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ABSTRACT: The development of therapies for the treatment of neurological cancer faces a number of major challenges
including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in
many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that
can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and
target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and
sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease
the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on
the structure−kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of
drug−target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of
drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors,
such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic
PK/PD model that integrates drug−target kinetics into predictions of drug activity.
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■ INTRODUCTION

The treatment of primary infiltrative and secondary metastatic
CNS tumors requires the development of drugs that can pene-
trate the blood-brain barrier (BBB), a selectively permeable
barrier composed of epithelial cells held together by tight
junctions that is rich in efflux transporter proteins such as
P-glycoprotein (P-gp) and breast cancer resistance protein
(Bcrp).1 The BBB severely limits the ability of many drugs to
penetrate into the brain and is a major impediment to the
development of new CNS therapies. For instance, given the
success at developing drugs that target kinases in peripheral
tumors, it is salutatory that no kinase inhibitor has yet received
approval for the treatment of primary CNS cancers.2 In addi-
tion, brain metastasis is a common resistance mechanism during
treatment of peripheral tumors due to the inability of drugs to
penetrate the BBB. Thus, since drug exposure is likely to be
lower in the brain than in systemic circulation, strategies should
be adopted that involve the design and synthesis of compounds
that remain bound to their targets even when drug concen-
tration is low. However, the general reliance in drug discovery

programs on in vitro assays performed at constant drug con-
centration limits the identification and progression of com-
pounds that display kinetic effects. This knowledge gap will also
impact the development of covalent inhibitors since the benefit
gained from prolonged target engagement depends on factors
such as target vulnerability that can only be assessed using time-
dependent assays.
Drug discovery is predicated on the identification and

optimization of drug leads through a series of in vitro experi-
ments that are usually performed at constant concentration.
The quantitative metrics that result, such as the IC50 values for
engagement of the purified target or for activity in a cell-based
assay, are used to select and prioritize lead compounds, make
assessments about the possibility for off-target effects that impact
the therapeutic index, and ultimately to predict drug activity.

Special Issue: Precision Medicine in Brain Cancer

Received: May 20, 2017
Accepted: June 22, 2017
Published: June 22, 2017

Review

pubs.acs.org/chemneuro

© 2017 American Chemical Society 29 DOI: 10.1021/acschemneuro.7b00185
ACS Chem. Neurosci. 2018, 9, 29−39

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/chemneuro
http://dx.doi.org/10.1021/acschemneuro.7b00185
http://pubs.acs.org/page/policy/editorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


However, equilibrium parameters are not able to fully account
for time-dependent changes in target engagement in the
dynamic environment of the human body where drug (and
target) concentrations fluctuate. Instead, both the thermody-
namics and kinetics of drug-target interactions must be utilized
to fully account for time-dependent changes in target
engagement. The role of drug−target kinetics in drug discovery
has been discussed in a number of reviews and opinions,3−11

and key concepts include potential mechanisms that modulate
the rates of drug−target complex formation (kon) and break-
down (koff),

12−16 including the development of covalent
inhibitors,17 and the role that drug−target residence time
(1/koff), kon, and pharmacokinetics play in dictating target
engagement.18−26 In addition, the role of binding kinetics has
been explored in forward-thinking programs, such as the K4DD
Innovative Medicines Initiative.27 The present Review reiterates
some of the basic concepts that govern drug−target inter-
actions and shows that access to the on and off rates for
formation and breakdown of the drug−target complex provides
an additional dimension of information that can be used to
prioritize drug leads based on kinetic selectivity. Subsequently it
is shown that the translation of kinetic effects to time-dependent
changes in drug activity depends on target vulnerability which
directly impacts kinetic selectivity. The review concludes with
a discussion of pharmacokinetic/pharmacodynamic (PK/PD)
models that integrate drug-target kinetics into predictions of drug
activity in order to facilitate the prospective use of in vitro kinetic
data.

■ THE THERMODYNAMICS AND KINETICS OF
DRUG−TARGET INTERACTIONS

Drug-target complex formation occurs because the complex is
more thermodynamically stable than free unbound drug and
target: thus, thermodynamics provides the driving force for
drug binding. However, the value for the equilibrium constant
that describes binding provides no information on the rate at
which the complex forms and breaks down. Instead, the on
(kon) and off (koff) rates for drug binding are controlled by the
difference in free energy between the relevant ground and
transition states on the binding reaction coordinate (Figure 1).
Since kon and koff depend on the difference in free energy

between the ground and transition states on the binding
reaction coordinate, efforts to improve drug potency may have
unpredictable effects on the kinetics of drug-target complex
formation and breakdown. Potency is normally used as a
descriptor of affinity, and thus an increase in potency is asso-
ciated with an increase in the affinity of the drug-target inter-
action quantified by a decrease in the Kd or IC50 value.
However, the impact of stabilizing the E-I ground state on the
kinetics for binding depends on whether the transition state is
affected.8 Several scenarios can be envisaged, the simplest of
which is that stabilization of E-I has no effect on the transition
state. In this case a decrease in Kd will lead to a decrease in koff
with no change in kon. In other words, a more potent com-
pound will have a slower off-rate. Alternatively, if the changes in
compound structure that lead to an increase in affinity also
result in equal stabilization of the transition state, then the
increase in potency will have no effect on the rate at which the
drug dissociates from the target. In addition, a third scenario
can be envisaged where two molecules have identical affinities
for the target (the same Kd or IC50 values) but different kon and
koff values. Importantly, any differences in kon and koff values,
either between two molecules binding to the same target or a

molecule interacting with two different biological molecules
(e.g., on and off-target proteins), will not be revealed by
approaches that only evaluate compound affinity (potency).
Two important misconceptions abound. First, it is often

assumed that an increase in potency will result in a decrease in
koff. It may do, but it does not have to. Although there are many
examples of long residence time compounds, kinetic data for
structurally related analogs are often not available, preventing
an analysis of whether or not residence time is driven by
affinity. Examples where changes in structure within a com-
pound series lead to a decrease in both IC50 and koff include
inhibitors of Pseudomonas LpxC,21 human protein methyl-
transferase DOT1L,32 and CDK8/CycC.33 In addition, if
stabilization of E-I also results in stabilization of the transition
state, then once the theoretical limit for kon is reached, which is
the second order rate constant for encounter of drug and target
(109 M−1 s−1), any further increase in affinity must lead to a
reduction in the off-rate. A simple calculation reveals that the
residence time of a 1 pM drug on the target must be at least
12 min whereas a 1 fM drug will have a residence time of
at least 11.5 days. However, there are also examples where
changes in affinity and off-rate are disconnected, which are
particularly relevant where affinities are in the micromolar to
nanomolar range: a 1 nM drug may only have a residence time
of 1 s on the target. For example, the quinazoline-based inhib-
itors gefitinib and lapatinib have Ki

app values for EGFR of
0.4 and 3 nM, respectively, but while gefitinib has a residence
time of <14 min, lapatinib has a residence time of 430 min.34

Other examples include antagonists of the muscarinic M3
receptor,35 antagonists of the chemoattractant receptor-homologous

Figure 1. Reaction coordinate for a one-step binding event. Target (E)
and drug (I) binding leads to the drug−target complex (E-I).
The driving force for binding is given by the difference in free energy
between E+I and E-I (ΔGKd

). Experimental measurements of the
equilibrium dissociation constant Kd, or parameters such as IC50
values, provide a quantitative estimate of the thermodynamics for
binding. The rate at which the drug-target complex forms (kon) and
dissociates (koff) is given by the difference in free energy between the
respective ground states (E+I or E-I) and the rate-limiting transition
state (ΔGkon and ΔGkoff). ΔGKd

is related to Kd by the relationship

ΔG° = −RT ln K. Assuming that parameters such as the transmission
coefficient are the same for two drug molecules, then the difference in
free energy for the rate of complex dissociation of the two molecules
can be given by ΔΔGkoff = −RT ln(koff

1/koff
2). The lifetime of the

drug−target complex is often quantified by the residence time, tR,
where tR = 1/koff.

5 The figure shows a simple one-step mechanism,
although in many cases slow-binding inhibitors operate through a
two-step induced-fit mechanism.13,15,28−31
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molecule CRTh2/DP2,36 and inhibitors of p38αMAP kinase.37

The second major misconception is that if a compound has
similar IC50 values for two different proteins, the drug-target
and an off-target protein associated with unwanted side-effects,
then the compound has no selectivity. Indeed, the compound
has no thermodynamic selectivity, but if the kon and koff values
differ between the two targets, it can still have kinetic selectivity.
(Text Box 1). This is very important given the implicit
relationship between selectivity and therapeutic index.

■ KINETIC SELECTIVITY

The relative affinity of a compound for the target and for
any known off-target proteins is commonly used as a metric for
compound selectivity and the potential of the molecule for
causing unwanted side-effects. As noted above, this definition
of selectivity is actually thermodynamic selectivity since it is
based on equilibrium binding experiments (e.g., IC50 values).
Of course the ability to determine selectivity depends on
knowledge and availability of known off-target proteins and, for
example, kinase inhibitor discovery programs often determine
compound activity toward a panel of kinases to assess the
potential for off-target effects. However, thermodynamic selec-
tivity may not map with kinetic selectivity, and indeed as noted
above, kinetic selectivity can still exist even in the absence of
thermodynamic selectivity.21,23,38−41

Figure 2 shows a simulation where a compound binds to
four targets with the same Kd but different on and off rates,

including a target in which a covalent complex is formed
(koff = 0). The panels show how the occupancy of the targets
change with time as a function of drug concentration (pharma-
cokinetics) assuming that no target turnover occurs. When
compound eliminates with a half-life of 5 h (Figure 2A and C),
all four targets reach >95% occupancy even at the lower initial
drug dose (Figure 2C). In addition, selectivity between the
three targets to which the compound binds reversibly (Targets
1−3) only occurs after more than 12 h. In contrast, if the
compound half-life is only 1 h (Figure 2B and D), then there is
a high degree of selectivity: for example, at 12 h for the higher
drug dose (Figure 2C), Target 1 is only 5% occupied while
Targets 2 and 3 are 54% and 83% occupied, respectively. Thus,
despite the lack of thermodynamic selectivity, the compound
demonstrates kinetic selectivity between the targets. In addition
to providing an explicit example of kinetic selectivity, three
additional points may be drawn from this analysis. First, the
relationship between binding kinetics and drug pharmacoki-
netics plays a fundamental role in controlling time dependent
occupancy. Second, a covalent inhibitor can in principal maxi-
mize the impact of kinetic selectivity. Third, when the com-
pound eliminates more rapidly, Target 3 only reaches 70%
occupancy at the lower dose (Figure 2D). Since Kd is kept
constant, a decrease in off-rate must also lead to a reduction
in the on-rate. The faster elimination results in lower peak
compound concentration and, since kon is a second order rate
constant, lower occupancy of the target. Thus, the level of

Figure 2. Time-dependent target occupancy: kinetic selectivity. A compound is assumed to bind reversibly to three targets with the same
thermodynamic affinity (10 nM) but have different residence times on the three targets: Target 1, 1 s; Target 2, 10 h; and Target 3, 50 h).
In addition, the compound is assumed to bind covalently to a fourth target (Target 4). Target occupancy has been simulated using Kintek,44,45

assuming either a 1.5 μM (A and B) or 0.5 μM (C and D) dose of compound that is absorbed with ka 3 h−1 but eliminated with two different
rates, ke 0.139 h

−1 (t1/2 5 h) (A and C) or ke 0.69 h
−1 (t1/2 1 h) (B and D). Reversible binding is assumed to occur via a one-step mechanism with

the following on and off-rates. Target 1: kon 100 μM
−1 s−1, koff 1 s

−1. Target 2: kon 2.78 × 10−3 μM−1 s−1, koff 2.78 × 10−5 s−1. Target 3: kon 5.56 ×
10−4 μM−1 s−1, koff 5.56 × 10−6 s−1. For Target 4, it is assumed that the compound binds in a two-step mechanism in which the initial rapid
binding of the compound to the target, defined by kon 100 μM

−1 s−1 and koff 1 s
−1 is followed by a second step with kinact 5.56 × 10−4 s−1 leading to

the covalent drug-target complex. In each case the target concentration is fixed at 1 nM (i.e., no target turnover).

ACS Chemical Neuroscience Review

DOI: 10.1021/acschemneuro.7b00185
ACS Chem. Neurosci. 2018, 9, 29−39

31

http://dx.doi.org/10.1021/acschemneuro.7b00185


target occupancy is a function of both kon and koff, as well as
drug concentration. In addition, the analysis in Figure 2
assumes a target concentration of 1 nM which is 10-fold lower
than the Kd (10 nM). However, if the Kd is similar to the target
concentration, then binding to the target can modify the local
drug concentration and hence the pharmacokinetics of the drug
(target-mediated drug disposition),23,42,43 in a situation that is
analogous to tight-binding enzyme inhibition. This effect will
become more pronounced as the total drug concentration
approaches the concentration of the target. This effect will
become more pronounced as the total drug concentration
approaches the concentration of the target. Other factors, such
as the local accumulation of compounds in the plasma
membrane and binding to plasma protein may also contribute
to the “micropharmacokinetics” of the drug.20

■ TARGET VULNERABILITY
In Figure 2 it, can be seen that target occupancy varies with
time based on the kinetics of drug binding as well as drug
concentration, and that in some scenarios complete occupancy
of the target may not occur. The translation of target occupancy
to drug pharmacodynamics depends on the relationship

between occupancy and effect, which in turn depends on
target vulnerability, that is, what fraction of target has to be
engaged to elicit the desired response (Text Box 2). Low
vulnerability targets are those where high levels of occupancy
are needed to generate the desired physiological outcome.
Conversely, high vulnerability targets require only low levels of
occupancy to achieve the desired effect. The specific relation-
ship between occupancy and effect can be captured using a
vulnerability function, and in Figure 3 are shown examples
of the functions for hypothetical low and high vulnerability
targets.

The term vulnerability is often used in an “all-or-none”
context in which targets are defined as vulnerable or not
depending on whether or not target engagement results in the
desired physiological effect. In Figure 3, this definition is taken
one step further where we consider the degree of engagement
that is required to generate the desired response. Clearly a low
vulnerability target will require relatively higher levels of
drug exposure to achieve pharmacologically relevant levels of
engagement compared to a high vulnerability target. In addi-
tion, low vulnerability targets will be less susceptible to kinetic
selectivity since it will take less time for a small fraction of active
target to be generated either by drug dissociation or by the
synthesis of the small percent of new target required to alleviate
the impact of target engagement. Approaches that have been
used to infer target vulnerability include methods that reduce
the amount of target in the cell, either by genetic knockdown or
by directly depleting proteins by inducible degradation.46−48

As we show below, cell-based washout experiments can also
provide insight into target vulnerability.
Based on the discussion above, we would argue that the

degree of target vulnerability must factor into considerations of
target “druggability” since presumably it will be easier to “drug”
a high vulnerability target compared one that is less vulnerable.
It then follows that it is important to identify the molecular
factors that influence the target vulnerability function. Under
conditions that favor kinetic selectivity, for example, when the
rate of drug elimination is rapid relative to the rate of drug−
target complex breakdown, then the rate of target turnover will

Box 1. Thermodynamic and Kinetic Selectivity

Selectivity refers to the relative ability of a drug to engage the
chosen target compared to off-target macromolecules, and
provides valuable insight into the potential for unwanted side
effects (i.e., the therapeutic window or therapeutic index). In
many cases, selectivity is determined from affinity-based
measurements, for example, by comparing IC50 values for kinase
inhibition in a kinase panel. However, this is actually
thermodynamic selectivity since IC50 values, as well as Kd and
Ki values, are determined at constant drug concentration. Since a
compound can have the same affinity for two proteins, but
different on and off-rates, affinity-based assessments of selectivity
provide no insight in to the possibility that a compound may
show kinetic selectivity between two proteins. In other words, a
drug may have the same affinity for two proteins but dramatically
different binding kinetics such that the lifetimes of the two drug-
target complexes differ by orders of magnitude. The contribution
of kinetic selectivity to the therapeutic window is intimately
related to the time-dependence of drug concentration at the
target site (pharmacokinetics, PK), and drugs that eliminate
rapidly relative to the lifetime of the drug-target complex will
maximize the potential benefit of kinetic selectivity in situations
where prolonged occupancy of the target is mitigated. The
required PK for long residence time drugs will thus likely be
similar to that for covalent drugs where high Cmax ensures rapid
occupancy of the target and fast elimination then maximizes the
therapeutic window.17 In reality the Cmax only has to be high
enough to ensure that physiologically relevant levels of target
engagement are achieved, and indeed the relationship between
target occupancy and drug efficacy is dictated by the vulnerability
of the target (see below). In addition, target turnover will also
impact kinetic selectivity, since the rapid synthesis of new target
will negate the effects of prolonged target occupancy at low drug
concentration. Finally, the rational optimization of kinetic
selectivity requires knowledge of both the ground and transition
states on the binding reaction coordinate, which is important
since rational drug design normally only focuses on enhancing
affinity through stabilization of the drug−target ground state.

Figure 3. Target vulnerability plots. Vulnerability functions are shown
for low (red) and high (blue) vulnerability targets. The vulnerability
function is defined by the minimum level of engagement required for
any effect to be observed (TOmin) and the level of engagement that
leads to the maximal efficacy (TOmax). The third parameter required to
define the function is the Hill coefficient or slope factor that
determines the steepness of the effect response between TOmin and
TOmax. For the low vulnerability target, the full physiological effect of
the drug requires close to 100% target engagement, whereas only
∼35% engagement is needed for the high vulnerability target. The Hill
coefficients for the two functions are 4.6 (high) and 16.4 (low).
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play a major role in controlling target vulnerability since rapid
target resynthesis will alleviate the impact of even a covalent
inhibitor once free drug has been removed. In addition, the
physiological context of the target and the downstream
consequences of target engagement must also play a role in
vulnerability. For instance, an enzyme that catalyzes the rate
limiting step in a metabolic pathway might be more vulnerable
to target engagement compared to other enzymes in the path-
way. Furthermore, the length of time that a target must be
engaged will also be important: a more vulnerable target might
be one where only transitory engagement is needed to trigger a
cascade of events that result in the desired pharmacodynamic
effect.

■ PROBING TARGET VULNERABILITY: CELL
WASHOUT EXPERIMENTS

Although kinetic selectivity can be defined at the level of a
purified target, the role that kinetic parameters such as drug-
target residence time play in drug activity will be controlled by
the relationship between target engagement and time-dependent
drug activity. It is thus crucial to evaluate time-dependent
effects of drug treatment in more complex biological systems.
As we mentioned above, compound activity is often quantified
using only IC50 values obtained at constant compound con-
centration. This is also true for measurements of cell-based
activity, which are also often only evaluated using experiments
performed at constant concentration. Thus, any assessment of
kinetic selectivity must include cell-based washout experiments,
in which the phenotypic consequences of target engagement
are evaluated once drug is “removed” from the system. Such
experiments will provide direct insight into target vulnerability
and the role that molecular processes such as target turnover
play in controlling the coupling between drug-target residence
time and time-dependent drug activity. Conceptually the approach
is straightforward once a method is in place to remove compound
from the media that surrounds the cells. In antibacterial space, the
postantibiotic effect (PAE) of a compound is normally assessed by
diluting cells exposed to drug into fresh media and monitoring the
rate of regrowth.49 This approach can be employed for other types
of cells that are grown in suspension. Alternative approaches are
available for cells that grow on surfaces.
The cell washout experiment is very informative since it

provides insight into how long it takes for the level of target
engagement to fall to a point where the cell recovers from drug
treatment. Intuitively we can see that target vulnerability will be
a factor in controlling the length of time it takes for a cell to
recover from drug removal since it will take relatively less time
for processes such as target dissociation or target resynthesis
to generate sufficient active target to alleviate the impact of
drug binding to a low vulnerability target compared to a high
vulnerability target. Thus, for a compound that has prolonged
target engagement due to long residence time or covalent
inhibition, the lack of long lasting effects of drug treatment
following washout suggests that the target has low vulnerability,
at least under the growth conditions that are employed. Con-
versely, a prolonged phenotypic response following washout
would suggest a higher level of target vulnerability. Of course
there are caveats: for example, in addition to long residence
time, drug rebinding and/or accumulation of drug in the cell or
membrane will result in extended target engagement. In addi-
tion, prolonged drug effects might also be due to the slow
repair of essential processes that were reversibly damaged by
drug treatment. Finally, it is important to reiterate a point made

above: the time-dependent effects of drug treatment will
depend on the growth conditions. The media used to culture
cells in the lab may present a very different environment to that
experienced in vivo, due to immune pressure or nutrient limita-
tion, which could have a profound effect on target vulnerability
in the same way that growth conditions can influence target
essentiality. Indeed, the observation of prolonged in vivo effects
after drug has been eliminated when no time-dependent effects
are observed in vitro may indicate that the target is more
vulnerable in vivo than in vitro.
Correlations between residence time and cellular washout

have been examined in a number of systems. For antagonists
of inflammatory protein complement C5a, an increase in
residence time was shown to correlate with extended cellular
activity following washout.50 Conversely, whereas the cellular
kinetics of histone acetylation correlated with the kinetics
of HDAC inhibition, washout of long residence time
benzamide-based HDAC inhibitors did not result in a pro-
longed phenotypic response.51 In addition, we have assessed
the translation of drug−target residence time to time-
dependent antibacterial activity for two structurally related
compound series that inhibit the FabI enoyl-ACP reductase,
a target in Gram-positive and Gram-negative bacteria, and
UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC), a
target in Gram-negative bacteria. Evaluation of the relation-
ship between residence time and postantibiotic effect (PAE)
revealed a steeper correlation for LpxC than FabI suggesting

Figure 4. Vulnerability of two antibacterial targets: LpxC and FabI.
(A) Correlation between residence time (tR) and postantibiotic effect
(PAE) for two series of antibacterial compounds that target UDP-3-O-
acyl-N-acetylglucosamine deacetylase from Pseudomonas aeruginosa
(paLpxC) and the enoyl-ACP reductase from Staphylococcus aureus
(saFabI). (B) Vulnerability functions after global fitting of the PAE
data to a PK/PD model that integrates drug-target kinetics into
predictions of drug activity. Both plots support the conclusion that
paLpxC is more vulnerable than saFabI.21,24 Adapted from ref. 24 with
permission from the Royal Society of Chemistry.
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that LpxC is more vulnerable under the growth conditions
employed (Figure 4).21,24

■ TRANSLATING DRUG-TARGET KINETICS TO
PREDICTIONS OF DRUG-ACTIVITY: MECHANISTIC
PK/PD MODELS

Pharmacokinetic/pharmacodynamic (PK/PD) models predict
the effect time-courses resulting from administration of a drug
dose. In order to fully utilize the information gained by a
detailed analysis of binding kinetics, we have developed PK/PD
models that integrate drug-target kinetics into predictions of

drug activity.21,24,26 Essentially this involves the replacement of
the Hill receptor binding equation in standard PK/PD models
with the full kinetic scheme that describes the drug binding
reaction coordinate (Text Box 3). In this way both the
thermodynamics and kinetics of drug binding can be used to
predict target engagement as a function of time and drug
concentration. Importantly, the Hill receptor equation assumes
that a rapid equilibrium exists between drug and target. How-
ever, this assumption can seriously underpredict target engage-
ment in situations where a drug has a long residence time on
the target relative to the rate of drug elimination. The PK/PD
model was used to successfully predict the in vivo activity of a
paLpxC inhibitor in an animal model of infection (Figure 5),21

and also of inhibitors of saFabI.24 Significantly, the predicted
drug efficacy is much less if a rapid equilibrium is assumed
between drug and target. In other words, use of a traditional
PK/PD model would mandate much higher drug doses than
actually needed. This analysis supports the underlying impor-
tance of the drug-target kinetic approach, and particularly
the potential benefit of drugs with long residence times: com-
pounds that dissociate slowly from their targets may have
prolonged activity at low drug concentration enabling dosing
frequency and/or dosing levels to be reduced thereby leading
to an increase in the therapeutic window.

■ IN VIVO TARGET VULNERABILITY: CHEMICAL
TOOLS TO QUANTIFY TARGET ENGAGEMENT

The PK/PD model described above uses data from in vitro
cell washout experiments to optimize the parameters that are
required to predict in vivo drug activity.21,24 This approach,
which involves the calculation of target engagement as a
function of time and drug concentration, can be improved if in
vivo target engagement can be directly quantified since this
provides direct insight into the relationship between drug
binding and efficacy (and indeed also evidence that the drug is

Box 2. Target Vulnerability and Cell Washout Experiments

Target vulnerability is the fractional target occupancy required
to produce the desired pharmacodynamic (PD) response and
is defined by a vulnerability function given by values for TOmin,
TOmax, and a Hill coefficient. Low vulnerability targets require
high levels of occupancy to achieve the desired PD, whereas
high vulnerability targets require lower levels of occupancy.
Target vulnerability can be assessed through cell washout
experiments where free drug is “removed” from the system by
washing or dilution. Prolongation of the phenotypic response
to drug treatment following washout can be due to several
factors including continued occupancy of the target by the
drug. In turn, continued target occupancy may be the result of
a slow off rate, or drug rebinding. Correlations between the off
rate (drug−target residence time) and a prolonged phenotypic
response inform on target vulnerability and the potential for
kinetic selectivity to play a role in drug pharmacology. Where
possible, the drug−target kinetic data should be obtained at 37
°C since temperature will affect the rate constants for drug
binding. In addition, it should be noted that target vulnerability
will be affected by environmental factors such as growth
conditions, and so target vulnerability in (e.g.) cell culture may
be different from that found in vivo.

Figure 5. Mechanistic PK/PD model. (A) The kinetic mechanism for two-step time-dependent inhibition replaced the Hill equation in a standard
antibacterial pharmacodynamic model. (B) The model was used to successfully predict the efficacy of a paLpxC inhibitor in an animal model of
infection (solid line). PK/PD modeling assuming rapid equilibrium between drug and target significantly underestimates the observed efficacy
(dashed line). Figure adapted from Walkup et al.21
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actually binding to the designated target). In systems that
involve covalent inhibition, such as in tyrosine kinases that have
a conserved Cys at their active sites, it is possible to develop
active site-directed covalent probes to quantify target engage-
ment,52 and we have used this approach to analyze the
inhibition of the Bruton’s tyrosine kinase (Btk) by the covalent
inhibitor CC-292.53 Btk is a nonreceptor tyrosine kinase that
is a promising target for treating diseases caused by B cell
dysregulation, such as B-cell malignancies and autoimmune
diseases including rheumatoid arthritis and lupus.54−58

CC-29253 as well as drugs such as ibrutinib59 contain an
acrylamide electrophile that reacts with a conserved Cys (481)
in the Btk active site. We synthesized a fluorescent probe based
on CC-292 that was used to quantify levels of Btk engagement
by CC-292 both in cell culture (Ramos cells) as well as in B
lymphocytes obtained from rats dosed with CC-292. Initial
values for PK/PD modeling were obtained by quantifying
CC-292 binding to Btk in Ramos cells first under equilibrium
conditions and then following washout of CC-292 to enable the
rate of Btk turnover to be estimated. In addition, the kinetic
parameters for Btk inhibition by CC-292 were calculated
using the extracellular concentration of CC-292 in plasma
(free fraction), thus removing the need to estimate the drug
concentration across the cell membrane. Indeed, the ratio of
the Ki values determined for cellular Btk compared to purified
Btk was 80, suggesting that the CC-292 concentration in the
cell was 80-fold lower than the concentration in the media or
plasma. Fitting of time-dependent in vivo Btk engagement to a
PK/PD model that explicitly included target turnover (ρ) and
the ratio of [ATP] to the Km value for ATP (M = Km/[ATP])
provided a set of optimized parameters that were then used to
accurately predict the efficacy of Btk in a rat model of collagen-
induced arthritis (CIA). This then enabled an explicit evalua-
tion of Btk vulnerability in vivo (Figure 6).26 The Btk vulnera-
bility function indicates that >90% occupancy is needed to
deliver the maximum efficacy in the rat CIA model, and that
levels of engagement below ∼50% have no beneficial effect.
This suggests that Btk is a relatively low vulnerability target.

The Btk study demonstrates that a covalent probe can be
used to directly determine both TOmin and TOmax as well as the
shape of the vulnerability function. For the reversible inhibitors
of paLpxC and saFabI, estimates for TOmin and TOmax were
obtained by calculating target engagement using the kinetic
parameters for enzyme inhibition and then fitting the cellular
washout (PAE) data obtained for each compound in the series
to the PK/PD model. The vulnerability functions in Figure 4
were then generated by assuming a linear increase in anti-
bacterial activity between TOmin and TOmax. While this
approach can be used to determine the in vivo vulnerability
functions for paLpxC and saFabI, as well as other reversible and
irreversible inhibitors, approaches that correlate engagement
and efficacy have traditionally relied on biomarkers, includ-
ing the use of positron emission tomography (PET) radiotracers
to noninvasively quantify in vivo target engagement.60−62 Exam-
ples of these approaches include the observation that the
maximal effect on glucose levels was achieved with ≥80%
inhibition of the type II diabetes target dipeptidyl peptidase-4
(DPP-4),60,61 and the demonstration by PET imaging that
80% occupancy of the serotonin (5-HT) transporter (5-HTT)
was required for antidepressant efficacy of SSRIs,63 and >90%
occupancy of the neurokinin-1 (NK1) receptor was required for
the antiemetic activity of aprepitant.62

Figure 6. PK/PD model predicts the efficacy of CC-292, a covalent inhibitor of Btk (A) The kinetic scheme for inhibition of Btk by CC-292. Since
CC-292 is an irreversible inhibitor, k6 = 0. (B) Structure of CC-292. (C) Fluorescent analogue of CC-292 used to quantify Btk engagement.
(D) Predicted and observed efficacy of CC-292 in a rat model of collagen induced arthritis. (E) Vulnerability function for engagement of Btk.
Adapted from ref. 26 with permission from the Royal Society of Chemistry.

Box 3. Mechanistic PK/PD Models That Include Drug-
Target Kinetics

A PK/PD model has been developed that integrates both the
kinetics and thermodynamics of drug binding into predictions of
drug activity. The model calculates target engagement as a
function of both drug concentration and time, and then relates
the time-dependence of engagement to drug pharmacody-
namics. In vitro washout experiments are used to generate
optimized parameters for enzyme inhibition and target turnover
that are then used to predict in vivo efficacy. Quantification of
target engagement using a covalent probe enables target
turnover to be explicitly included in the model and provides
direct insight into the vulnerability of the target in vivo.
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■ DRUG−TARGET KINETICS AND CNS TUMORS

As discussed in this review, the application of drug-target
kinetics to different disease states, such as in neurooncology,
requires explicit knowledge of both the thermodynamics and
kinetics of drug binding. In this regard, kinase inhibitor
discovery programs provide a fertile ground on which to test
and implement approaches based on kinetic selectivity for
several reasons. First, a number of well-characterized kinases are
targets for treating CNS tumors,2 and access to kinase panels
enables binding to potential off-target kinases to be assessed.
In addition, kinase enzymology has been heavily studied, and
thus in many cases there is a detailed understanding of
mechanisms that lead to long residence time inhibition, such as
binding to the DFG-out conformation or the development of
covalent inhibitors.33,64,65 Finally, recognition of the potential
importance of kinetic selectivity has stimulated the inter-
rogation of structure kinetic relationships for both purified
kinases and for kinase inhibitors in cell-based assays.66−68

For example, as noted above, although lapatinib binds ∼10-fold
less potently to EGFR than gefitinib (Ki

app values of 3 and
0.4 nM, respectively), the residence time of lapatinib on EGFR
is >30-fold longer (430 and <14 min). The increase in lapatinib
residence time was shown to translate to prolonged bio-
chemical activity in a cell washout experiment (15% recovery
96 h after washout).34 In addition, drug-target kinetics have also
been employed in an attempt to account for the reduced efficacy
of erlotinib for treating glioblastoma based on the observation
that the residence time of erlotinib on the EGFRvIII mutant
found in gliomas is shorter than that for the L858R EGFR
mutant associated with NSCLC.69

As mentioned at the beginning of this review, neurooncology
drug discovery faces the additional hurdle of developing agents
to penetrate the BBB. A recent review provides an authoritative
summary of kinase inhibitors in this disease space and notes
only a few examples of compounds that have been explicitly
developed to be brain penetrant, such as inhibitors of EGFR
and PI3K/mTOR.2 For example, in contrast to the classic
NSCLC EGFR inhibitors,70 the irreversible pan-ERBB inhibitor
NT113 has improved biodistribution to the CNS and has
efficacy in intracranial glioblastoma xenografts, including those
with high EGFRvIII expression.71 In addition, AZD3759 and
GDC-0084 are reversible inhibitors of EGFR and PI3K/
mTOR, respectively, both of which were designed to cross the
BBB and show efficacy in preclinical models.72,73 However,
other than the knowledge that NT113 is an irreversible inhibitor
(which may contribute to improved efficacy of this compound
compared to the classic reversible EGFR inhibitors), detailed
kinetic studies on target binding and data from cell washout
experiments are not available for these inhibitors limiting the
conclusions that can be drawn about the relationship between
target occupancy and efficacy.

■ SUMMARY AND FUTURE DIRECTIONS

The above discussion thus mitigates integrated efforts to
generate time-dependent inhibitors of targets and evaluate the
role played by parameters such as residence time in cellular
washout experiments, and in more complex biological systems
such as preclinical disease models. These efforts must be linked
to mathematical approaches, such as PK/PD modeling, that
link target engagement, drug concentration, and effect, and will
be enhanced by direct measurements of target turnover, target
levels, drug concentration, and target engagement. While the

determination of the kinetic parameters for enzyme inhibition
and receptor interactions is de rigueur for enzymologists and
quantitative biochemists, and slow-binding inhibition has been
recognized for more than 40 years (see Morrison and Walsh,3

and references therein), it is perhaps curious that drug-target
kinetics and concepts such as kinetic selectivity are not more
widely used in drug development. One reason might be that the
time-dependent assays required to measure residence time are
intrinsically more challenging than the straightforward dose−
response relationships (IC50 values) that are derived from the
end point assays used in high throughput automated compound
screens and that dominate biological structure−activity
relationship. Moving forward, the implementation of programs
that utilize drug-target kinetics will involve the identification of
compounds that display time-dependent binding and the
subsequent development of structure-kinetic relationships
(SKR) for target binding through combined med chem/kinetic
efforts. This, coupled with structure-based design and methods
to analyze and simulate protein dynamics,15,74,75 will guide the
synthesis of compounds with optimized binding parameters.
In turn, compound series that encompass a range of binding
kinetics can then be used to explore kinetic selectivity in cells
and preclinical models. We note that some CROs now offer
services to generate drug-target kinetic data, and techniques
such as surface plasmon resonance (SPR) are routinely used to
determine binding kinetics for purified targets, supplementing
approaches such as forward and reverse progress curve assays.
In addition, inhibition studies often include “IC50-shift” measure-
ments in which a reduction in IC50 following preincubation
of enzyme and inhibitor is taken as evidence for slow-onset
inhibition (at least for a competitive inhibitor). Future advances
will involve the routine implementation of methods to measure
binding kinetics in the cell, such as those derived from
NanoBRET,76 approaches to quantify in vivo target engage-
ment by reversible inhibitors,77 and the further development
and parametrization of advanced mathematical models that
better simulate and predict drug−target interactions in the
complex environment of the human body.21,22,24,26

In summary, the availability of time-dependent target
engagement data, both on purified targets and from cell
washout experiments, will provide an additional dimension of
information when selecting and optimizing drug leads including
those that target brain cancers. In particular, prolonged target
occupancy has the potential to translate into extended pharma-
cological activity at low drug concentration, which may be
particularly important in neurooncology where drug exposure
will be impacted by the BBB. However, the reliance on IC50
(or Ki, Kd) values for selecting and optimizing drug leads limits
the ability to identify time-dependent inhibitors and ignores the
possibility that kinetic selectivity may be present and could
contribute to improvements in therapeutic window and safety.
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