34]. Thus, our data support a role of CK1 in intracellular α-Syn accumulation.
Nevertheless, CK1BP also affected S129 mutants of α-Syn. Therefore, our data indicate that
the CK1BP effect does not depend on α-Syn phosphorylation at S129.

Albeit our setting allowed us to compare the control conditions of α-Syn[WT] and
S129 variants. All BiFC-α-Syn constructs displayed equal expression levels at 48 h after
transient transfection (Appendix A, Figure A3E). Furthermore, the FACS analysis displayed
a comparable percentage of fluorescent cells for all BiFC-α-Syn variants (Appendix A,
Figure A3A–B’) which were equally distributed with regard to fluorescence intensity
(Figure 1B,B’, Figure 2A,A’). Thus, our findings suggest that S129 mutations do not affect
α-Syn accumulation. These observations are in line with previous findings concluding that
S129 phosphorylation might be a secondary event and serve as a biomarker for disease
stage rather than playing a causative role in α-Syn aggregation [27,55]. Oueslati and co-
workers recently identified S129 phosphorylation as a key modification that enabled PLK2–
α-Syn interaction and subsequent co-degradation via the macroautophagy pathway [30].
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Moreover, α-Syn ubiquitination partially overlapped with pS129 positivity in soluble
and LB-associated α-Syn fractions of disease cases [10,23]. These findings exemplify the
numerous possibilities of how S129 phosphorylation could influence α-Syn aggregation.
In particular, the cellular processes involved could specifically affect α-Syn homeostasis
depending on S129 phosphorylation. In our model, however, such a mechanism is unlikely
as CK1BP reduced the accumulation of α-Syn regardless of S129 phosphorylation.

The results from α-Syn experiments prompted us to ask whether the effect of CK1BP
was specific for α-Syn. In polyQ diseases, neurodegeneration is associated with the patho-
logical forms of proteins that contain elongated stretches of polyQ [47]. Accordingly,
inclusions of polyQ-expanded Huntingtin are associated with Huntington’s disease [47,56].
We examined accumulation of a polyQ(103)-Huntingtin exon 1 fragment fused to GFP.
We found that CK1BP reduced the amount of soluble species as well as higher-ordered
accumulations of the GFP-polyQ protein (Figure 4). Even though the pathophysiology of
α-synucleinopathies and polyglutamine diseases differ in many ways, oligomeric forms
of amyloidogenic proteins seem to share common properties and an oligomer-specific
pathomechanism has been proposed to explain the detrimental effects of these species on
cells [57,58]. As CK1BP modulated the accumulation of both α-syn and a polyQ protein, it
could be involved in the regulation of these pathways. In summary, our findings imply that
CK1BP is likely to impede accumulation or enhance protein clearance while specifically
affecting aggregating proteins.

Thus, our findings make CK1BP an interesting target to study regarding the regulatory
mechanisms that influence the intracellular accumulation of disease-associated proteins
in NDDs. CK1BP reduced the amount of small soluble as well as higher-ordered α-Syn
and polyQ oligomers. The available evidence suggests that CK1BP most likely acts via
the inhibition of CK1. Nevertheless, our data do not exclude that the observed reduction
in S129 phosphorylation might rather be an indirect effect resulting from the interaction
of CK1BP with other kinases that target, e.g., the Y125 of α-Syn [54]. Furthermore, the
CK1BP effect on protein aggregation was not specific for α-Syn (Figure 4). Given that our
results do not support a direct and specific phosphorylation of the accumulating proteins
as the underlying mechanism, further studies are needed to clarify the specifications of
this pathway. Unfortunately, to the best of our knowledge, there is no siRNA or inhibitor
available that would target all six human CK1 isoforms. Similarly, as CK1 is a highly
conserved kinase, there are no CK1-deficient cell lines that are readily available [31]. Such
lines could be generated, e.g., by genome editing via CRISPR/CAS9. They might be a
valuable tool for further investigation of the cellular functions of CK1 and its interplay with
CK1BP. Accordingly, the clarification of the physiological function and the interaction of
CK1BP and CK1 as well as their role in neurodegenerative diseases are interesting subjects
for further research.

We showed that, especially when combined with other fluorescence-based and bio-
chemical methods, the FACS analysis of HEK cells overexpressing BiFC-α-Syn allows one
to study early steps in α-Syn oligomerization that might be pathogenically relevant [19,59].
This method could be refined for future research. For example, flow cytometry allows
the determination of cellular granularity by measuring the side scatter of a cell. Thus, in
combination with fluorescent systems such as BiFC, FACS analysis provides an opportunity
to further characterize intracellular protein accumulation. Nevertheless, there are some
limitations to the BiFC model and other approaches will be needed to determine the impact
of CK1BP on α-Syn (neuro)toxicity and the formation of α-Syn aggregates beyond the
oligomeric species described herein.

In view of the scarce knowledge on interaction partners of CK1BP [60] and its phys-
iological function, further investigation of the CK1BP interactome is another objective
for future research. Eventually, the characterization of CK1BP in the human CNS may
contribute to a better understanding of neurodegenerative processes and might lead to
new therapeutic approaches.
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Appendix A

Figure A1. CK1BP overexpression in HEK cells. (A) Schematic illustration of a potential link between
inhibition of CK1 by CK1BP, S129 phosphorylation of α-Syn and intracellular α-Syn accumulation.
CK1 phosphorylates α-Syn at S129. S129 phosphorylation might alter propensity of α-Syn to aggre-
gate. By binding to CK1, CK1BP might affect S129 phosphorylation and multimerization of α-Syn.
(B) Representative immunoblot displaying endogenous (−) and overexpressed (+) protein levels of
CK1BP in the RIPA-soluble protein fraction of HEK cells.

https://www.mdpi.com/article/10.3390/cells10112830/s1
https://www.mdpi.com/article/10.3390/cells10112830/s1
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Figure A2. Sample preparation and analysis of α-Syn multimerization and solubility. FACS analysis
of fluorescent cells and sample fractionation of cell lysates were used to assess the abundance of
oligomeric, soluble and insoluble α-Syn. (A) Representative histogram of HEK cells transfected
with GFP. FACS analysis of GFP-transfected cells served as template to identify the percentage of
fluorescent cells in all samples of the corresponding experiment. Fluorescent cells were categorized
into three fluorescent cell fractions (FCFs) according to fluorescence intensity. Cells are represented as
follows: fluorescence intensities <103 in the low FCF (dark grey), fluorescence intensities 103–104 in
the medium FCF (light grey) and fluorescence intensities >104 in the high FCF (white). (B) Illustration
of BiFC as a monitoring system for α-Syn oligomerization. BiFC relies on the reconstitution of a Venus
fluorophore upon antiparallel dimerization of α-Syn constructs that were fused to non-fluorescent
halves of a Venus protein on either the N- or the C-terminus. (C) Cell lysis and sample preparation.
48 h after transfection, cells were lysed with RIPA buffer and centrifuged to separate soluble and
insoluble (=urea-soluble) protein fractions. The first supernatant was collected as the RIPA-soluble
protein fraction. Immunoblots show Venus-tagged α-Syn constructs in the soluble protein fraction of HEK
cells expressing BiFC-α-Syn[WT] (upper panel and 1st lane of middle panel). (C) After centrifugation,
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the remaining pellet was washed only once with RIPA buffer as no α-Syn was detected in the
supernatants of washing steps 2 and 3. Subsequent addition of UTC buffer REF resolved multimeric
α-Syn that was analyzed as the urea-soluble protein fraction (last lanes). Representative ponceau
stain shows that also untagged α-Syn was present in both RIPA-soluble and insoluble fractions:
multiple washing steps with RIPA buffer could not dissolve all α-Syn species in the lysate as the
protein band corresponding to untagged α-Syn (arrow at the right) reappeared after addition of UTC
buffer (= urea-soluble fraction in the last lane).

Figure A3. CK1BP decreases abundance of BiFC-α-Syn oligomers. Percentage of fluorescent cells after
co-transfection of (A) BiFC-α-Syn[WT], (A’) BiFC-α-Syn[A53T], (B) BiFC-α-Syn[S129D], (B’) BiFC-α-
Syn[S129A], (C) GFP or (D) GFP-polyQ and empty vector control (Ctrl) or CK1BP, presented as mean
± SD of at least three independent experiments. One-tailed Wilcoxon matched-pairs signed rank
test was used to determine statistical significance of differences between respective Ctrl and CK1BP
FACS groups. n.s. not significant, * p < 0.05. (E) Representative immunoblots displaying protein
abundance of total and S129-phosphorylated α-Syn in the RIPA-soluble protein fraction of HEK cells
transfected with BiFC-α-Syn and CK1BP (+) or empty vector control (−). Arrows indicate the protein
bands that correspond to the respective α-Syn constructs linked to an incomplete Venus protein at the
N-(VN-α-Syn) or the C-terminus (α-SynVC). (F) Representative immunoblots displaying total soluble
and insoluble protein levels of VN-α-Syn and α-SynVC in cells overexpressing BiFC-α-Syn[S129A]
with or without CK1BP.
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