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Abstract

Photonic signals are broadly exploited in communication and sensing and they typically

exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic sig-

nals is low and one needs to remove a nonstationary trend of the signals for any further anal-

ysis, one faces an obstacle: due to the dependence between the mean and variance typical

for a Poisson-like process, information about the trend remains in the variance even after

the trend has been subtracted, possibly yielding artifactual results in further analyses. Com-

monly available detrending or normalizing methods cannot cope with this issue. To alleviate

this issue we developed a suitable pre-processing method for the signals that originate from

a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary

time series with Poisson distribution is developed and tested on computer-generated model

data and experimental data of chemiluminescence from human neutrophils and mung

seeds. The presented method transforms a nonstationary Poisson signal into a stationary

signal with a Poisson distribution while preserving the type of photocount distribution and

phase-space structure of the signal. The importance of the suggested pre-processing

method is shown in Fano factor and Hurst exponent analysis of both computer-generated

model signals and experimental photonic signals. It is demonstrated that our pre-processing

method is superior to standard detrending-based methods whenever further signal analysis

is sensitive to variance of the signal.

Introduction

Photonic signals lie at the heart of modern sensing methods used for environmental protection

[1], food safety [2], and early detection of biomarkers of diseases such as cancer [3] and neuro-

degenerative diseases [4]. Analysis and processing of photonic signals and their statistical

properties are also crucial in quantum optics and communication technologies [5]. Hence,

robust signal analysis and processing of photonic signals and their statistical properties are

essential for exploiting photonic technologies to their limits.
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Advanced analysis of photonic signals extends well beyond mere detection of the mean

intensities or optical wavelength spectra of photon signals; photocount distributions [6, 7],

correlation analyses [8], and fractal/chaos-based signal analysis techniques [9] are required to

fully exploit the information carried by the photonic signals under study. Most of these meth-

ods of signal analysis inherently assume stationary signals. If the signal contains an unwanted

trend that is unrelated to the analyzed process, detrending methods exploiting the trend

removal estimated by smoothing (moving average, exponential or Gaussian approximation) or

robust smoothing [10] have to be applied to make a signal stationary in order to prevent arti-

factual findings. While the detrending is typically a straightforward task for many types of

common non-photonic signals, the story is far more complicated for photonic signals. Due to

their intrinsic quantum nature they are naturally non-negative integer signals and typically

exhibit a Poisson-like photocount statistics [11], which brings a coupling between the mean

and variance of the signal [12]. This coupling poses a problem for the currently available signal

pre-processing and detrending methods that find and subtract the mean of the signal: the

information about the mean still remains in the variance of the signal. These issues are espe-

cially pronounced for the signals of low intensity that occur when one strives for high optical

spectral resolution or when the generation process itself is very weak, which is the case for the

signals from advanced photonics methods such as those employing Raman-scattering [13] or

electro/bio/chemiluminescence analysis [14–17]. While most pre-processing methods applied

on Poisson and Poisson-like signals perform variance stabilization, e.g. Anscombe or Bartlett

transforms [18–21], which is employed in signal denoising, there are no methods for proper

detrending and stationarization of Poisson signals up to our knowledge.

In this paper, we develop a method for proper pre-processing of nonstationary signals origi-

nating from any process with a Poisson distribution. We demonstrate the superiority of our

method compared to the detrending methods on both computer-generated model signals and

experimental luminescence signals.

Poisson signals

Photonic signals are non-negative integers with Poisson-like distribution. In such distribution,

the signal mean and variance are interconnected. Therefore we first summarize the statistical

properties of signals with Poisson distribution

f ðk; lÞ ¼ PrðX ¼ kÞ ¼
l

k

k!
� e� l; k ¼ 0; 1; 2; ::: ð1Þ

which is a discrete probability distribution, where λ is the average number of events in a speci-

fied interval such as time, distance, area or volume. The random variable X = 0, 1, 2. . . is a

non-negative integer number. The cumulative probability function is

Fpðk; lÞ ¼
Xk

i¼0

l
i
� e� l

i!
: ð2Þ

When λ is sufficiently high, the Poisson distribution can be approximated by a normal distri-

bution [22]:

F̂pðk; lÞ ¼
1
ffiffiffiffiffiffiffiffi
2lp
p

Z k

� 1

e�
ðk � lÞ

2

2l du: ð3Þ
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For example when λ = 40, the maximum of the absolute error,

� ¼ max
k
jFpðk; lÞ � F̂pðk; lÞj ð4Þ

will be approximately 0.01.

The Poisson distribution has a special property:

l ¼ EðXÞ ¼ VarðX Þ; ð5Þ

that is, the mean is equal to its variance. This property is corrupted if common pre-processing

methods are used such as detrending procedures (which find the trend using smoothing or

robust smoothing methods), data normalization such as min-max [23] or decimal scaling [23],

or both detrending and normalization procedures together. Alternatively, the method based

on the Z-score [22, 23],

Z ¼
X � m

s
; ð6Þ

where μ is the mean and σ is the standard deviation of the value of a random variable X, is

often used. In the next text we will use a simplified notation for random processes (signals).

Typically the symbol X(�l, n) is used where �l represents l—th realization of the random signal

and n is the time instant of the discrete-time random signal. Instead of this symbol we are

going to use a simplified notation x[n]. Then expected value E[x[n]] = ∑i pi xi[n] represents

the ensemble average of the discrete-time random signal at the time instant n. Similarly,

Var ½x½n�� ¼
P

ipi x2
i ½n� represents the variance of the random process at the time instant n

evaluated over the ensemble of realizations.

Experimental photonic data are naturally discrete in time, and therefore we use a discrete-

time approach to describe our method and signals. Fig 1 illustrates the problems of detrending

and normalization (6) of the signal with a Poisson distribution. Fig 1a depicts the original non-

stationary signal with a Poisson distribution. Each sample of the signal can be considered as

one realization of a random process with a Poisson distribution with its parameter λ evolving

in time such that λ = λ[n]. One can see that the variance and mean are closely interconnected.

An increasing time-varying mean value (trend, t[n] = λ[n] = E(x[n])) causes increasing vari-

ance, as suggested in (5). The detrended signal xd[n] = x[n] − t[n] still has a growing variance

that contains information about the increasing trend of the original signal (Fig 1b). Z-score

normalization ensures both signal detrending and normalization by the average variance

Fig 1. Nonstationary poisson signal preserves its variance after detrending. a) A model signal with Poisson distribution, linearly increasing trend t[n]

(white line) according to equation t[n] = 0.5 � n + 10 for each sample of signal n = 1, 2. . .1000; b) the detrended signal is created by subtraction of the trend

from the model signal; c) the pre-processed model signal after Z-score normalization.

https://doi.org/10.1371/journal.pone.0188622.g001
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(scale change), but information about the time-varying mean value is still preserved in the

form of nonstationary growing variance (see Fig 1c). Thus the relation between the mean and

variance after detrending or Z-score normalization is corrupted:

t½n� ¼ l½n� ¼ 0 6¼ Var ðx½n�Þ ¼ s2½n�: ð7Þ

Moreover, the samples of the resulting signal t[n] are not integers anymore. The other two

normalization methods (min-max transformation and decimal scaling) mentioned earlier give

the same results as the Z-score normalization.

The second inherent property of a random process (signal) with Poisson distribution is a

rectangular grid in the phase space (x[n], x[n + 1]) depicted as a close-up view in Fig 2b. This

property follows from the fact that the Poisson distribution allows only integer numbers while

most of the random processes, for example signals with a normal distribution, form an irregu-

lar random grid in this phase space (Fig 2d, close-up). This grid irregularity is caused by the

lack of real numbers in the respective realization of the random signal. It is worth emphasizing

that it is necessary to use the zoomed-in view of the cluster because the shapes of the whole

clusters of the two random processes (Fig 2b:Poisson distribution; Fig 2d:normal distribution)

as well as the time signal wave-forms are similar (Fig 2a and 2c).

Materials and methods

Poisson pre-processing

The suggested Poisson pre-processing (PP) method is based on Z-score normalization (6).

Z-score transformation is originally applied in order to normalize a random variable with nor-

mal distribution [24] and is frequently used for the signal detrending and signal variance

Fig 2. Phase space plot shows a marked difference of signals originating from poisson vs. normal distribution. a) Time waveform

of a model signal with Poisson distribution (λ = 500, n = 3000); b) its depiction in the phase space and a close-up view of its central part. c)

Time waveform of a model signal with normal distribution (μ = 500; s ¼
ffiffiffiffiffiffiffiffi
500
p

, n = 3000); d) its depiction in the phase space and a close-up

view of its central part.

https://doi.org/10.1371/journal.pone.0188622.g002
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normalization [22]. The Z-score method standardizes the signal into a signal with zero mean

and a standard deviation equal to one. This type of transformation of a random variable with

normal distribution preserves the type of distribution [22]. It changes only its mean and vari-

ance. Eq (6) can be modified for Poisson random variable

S ¼
X � l
ffiffiffi
l
p : ð8Þ

For a discrete-time nonstationary signal with a Poisson distribution Eq (8) can be rewritten

into

s½n� ¼
x½n� � t½n�

ffiffiffiffiffiffiffi
t½n�

p ; ð9Þ

where x[n]� 0 represents signal integer samples, and t[n] is the trend of the signal for each

time instant (instead of μ in (6)). The assumption is that one sample x[n] can be thought as

one realization of an integer random variable with Poisson distribution (1) for each time

instant, with λ = t[n]. Therefore, according to (5), the trend t[n] is also equal to the variance

Var(x[n]), and the standard deviation σ from (6) is replaced by the square root of the variance
ffiffiffiffiffiffiffi
t½n�

p
. Consequently, (9) standardizes the detrended signal (x[n] − t[n]) according to its

dynamically changing standard deviation. The standardized signal s[n] has zero mean E[s[n]]

= μs[n] = 0 and unity variance E[s2[n]] = σs[n] = 1 for all time instants. Our goal is to detrend

the signal x[n] while preserving the relation between mean and variance which is typical for

Poisson distribution. To reach this goal it is necessary to recover a positive integer samples of

the signal p(n) with a Poisson distribution, the following transformation has to be used:

p½n� ¼ bð
ffiffiffi
t0
p
� s½n� þ t0c; ð10Þ

where

t0 � jmin
n
ðx½n� � t½n�Þj ð11Þ

for all n = 1, 2, . . .N, where N is equal to the number of signal samples. The symbol âŒŠXâŒ‹

represents the integer part of a variable X and the symbol |X| represents the absolute value of a

variable X. The whole algorithm consists of a detrending and normalizing part (9) and a

restoring part (10). The numerator of (9) provides a detrending signal x[n] so that the trend

of the signal x0[n] = x[n] − t[n] is zero. The denominator of (9) decreases (normalizes) the

variance of the signal x@½n� ¼ x0 ½n�ffiffiffiffiffi
t½n�
p to the value of Var(x@) = 1. Operations in both the numera-

tor and denominator clearly break the relation between the signal mean and variance,

ms½n� 6¼ s2
s ½n�. To restore the relation between the signal mean and the variance, (10) has to be

realized. The second term of the right side of this equation ensures that the signal mean is non-

zero, μp[n] > 0, so that all samples are non-negative p[n]� 0. The first term of the right side of

this equation ensures that the signal variance is equal to the signal mean mp½n� ¼ s2
p½n�. The last

operation yields the integer part of the result. Converting numbers to non-negative integers

performed by Eq (9) ensures that resulting signal samples represent a Poisson signal, that is

they are non-negative numbers with μp[n] = σ2[n], n = 0, 1, . . .

As described above, the suggested pre-processing procedure should change only the mean

and variance of the measured signals but not their type of distribution. Moreover this proce-

dure ensures that the mean of the signal equals the variance and that samples of the signal are

non-negative integers. Both features are connected with a Poisson distribution.
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Estimation of trend

The trend t[n] has to be estimated from x[n] using a suitable method. Two types of frequently

used detrending methods are investigated, specifically smoothing and robust smoothing

approximation. Smoothing approximation exploits one or more Gaussian or exponential func-

tions; their number or type depends on the shape of the time series. A method exploiting two

Gaussian fittings is chosen according to the character of the experimental nonstationary neu-

trophil signals used in this paper; the robust smoothing method is based on the cosine trans-

form and weighting of outliers designed by Damien Garcia [10]. Both detrending methods are

also used for stationary signals to assess their suitability for usage on stationary Poisson data.

The difference between trends estimated by the two Gaussian fitting method (solid black line)

and the robust smoothing method (dashed gray line) is illustrated on the experimental nonsta-

tionary signal from neutrophils in Fig 3.

Data

Experimental time series and model data are used for the evaluation of the suggested PP

method. Three types of experimental data are investigated in total: i) nonstationary luminol-

chemiluminescence signals of human neutrophils induced by Phorbol 12 myristate 13-acetate

(PMA, Sigma-Aldrich, USA) [25], ii) stationary signals of endogenous biological chemilumi-

nescence from mung seeds [26], and iii) noise (dark count) from a photomultiplier tube

(PMT) detector module. The experimental data were obtained using a selected low-noise PMT

module H7360-01 (Hamamatsu Photonics K.K.) operated in a photon-counting mode (dark

count with stable value of cca. 13 counts per second) in a light-tight chamber (custom-made

by the Bioelectrodynamics research team, Institute of Photonics and Electronics of the Czech

Academy of Sciences). These discrete-time data are obtained by accumulation of photocounts

(detected photons + detector generated dark counts) in each selected time step (bin size). The

bins size was 1 s and 50 ms for mung signals and neutrophil signals respectively. In order to

statistically evaluate and verify the suggested PP method, the model data are used. The com-

puter-generated model signals (denoted as model neutrophil signals hereafter) matched to the

experimental neutrophil signals are generated as random signals with Poisson distribution

with l½n� ¼ t̂ ½n�, which is estimated from 10 realizations of experimental nonstationary neu-

trophil signals using the two fitting methods. Model signals of mungs are generated as random

signals with a Poisson distribution with l ¼ m̂ estimated from 10 realization of the
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Fig 3. Estimation of trend. Experimental nonstationary signal from neutrophils (grey dots) and their trend obtained by the two-

Gaussian-fitting method (solid black line) or the robust smoothing (dashed grey line) method. The length of the signal T0[s] = N � T,

where T = 1 sample step (bin size) and N is the number of signal samples.

https://doi.org/10.1371/journal.pone.0188622.g003
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experimental signals of mungs, respectively. One hundred realizations of the model signals are

generated from one estimation of the trend t̂ ½n� from the neutrophil signal for each type of

detrending method or mean value m̂ from mungs. This means that 1000 Poisson model signals

of one data type are used for evaluation of the PP method.

Biological sample preparation

Mung seeds (Vigna radiata, BIO Mungs, CZ-BIO-001) were surface-sterilized with 70% etha-

nol (1 min) and 50% disinfecting agent (SAVO, CZ) (10 min). After sterilization the seeds

were washed with distilled water 6 times and soaked for 6 h (shaken every half an hour). Then,

the seeds were germinated in dark conditions on large Petri dishes with ultra-pure water.

Before measurement the green covers of the seeds were removed. Totally twelve seeds were

measured on the Petri dishes (5 cm in diameter).

The neutrophils suspension was isolated from venous blood of healthy donors. 12 mL of

blood was taken from each donor and delivered in vacuum tubes with lithium heparin from

the Institute of Hematology and Blood Transfusion in Prague (Czechia). The density gradient

method [27] [28] [29] was used for isolation of neutrophils. Three different layers of liquids

were placed to 15 mL plastic test tube (P-Lab, type K081151, Prague, Czechia). The bottom

layer was 3 mL of histopaque solution 1119 (Sigma-Aldrich), the middle was 3 mL of histopa-

que solution 1007 (Sigma-Aldrich) and upper was 6 mL of whole blood. The tube was centri-

fuged at 890 g for 30 min at 20˚C. Then, the neutrophils were removed and doubled in volume

using PBS (Phosphate buffered saline). The neutrophils suspension was centrifuged at 870 g

for 5 min at 4˚C. The supernatant was taken off. 3 mL of lysis solution (composed of 154.4

mM ammonium chloride, 7.2 mM potassium carbonate, 126 μM EDTA (Ethylenediaminetet-

raacetic acid), pH 7.2–7.4 [30] [31]) was added and the tube was kept for 15 min in the dark at

room temperature for red blood cells lysing process. After that, 3 mL of PBS was added to the

tube and another centrifugation at 870g for 5 min at 4˚C took place. The supernatant was

taken off. The final cell suspension were neutrophils in 2 mL of PBS with Ca2+ and Mg2+. The

luminol at the final concentration of 5.6 μM was used added as a chemiluminescent probe.

Phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich, USA) was used to stimulate oxidative

burst at the final concentration of 8 μM.

Evaluation of pre-processing method

Time domain parameters and phase space (x[n], x[n + 1]) are used for verification of the PP

method. To demonstrate the effect of the PP method on the parameters used for the analysis of

experimental luminescence signals, we chose the Fano factor [32], the Hurst exponent [33]

computed by Rescaled Range Analysis (RRA [34, 35]) and Detrended Fluctuation Analysis

(DFA [36–39]). Fano factor theory states that a Poisson process should have a value of 1 [32].

The Hurst exponent varies within the range from 0 to 1. A Hurst exponent close to 0.5 indi-

cates a random (i.e. a stochastic) process. If it is higher than 0.5, the increments of the process

are positively correlated (persistent), or conversely if it is lower than 0.5, the increments of

the process are negatively correlated (anti-persistent). All analyzes and generation of model

data was performed in Matlab (version R2015a, MathWorks). Below, we compare the raw,

detrended, and pre-processed signals. Two types of detrending methods are used: detrending

(x[n] − t[n]) and detrending+DC (x[n] − t[n] + t0), where DC is constant value t0. The use of

the detrending+DC method is necessary for calculation and comparison of the results of the

distribution and Fano factor analysis or for illustration of the results in segmentation analysis.

For a clear graphical interpretation, in the current paper we chose t0 = min(t), which obeys the

condition (11).
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Let us summarize the original moments of the Poisson distribution of the signal x[n]. The

mean at the time instant n is μ[n] = t[n], the variance Var[x[n]] = t[n], the skewness ~m3 ¼
1ffiffiffiffiffi
t½n�
p ,

and the kurtosis e4 ¼
1

t½n�. Eq (9) gives the following moments of Poisson distribution of the

signal s[n]: μ[n] = 0, the variance Var[s[n]] = 1, while the skewness and the kurtosis are

unchanged. But Eq (10), which involves both the signal trend shift and the quantization, intro-

duces some changes and errors we analyze in the following text. First, Eq (10) without the

quantization gives following moments: μ[n] = t0[n] which is constant, the variance is also equal

to t0[n], the skewness ~m3 ¼
1ffiffiffiffiffi
t0 ½n�
p , and the kurtosis e4 ¼

1

t0 ½n�. Eq (11) suggests that the stationary

trend t0[n] might be less than the original nonstationary trend t[n]. Second, the nonlinear

operation represented by the quantization clearly introduces a certain bias and variance into

the transformed data and into their statistical moments. As a result, the moments of the signal

p[n] including the skewness or kurtosis are not reproduced faithfully to a full extent. To quan-

titatively assess the influence of the suggested signal transformation and quantization given by

Eqs (9)–(11) on the final result the signal-to-noise ratio (SNR) using the mean square value

[40] can be used as a measure

SNR ¼ 10 log
Psig

Pnoise
: ð12Þ

Psig and Pnoise are the signal power (mean square value) and the noise power, respectively. The

Poisson distribution implies that the signal power is Psig = t0 + (t0)2 (we omit the index n for

simplicity). The same holds for the measurement noise power Pnoise. Both, the original and

transformed signal (and the noise) samples are the integer numbers thus the quantization step

size Δ is equal to 1. Then the quantization noise with the uniform distribution has the power

PnoiseQ = 1/12 [40]. The resulting signal-to-noise ratio caused by the quantization is then

SNRQ ¼ 10 log
Psig

PnoiseQ
¼ 10 log

ðt0 þ ðt0Þ2Þ
1

12

¼ 10 log ð12Þ þ 10 log ðt0 þ ðt0Þ2Þ: ð13Þ

This equation enables us to estimate a range of possible values t0 using the information about

the measured SNR of the respective experiment. The admissible minimum value of t0min can be

obtained as the number for which the level of the quantization noise is less than the level of

noise of the photomultiplier tube. In other words the SNRQ given by (13) and caused by the

quantization process has to be greater than the measured SNR of a respective experiment. For

example, the typical value of the t0 for the mung seeds experiment is t0sig ¼ 50 giving the signal

power Psig = 2550 while t0noise ¼ 13 gives the noise power Pnoise = 3.5. Eq (12) returns the mea-

sured SNR = 12 dB while the SNRQ caused by the quantization and given by Eq (13) is SNRQ =

45 dB. This result clearly shows that the error caused by the quantization is much lower than

the error (noise due to dark count) introduced by the PMT detector module. When one admits

SNR� SNRQ then the suggested transformation (9)–(11) can be used for t0min � 0:7. The results

of the neutrophil experiment are: t0sig ¼ 700 and t0noise ¼ 0:65 yields SNR = 60 dB, SNRQ = 67

dB, and t0min � 315. On the other hand, the maximum value of t0 is determined by the number

of samples N available in a respective experiment. A reasonable choice seems to be t0 � N/10.

In this case the quick check of data transformation (9)–(11) can be performed by the inspec-

tion of the phase space grid to see if it still has a lattice structure. For example, the maximum

value of t0 is about 3000 for the neutrophil experiment with N = 30000 samples. Another prob-

lem is the bias bðF̂Þ ¼ E½F̂� � F [40] of the skewness and kurtosis caused by the quantization

process. Symbol F stands for the true but unknown parameter (here skewness or kurtosis) and
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F̂ is the respective estimate. The rough estimate of the maximum bias error can be performed

as follows. As mentioned before the quantization step size Δ is equal to 1 therefore the resulting

maximum error is also 1 (more precisely (-1) because rounding to the floor is used). Thus the

bias can be approximately expressed as bð~m3Þ ¼
1ffiffiffiffiffiffi

t0 � 1
p � 1ffiffi

t0
p for the skewness or bðe4Þ ¼

1

t0 � 1
� 1

t0

for the kurtosis. The mung beens experiment with t0 = 50 yields bð~m3Þ ¼ 0:0014 and b(e4) =

4.10−4. Therefore the bias error is negligible for our experiments. But the admissible minimum

value of t0 is not so low as reported above. First, t0 must be greater than 1 as suggested by equa-

tions for the bias error. Second, the bias error is large for the low values of t0. For example, for

t0 = 10 is 2% which is greater than 0.14% for the mung been experiment with t0 = 50.

Results and discussion

Quality of poisson pre-processing

The goal of the PP method is to render the data mean and variance stationary while simulta-

neously preserving the original Poisson distribution. Because the mean and variance of the

preprocessed signal p[n] do not change over time (they are constant), the signal p[n] can be

considered as a wide-sense stationary (wss) one. In fact, wss requires that the first moment

(mean) and the second moment (covariance) do not vary with respect to time. Thus to be

more precise, the suggested PP ensures only trend and variance stationarity. This part is

focused on the evaluation of the PP method in a time domain and in a phase space. The PP

method requires trend estimation. Both types of fitting methods used give the same results, as

described below. The results of the detrending and PP methods obtained by using the robust

smooth fitting method are given in Fig 4.

Fig 4 compares the time and statistical parameters of the a) raw (measured), b) detrended

+DC, and c) pre-processed experimental signal of neutrophils. To illustrate the differences

between the detrended and pre-processed signal, the DC component is added into the

Fig 4. Our poisson preprocessing method recovers poisson distribution. a) The experimental signal

from neutrophils, where grey dots are the number of counts per 50 ms, the white line is a trend determined by

the robust smoothing method, black dots are mean values in segments, and the bars are the variance in

segments. b) Detrended (DC component min(t[n] added) and c) the pre-processed signal from neutrophils.

On the graphs d) and e) are histograms from the data (gray bars), and the black line is the computed Poisson

distribution with the parameter λ estimated from the experimental data.

https://doi.org/10.1371/journal.pone.0188622.g004
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detrended signal corresponding to the minimum value of the trend min(t[n]). The differences

in signal shape between the detrended (Fig 4b, gray dots) and the pre-processed signal (Fig 4c,

gray dots) cannot be seen by the naked eye. For the purpose of illustrative visualization of the

difference between the detrending and PP methods, the following approach is applied. The

signal is divided into 30 segments, each containing 1000 samples. The mean value m̂ i (black

points) and variance ŝ2
i (bar graph) in the i-th segment are calculated. The length of segments

is selected as a compromise between the errors in the estimated trend t̂ ½n� (white line) and the

values of the mean m̂i (black dots), as seen in Fig 4a. The results of segment analysis show that

the variance of the detrended signal is still almost the same as the variance of the raw signal

(compare the bar graphs in Fig 4a and 4b), whereas the variance of the pre-processed signal

corresponds to its mean value (Fig 4c, bar graphs versus black points). Our PP method ensures

that the variance of the pre-processed signal is equal to its mean, in contrast to the detrended

signal, whose variance differs from its mean. The deviation from equality between the parame-

ters μi and σi (according to the equation ti[n] = Var(xi[n])) in segments of experimental or

model neutrophils data (raw, pre-processed) is mainly caused by the stochastic character of

the signals. Imperfect estimation of the trend, the final length of the intervals, or additive com-

position of the photonic signal and noise could also contribute to this deviation.

Preservation of the Poisson distribution is verified by the chi-square two-sample test [41].

The null hypothesis stating that the data come from a Poisson distribution is rejected for the

detrended signal from the experimental data of neutrophils (Fig 4d) and not rejected for the

pre-processed data (Fig 4e, p-values higher than 0.9). This conclusion is still valid for the

model data of neutrophils (p-values typically higher than 0.9). The null hypothesis is not

rejected for the stationary luminescence experimental data and model data from mung seeds

before and after application of the PP method (p-values typically higher than 0.8). The null

hypothesis is rejected for detector noise (which is known to be super-Poissonian [26]) before

and after application of the PP method.

Another view of the property of the PP method is obtained from the phase space (x[n],

x[n+1]). Fig 5 demonstrates the behavior of nonstationary experimental Poisson signals from

neutrophils in the phase space. The almost elliptic shape of data from neutrophils in the phase

space (Fig 5a) is caused by the existence of a nonstationary trend. This statement is also veri-

fied on model Poisson data of neutrophils. After detrending the experimental neutrophils data

or pre-processing same data by the suggested PP method, rendering the data mean in both

cases, the cluster shape in the phase space is changed from an ellipse to a circle (Fig 5c and 5e).

However, on zooming in the central part of the data in the phase space, it is clearly seen that

the structure of the data is different. After detrending, the dependence between adjacent sam-

ples is removed, causing changes in the structure of the lattice (compare Fig 5a and 5c). The

PP method defined by (9) and (10) preserves the structure of the lattice in the phase space (see

Fig 5e). The data waveform in the time domain remains almost the same, as can be seen by

comparing details of the raw (Fig 5b), detrended+DC (Fig 5d), and pre-processed (Fig 5f) sig-

nals. Detrending and the PP method change the scale (energy) of the signal but the pattern of

the time series is preserved. It can be concluded that while the details of the phase space repre-

sentation is a very sensitive descriptor, the signal waveform itself is not a good descriptor for

revealing differences between results achieved by detrending or by the PP method. Preserva-

tion of the phase space lattice by the PP method is closely connected with the fact that the PP

method does not change the Poisson distribution of the data.

We also tested our PP method on stationary data with and without a Poisson distribution

and nonstationary non-Poisson data. Stationary Poisson data remained unchanged, as verified

on real photonic data of mungs and model data of mungs. If stationary non-Poisson data are
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non-integer, the PP method takes only the integer part of the data; we showed this on model

data with a normal distribution (both types: μ = σ, μ 6¼ σ). In the case of stationary non-Poisson

integer data, the PP method does not change the data; this was verified on detector noise data.

Nonstationary non-Poisson data are radically changed after using the PP method (verified on

model data with a normal distribution). This conclusion is consistent with the theoretical

assumption based on (9) and (10).

Influence of poisson pre-processing method on the result of further

signal analysis

Fractal analysis of photonic signals arising, for example, from chemiluminescence and fluores-

cence is one of several possible ways to obtain further information from photonic signal time

series, offering the promise of new fingerprints and markers beyond mere intensity, optical

wavelength, and simple correlation analyzes. Signals from certain luminescent systems require

fractal/chaos based approaches for their analysis [42, 43]. Several authors used the Fano factor

[44–46], Hurst exponent [9, 47, 48] or further advanced methods such as description in terms

of quantum squeezed states [49–51] to analyze photonic data and found correlations with bio-

logical parameters. However, most of these earlier works either did not use any detrending or

used just a simple subtraction of the mean value of the signals so the interpretation of their

results is ambiguous [52].

Here we demonstrate that our PP method removes artifactual findings from Fano factor

(Fig 6) or Hurst exponent (Fig 7) analysis of photonic signals and performs better than just

detrending with an added DC component in the case of Fano factor analysis. The Fano factor

Fig 5. Phase space provides better assessment of the pre-processing than the time domain. a)

Experimental neutrophil chemiluminescence data in the phase space and a close-up view of the raw

neutrophils data in phase space, b) detail of the time series of raw experimental data from neutrophils

luminescence. c) Detrended+DC data in phase space and a close-up view, d) a detail of the time series of the

detrended+DC data. e) The pre-processed data in phase space and a close-up view, f) detail of the time

series of the pre-processed data.

https://doi.org/10.1371/journal.pone.0188622.g005
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and Hurst exponent estimated by RRA are sensitive to the trend in nonstationary data and

thus detrending and the PP method radically change their values, as illustrated in Figs 6c, 6d,

7c and 7d for both types of neutrophils data (experimental and model). Comparison of the

Fano factor from experimental and model data of neutrophils gives almost the same results

(Fig 6c and 6d). This conclusion corresponds to the assumption that the nonstationary raw

neutrophils data come from a Poisson distribution, which is confirmed by a chi-square two-

sample test of pre-processed data with a 0.05 level of significance. The hypothesis of the Pois-

son distribution is rejected for experimental and model neutrophils data after detrending. The

Fano factor of both types of model data (Fig 6b) after using the PP method for mungs and also

for raw and detrended data is equal to the expected value of 1. The difference between the

Fano factor in model and experimental data from mungs (Fig 6c and 6d) is caused by the fact

that the experimental data are composed from the chemiluminescence signal and non-Poisson

detector noise while the model data are not. If the SNR is low, the non-Poisson detector noise

depreciates the final signal and its distribution, as we recently demonstrated [26]. Although

the Fano factor of experimental mungs data after detrending and the PP method is slightly

higher than 1 (specifically, it is 1.17), the chi-square two-sample test confirms the hypothesis

of a Poisson distribution (summarized in the section Quality of Poisson pre-processing). The

detector noise is found to be non-Poissonian since its Fano factor equals 2.02 (Fig 6a) and also

chi-square two-sample test rejected the hypotheses of the Poisson distribution. Both types of

detrending (smoothing and robust smoothing) leads to very similar values of the Fano factor

for all data considered (Fig 6c and 6d).

RRA and DFA yield an estimate of the Hurst exponent but the principle of its calculation is

different. The Hurst exponent from RRA responds to the trend (Fig 7a and 7b, neutrophils)

Fig 6. Pre-processing removes artifactual findings in fano factor analysis. Preprocessing removes

artifactual findings in Fano factor analysis. a) Bar graphs depict mean values and the 95% confidence interval

of the Fano factor of experimental data from neutrophils, mungs, and detector noise for all three data types

(raw, detrended+DC, and pre-processed); b) the box plot depicts the distribution of the Fano factor of model

data of neutrophils and mungs for all three data types (raw, detrended+DC, and pre-processed); c) the color

bar represents the mean value of the Fano factor from experimental data for both types of detrending

methods (smoothing, robust smoothing); d) the color bar represents the mean value of the Fano factor from

model data for both types of detrending methods.

https://doi.org/10.1371/journal.pone.0188622.g006
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whereas DFA is designed for nonstationary data since the detrending procedure is applied

within the DFA method. However, the disadvantage of the DFA is in its subjective setting of

the scale parameter for the segmentation. Thus the DFA, when applied to a nonstationary sig-

nal, could yield incorrect results for an inappropriate selection of the scale parameter.

The output from DFA shows that the results from raw, detrended, and pre-processed data

are almost identical (Fig 7c and 7d, black bar). Application of the RRA to detrended or pre-

processed signals provides a very similar value, which means that it is not sensitive to small

changes in the variance of data applied in the PP method. This conclusion holds for both types

of the model signals (Fig 7b) as well as for all three types of experimental signals (Fig 7a). The

RRA of stationary signals should give the same result for the Hurst exponent estimated for

raw, detrended, and pre-processed data. The noticeable exception is the Hurst exponent from

the raw data of experimental and model mungs (Fig 7a and 7b) caused by detrending in the PP

method, although the stationarity of the signals from mungs is verified by the Lilliefors test

(level of significance = 0.05, p-values higher than 0.4). We also tested the influence of signal

length (1000, 10000, and 30000 samples) on the results of RRA from raw, detrended, and pre-

processed model data of mungs. The differences between the results are smaller if the length of

the signal is greater. The differences in results between the raw and detrended signals of model

mungs are larger than those for the raw and pre-processed signal. The Hurst exponent (RRA)

from nonstationary neutrophils data shows artifactual findings of a positive correlation while

the Hurst exponent from detrended, preprocessed neutrophils data, and DFA reveals the

actual uncorrelated character of the data.

Fig 7. Pre-processing removes artifactual findings in hurst exponent analysis. Preprocessing removes

artifactual findings in Hurst exponent analysis. a) Bar graphs depict mean values and the 95% confidence

interval of the Hurst exponent of signals estimated from Rescaled range analysis and Detrended Fluctuation

Analysis from experimental data of neutrophils, mungs, and detector noise for all three data types (raw,

detrended and pre-processed); b) the box plot depicts the distribution of Hurst exponent of signals from model

data of neutrophils and mungs for all three data types (raw, detrended, and pre-processed); c) the color bar

represents the mean value of the Hurst exponent from experimental data for both types of detrending

methods (smoothing, robust smoothing); d) the color bar represents the mean value of the Hurst exponent

from model data for both types of detrending methods.

https://doi.org/10.1371/journal.pone.0188622.g007
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According to the results of the Fano factor and the Hurst exponent estimated from neutro-

phils data (Figs 6c, 6d, 7c and 7d) the type of detrending method (smoothing and robust

smoothing) is not a crucial part of the PP method. A suitable method for trend estimation

should yield a smoothed curve following slow changes in the signal.

Conclusion

We present a new pre-processing method for nonstationary Poisson signals in this paper. The

assumption of the input signal properties is that its mean is equal to its variance (E[x[n]] =

Var[x[n]]) and signal samples are nonnegative integers (x½n� � 0 ^ x½n� 2 Z). Our Poisson

pre-processing method renders the signal stationary and preserves the relation between the

mean and variance of the random signal composed of non-negative integer samples. This

property is illustrated by the segmentation analysis and verified by statistical testing. Moreover,

the pre-processed signal keeps its original rectangular structure in the phase space, making our

pre-processing method potentially useful for preparing the signals for further complexity and

chaos-theory-based analyzes. Application of the pre-processing method to nonstationary sig-

nals that are non-Poisson never recovers a Poisson distribution, and hence a posteriori check

of whether the analyzed signal originated from a Poisson distribution is possible. Moreover

the Poisson pre-processing method does not change the distribution of stationary integer data

and causes only minor changes due to rounding when applied to non-integer data such as

those originating from a normal distribution.

While our primary motivation was to focus on the pre-processing and analysis of pho-

tonic signals such as bio/chemiluminescence and fluorescence, the method we developed is

completely general and can be applied to any signal originating from a Poisson process. Fur-

thermore, our method can be generalized to any mean-variance-coupled signals of non-Pois-

son distribution provided that the analytic formula for the dependence of the mean and the

variance is known.

We believe that the application of our method can prevent artifactual findings and enable

the analysis of nonstationary photonic signals that might otherwise have been unusable and

discarded due to the baseline drifts.

Supporting information

S1 Dataset. Dataset contains all raw experimental and computer generated photocount

signals used in this paper.
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Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance

PLOS ONE | https://doi.org/10.1371/journal.pone.0188622 December 7, 2017 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188622.s001
https://doi.org/10.1371/journal.pone.0188622


Funding acquisition: Michal Cifra.

Investigation: Michaela Poplová, Michal Cifra.
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