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1  |  INTRODUC TION

Polyglutamine (polyQ) diseases are a group of common neurodegen-
erative diseases caused by the abnormal repetitive amplification of 
CAG in the coding region of each pathogenic gene and the formation 
of polyQ peptides, thus resulting in selective neuronal degeneration 
and death in neurodegenerative diseases1. To date, nine types of 
polyQ diseases have been found: Huntington's disease (HD), spinob-
ulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atro-
phy, spinocerebellar ataxia type 1 (SCA1), SCA2, SCA3, SCA6, SCA7 
and SCA17.2 Most patients with polyQ disease show adult onset, 
which is mainly characterized by progressive neurological dysfunc-
tion. In addition to spinobulbar muscular atrophy, the other eight 
polyQ diseases show an age of onset and severity associated with 
the length of CAG repeat amplification.3 At present, the pathogen-
esis of polyQ diseases is unclear, and hypotheses regarding possible 

routes of pathogenesis include abnormal polyQ protein aggregation 
and formation of nuclear inclusion bodies, abnormal transcriptional 
regulation, interactions among pathogenic proteins, RNA toxicity, 
abnormal protein modification and apoptosis.

With the development of high-throughput sequencing tech-
nology, many lncRNAs have been discovered, and a preliminary 
understanding of the functions and mechanisms of these lncRNAs 
has been gained.4 LncRNAs regulate gene expression and act as 
signalling molecules, protein complex scaffolds and molecular 
baits to achieve their biological functions.5 LncRNAs have been 
shown to be involved in the pathogenesis and progression of a 
variety of neurodegenerative diseases, including polyQ disease.6 
Some studies have also shown that an increase or decrease in ln-
cRNA expression can serve as potential diagnostic biomarkers, 
improve neurodegenerative processes and promote endogenous 
regeneration.7
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Abstract
Polyglutamine (polyQ) diseases are characterized by trinucleotide repeat amplifica-
tions within genes, thus resulting in the formation of polyQ peptides, selective neu-
ronal degeneration and possibly death due to neurodegenerative diseases (NDDs). 
Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides in length, have been 
shown to play important roles in several pathological processes of NDDs, including 
polyQ diseases. Some lncRNAs have been consistently identified to be specific to 
polyQ diseases, and circulating lncRNAs are among the most promising novel can-
didates in the search for non-invasive biomarkers for the diagnosis and prognosis of 
polyQ diseases. In this review, we describe the emerging roles of lncRNAs in polyQ 
diseases and provide an overview of the general biology of lncRNAs, their implica-
tions in pathophysiology and their potential roles as future biomarkers and applica-
tions for therapy.
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In this review, we briefly introduce typical lncRNA biogenesis 
and functions, and we describe the most relevant lncRNAs specifi-
cally associated with polyQ disease. The advantages and limitations 
of potential biomarkers involved in the diagnosis and prognosis of 
in polyQ disease, as well as the use of lncRNA-based therapeutic 
strategies, are also highlighted.

2  |  BA SIC S OF LNCRNA S

LncRNAs are non-coding RNAs that are structurally similar to mes-
senger RNAs, but lack an open reading frame and are longer than 
200 base pairs. LncRNAs are transcriptional products of RNA poly-
merase II and are distributed in the nucleus and cytoplasm.8 In 2002, 
Schrauwen,9 a Japanese researcher, first discovered and identified 
a long transcription product when sequencing a mouse DNA library 
and named it lncRNA. Recent studies have shown that although 
lncRNAs do not encode proteins, they are involved in DNA meth-
ylation, nucleolar dominance, X chromosome silencing, genomic 
imprinting and chromatin modification, transcriptional activa-
tion and regulation, RNA interference, intranuclear transport and 
other important regulatory processes.10–12 Although most lncRNA 
sequences have only a low degree of evolutionary fidelity, a small 
number of sequences have been conserved among various species. 
LncRNAs are believed to have arisen from the following sources: 
(1) a lncRNA incorporating the precursor sequence of a coding pro-
tein gene can be formed by breaking the protein-coding gene; (2) a 
lncRNA containing multiple exons can be reconstructed from two 
unrelated sequences and one separated sequence; (3) functional or 
non-functional ncRNA can be produced by reverse transcriptional 
replication of non-coding genes; (4) lncRNAs can be formed by in-
sertion of transposons; and (5) lncRNAs can be formed by tandem 
replication of adjacent replicators.13

According to the relative positions of the coding sequence of the 
lncRNA and the protein-coding gene, lncRNAs can be divided into 
the following categories: (1) sense lncRNAs overlapping with the 
sense strand of the protein-coding sequence; (2) antisense lncRNAs 
overlapping with the antisense strands of protein-coding sequences; 

(3) bidirectional lncRNA sequences located on the antisense strand, 
at a distance more than 1000 bp from the transcription start site, 
with the two directions of transcription being opposite; (4) intron ln-
cRNA sequences located completely in the intron region of another 
transcript; and (5) intergenic lncRNA sequences, which are not adja-
cent to any protein-coding gene and originate from the gene spacer 
between two protein-coding genes.14 According to their molecular 
mechanisms and roles, lncRNAs can be divided into signal molecules, 
decoy molecules, guide molecules and scaffold molecules (Figure 1). 
LncRNAs are believed to regulate gene expression at three levels: 
the epigenetic modification level, transcriptional level and post-
transcriptional level. (1) In epigenetic level regulation, lncRNAs 
regulate gene expression through processes including DNA meth-
ylation or demethylation, RNA interference, histone modification 
and chromosome remodelling. For example, the lncRNA HOTAIR 
induces heterochromatin formation at specific gene loci through in-
teraction with the nuclear chromatin remodelling complex, thereby 
decreasing the expression of a target gene.15 (2) In regulation at 
the transcriptional level, lncRNAs regulate the expression of target 
genes by recruiting transcriptional regulators to promoters adjacent 
to target genes. LncRNAs participate in genome regulation at the 
transcriptional level in a variety of ways.16 (3) In post-transcriptional 
regulation, lncRNAs form RNA dimers with target RNA through 
complementary base pairing, thus hindering the binding of transcrip-
tion factors or related RNA processing factors, or directly recruiting 
translation inhibitor proteins, thereby regulating the splicing, trans-
lation and degradation of RNA.17

The development of the central nervous system (CNS) requires 
precise expression and regulation of specific genes in time and 
space. Many factors, including genetic and environmental factors, 
affect the development of CNS and can lead to a series of neurolog-
ical diseases. Studies have shown that lncRNAs are abundantly dis-
tributed in the CNS, presumably because the complexity of the brain 
requires many regulatory RNAs to maintain normal development 
and function, including brain development, neuronal differentiation 
and maintenance, synaptic plasticity, cognitive function and learning 
and memory processes.18 Recent studies have shown that lncRNAs 
are abnormally expressed in older people and in neurological disease 

F I G U R E  1  The roles and molecular mechanisms of lncRNAs. (A) As signals, lncRNA expression can reflect the combinatorial actions 
of transcription factors (coloured ovals) or signalling pathways, and indicate gene regulation. (B) As decoys, lncRNAs can competitively 
bind transcription factors and other proteins and sequester them from chromatin. (C) As guides, lncRNAs can recruit chromatin-modifying 
enzymes to target genes; (D) As scaffolds, lncRNAs can bring multiple proteins into proximity to form ribonucleoprotein complexes
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states, thus suggesting that lncRNAs may regulate the occurrence 
and development of neurological diseases. The large number and 
tissue-specific expression of lncRNAs make them potential biomark-
ers for disease diagnosis and prognosis. Feng et al. have indicated 
that the LncRNA BACE1 (95% CI: 0.553–0.781, p  =  0.003) is ele-
vated in the plasma in patients with Alzheimer's disease (AD) and 
has high specificity (88%) for AD; therefore, LncRNA BACE1 may 
be a potential candidate biomarker for predicting AD.19 Hossein-
Nezhad et al. have studied the cerebrospinal fluid of patients with 
Parkinson's disease and found two differentially expressed lncRNAs, 
UC001 lva.4 (p  =   0.01, log2FC  =   –1.6) and AC079630 (p  =   0.001, 
log2FC  =   –6.72), which are significantly down-regulated and might 
be used for early prediction and detection of Parkinson's disease.20 
By studying the expression of lncRNA in the nervous system in pa-
tients with HD, Johnson et al. have found that LINC0341, TUG1 and 
RPS20P22 are up-regulated in HD, whereas LINC00342 is down-
regulated.21 These studies have shown the potential of lncRNA to 
serve as a molecular biomarker for the diagnosis of CNS diseases.

3  |  LNCRNA S IN POLYQ DISE A SE

3.1  |  LncRNAs in HD

The prevalence of HD in Europe and North America is 5–10  per 
100,000 people.22 CAG trinucleotide duplication in the Huntington 
gene leads to abnormal accumulation of misfolded Huntington pro-
tein (HTT) in nuclear inclusion bodies and progressive loss of striatal 
neurons, which are the main pathogenic factors of the disease.23 The 
clinical features of HD are chorea, dystonia and cognitive or mental 
disorders.24 Altered levels of lncRNAs have been found to contribute 

to the dysregulation of genes observed in HD and to modulate HD 
pathogenesis. We will review some of the consistently identified as 
dysregulated lncRNAs associated with HD pathology in the follow-
ing section (Figure 2; Table 1).

Human accelerated region 1 (HAR1) is a segment of the human 
genome found on the long arm of chromosome 20, a highly con-
served genomic region consisting of a cis-antisense pair of struc-
tured lncRNAs (HAR1F and HAR1R) specifically transcribed in the 
nervous system.25,26 Johnson et al., through autopsy studies, have 
found that HAR1F and HAR1R levels are significantly diminished 
in the striatum in patients with HD, whereas the levels in the ce-
rebral cortex show no significant changes. Moreover, the authors 
have also confirmed that HAR1 is a direct target of RE1-silencing 
transcription factor (REST), which plays a critical role in the patho-
genesis of HD. This targeting is likely to cause both forward and 
reverse HAR1 transcripts to be down-regulated in the striatum in 
patients with HD.27

TCL1 upstream neural differentiation-associated RNA (TUNA) 
is a highly conserved sequence in vertebrates and is specifically 
expressed in the CNS in mice and humans.28 Regulation of TUNA 
expression in mouse embryonic stem cells affects global gene ex-
pression, which is highly involved in cell differentiation, cell death 
and neurogenesis.29 TUNA forms an RNA-multiprotein complex 
that is enriched at the promoters of Sox2, Nanog and Fgf4. Lin 
et al. have suggested that TUNA expression declines in brain sam-
ples in patients with HD, particularly in the thalamus and striatum. 
Furthermore, by retrieving data from a gene expression study on 
44 patients with HD and 36 controls,30 the authors have found that 
the expression of TUNA is significantly associated with the sever-
ity of pathological HD and significantly decreases with increasing 
disease severity. Interestingly, this phenomenon was evident only in 

F I G U R E  2  A summary of the most dysregulated lncRNAs in polyQ disease. HD/SCA7-related lncRNAs are grouped according to the 
pathogenesis in which they have been implicated. PRC2, polycomb repressive complex 2; MeCP2, methyl-CpG-binding protein 2
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the striatum, whereas no significant changes were observed in the 
motor cortex and cerebellum.31

Nuclear paraspeckle assembly transcript 1 (NEAT1) is tran-
scribed by RNA polymerase II into two different subtypes, NEAT1S 
and NEAT1L, which are short subtypes and long subtypes, respec-
tively.21,32 Sunwoo et al. have validated the increased NEAT1S levels 
in the R6/2 mouse brain as well as the post-mortem brains of humans 
with HD by quantitative PCR analysis. Their results have further 
confirmed that up-regulation of NEAT1S is involved in the neuro-
protective mechanism against anti-neuronal injury, rather than the 
pathological process of neurodegenerative changes in patients with 
HD.33 Cheng et al. have found that NEAT1L is also significantly ele-
vated in striatum neurons of the brain in mice and patients with HD. 
With knockout of mHTT in vitro and in vivo, NEAT1L returns to nor-
mal levels; thus, the increase is mHTT-dependent. The authors have 
also indicated that this dysregulation is associated with methyl-CpG-
binding protein 2 (MeCP2), which interacts with NEAT1L directly or 
indirectly. Moreover, like Sunwoo et al., Cheng et al. reached the 
same conclusion that NEAT1L has a protective role in cells, which 
may help alleviate mHTT-induced toxicity.34

Maternally expressed gene 3 (MEG3) is expressed in many 
normal human tissues, with the highest expression in the pitu-
itary followed by various regions of the brain.21 Francelle et al. 
have reported that MEG3 levels are diminished in HD by min-
ing microarray data; however, in cellular and R6/2 mouse mod-
els, the levels of MEG3 have been validated to be increased.35 
Chanda et al. have further confirmed that the levels of MEG3 
are significantly increased in cell and animal models, and MEG3 
modulates the formation of aggregates of mHTT. Knockdown of 
MEG3 in an HD cell model significantly decreases the aggregates 
formed by the mHTT and the down-regulation of endogenous 
tp53 expression.36

Abhd11os (called ABHD11-AS1 in humans) is a putative lncRNA 
whose expression is enriched in the mouse striatum.37 Francelle 
et al. have demonstrated that Abhd11os is significantly decreased 
in animal models of HD. Moreover, artificial overexpression of 
Abhd11os decreases the neurotoxicity of mHTT, whereas Abhd11os 
knockdown exacerbates mHTT toxicity, thus indicating the signifi-
cance of Abhd11os in HD.35

Huntingtin antisense (HTT-AS) is a natural antisense transcript at 
the HD repeat locus, which forms a 5′ head-to-head divergent pair 
overlapping with the CAG expansion region and the 5´ UTR of HTT 
mRNA.38 Zucchelli et al. have confirmed the expression of HTT-AS 
in the brain and implicated its participation in neuronal differentia-
tion.39 HTT-AS v1 (exons 1 and 3) is down-regulated in the human 
HD frontal cortex; however, its function remains unknown.40

Previous studies have reported that other lncRNAs may be in-
volved in the pathogenesis of HD. DiGeorge syndrome critical region 
gene 5 (DGCR5) is a neurospecific disease-associated transcript that 
may play an important role in the human nervous system.41 It has 
been reported to be down-regulated in HD; however, no functional 
studies have been performed on DGCR5.40 Taurate up-regulated 
gene 1 (TUG1) is highly expressed in the mammalian brain and was 
originally found in a genome screen for genes up-regulated after tau-
rine treatment of developing retinal cells.42 It has been reported to 
be a target of p53 and to be up-regulated in patients with HD.43 This 
up-regulation, possibly induced by p53 activation, may antagonize 
mHTT cytotoxicity.21

3.2  |  LncRNAs in SCAs

SCAs are a complex group of fatal neurodegenerative diseases that 
primarily affect the brainstem, cerebellum and spinal cerebellar 

TA B L E  1  Dysregulated lncRNAs in Huntington’ disease

Official 
symbol

Genomic 
location Roles of lncRNAs Expression level References

HAR1 3 Aberrant nuclear-cytoplasmic REST trafficking caused by 
mutated huntingtin resulting the aberrant expression of 
HAR1 in striatum

Down-regulated in the brain [25, 26]

TUNA 14 Significantly associated with the severity of pathological HD and 
decreased with increasing disease severity

Down-regulated in the brain [30]

NEAT1 11q13.1 Involved in the neuroprotective mechanism of alleviating mHTT-
induced toxicity, modulated by MeCP2

Up-regulated in the brain [33, 34]

MEG3 14q32 It associates with PRC2 complex, and modulates the formation of 
aggregates of mHTT

Up-regulated in the brain [35, 36]

Abhd11os 5; 5 Abhd11os overexpression produces neuroprotection against the 
neurotoxicity of mHTT

Down-regulated in the brain [35]

HTT-AS 4p16.3 HTT-AS decreases endogenous HTT transcript levels Down-regulated in frontal 
cortex

[39]

DGCR5 22q11 Downstream target of REST in HD Down-regulated in the brain [41]

TUG1 22q12.2 Target of p53, up-regulation has the function of antagonizing 
mHTT cytotoxicity

Up-regulated in the brain [42]

BDNF-AS 11p14.1 Decreasing BDNF expression post-transcriptionally Up-regulated in the brain [54]
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tract.44 Of the more than 40 SCA types, at least six (SCA1, SCA2, 
SCA3, SCA6, SCA7 and SCA17) are associated with polyQ disease.45 
They are clinically characterized by gait and limb ataxia, dysarthria 
and abnormal eye movements. SCAs usually develop in adulthood 
and exhibit significant clinical heterogeneity. Symptoms usually ap-
pear between the ages of 30 and 40 and progress slowly.46 The size 
of the mutant allele CAG amplification is inversely correlated with 
the age of onset, and this phenomenon is more pronounced in pa-
tients with SCA2 and SCA7.47 Mutations in different types of SCA 
have been identified in different regions of the genome, and several 
involved genes have been mapped and cloned. Increasing evidence 
suggests that these diseases have the same molecular mechanisms 
and pathophysiological processes as other neurodegenerative dis-
eases. Most SCA mutations involve the expansion of the trinuclear 
CAG sequence, which encodes a polyglutamine tract.48

However, only a few studies have confirmed the differential ex-
pression of some lncRNAs in SCAs. NEAT1L is not only dysregulated 
in patients with HD but also highly expressed in the SCA1, SCA2 and 
SCA7 mouse brain.34 The significance of the elevated expression 
of NEAT1L in SCA has not been verified experimentally, but given 
previous conclusions in HD studies, we infer that NEAT1L may play 
a protective role in the setting of CAG repeat expansion disease. 
Another notable study has examined SCA7, a neurodegenerative 
disease caused by repeated amplification of CAG in ATXN7 (which 
encodes a basic component of the mammalian transcriptional syner-
gistic activation complex, STAGA), although the factors underlying 
the characteristic progressive cerebellar and retinal degeneration in 
patients are unclear. Lnc-SCA7 arises from retrotransposition of the 
gene encoding ataxin-7-like protein 3 (Atxn7l3), a distant paralog of 
Atxn7, and the expression of lnc-SCA7 has been found to be signifi-
cantly associated with that of ATXN7 across human and mouse adult 
tissues and postnatal CNS regions. Through the study of an SCA7 
mouse model, Tan et al. have found that lnc-SCA7 modulates the 
expression of Atxn7 via a transcript-dependent mechanism, which 
is likely to be achieved through the miR-124 expression level rather 
than the translation of its putative ORF.49

4  |  LNCRNA S IN THE DIAGNOSIS AND 
TRE ATMENT OF POLYQ DISE A SE

The large number and tissue-specific expression of lncRNAs, as com-
pared with coding genes, make them possible markers for disease di-
agnosis and treatment.49 The lncRNA HTT-AS can be detected in the 
blood in patients with HD and thus may have potential applications 
in molecular diagnosis.38 Brain-derived neurotrophic factor (BDNF) 
belongs to a class of secreted growth factors that are essential for 
neuronal maturation and survival.50 BDNF-AS, an overlapping anti-
sense lncRNA, has been reported to inhibit expression of BDNF at 
the post-transcriptional level.51,52 The level of BDNF is diminished 
in the brain in patients with HD, and overexpression of BDNF in 
the forebrain in a mouse model has been confirmed to rescue the 
HD phenotype.53 Given that BDNF plays such a key role in HD, 

increasing BDNF levels by down-regulating BDNF-AS may be a rea-
sonable method for HD treatment.54 HTT-AS may be also a prom-
ising lncRNA for treating polyQ diseases. It forms 5´ head-to-head 
bifurcation pairs that overlap with the CAG amplification region and 
the 5´ UTR of HTT mRNA, thus regulating expression of the HTT 
gene.39 Gene therapy with lentiviral vectors has become an effective 
method for the treatment of hereditary diseases. LncRNAs and their 
loci can be targeted in treatments through the design and synthesis 
of specific nucleic acid sequences, such as CRISPR/Cas9 sequences, 
antisense oligonucleotides and small interfering RNAs. However, 
unlike mRNAs, most lncRNAs are located in the nucleus and have 
high-level structures. Oligonucleotide drugs must enter the cell and 
bind their target RNAs to be effective, thus posing challenges in 
drug delivery and intrinsic affinity. To solve these problems, com-
monly used methods include modifying oligonucleotide sequences 
and developing nano-drugs to improve drug delivery.55–57 Lentiviral 
vectors are another choice as a carrier of lncRNAs. Francelle et al., 
through in vivo experiments using lentiviral vector bearing Abhd11°s 
sequences in HD mice, have found that overexpression of Abhd11°s 
exerts a neuroprotective effect against an N-terminal fragment of 
mHTT.35

Although the application of lncRNAs as diagnostic biomarkers 
and potential treatment strategies for polyQ disease has a bright fu-
ture, many difficulties remain to be overcome before clinical appli-
cation. Currently, the detection of circulating lncRNA faces several 
challenges. For example, a consensus is lacking regarding the refer-
ence genes of circulating lncRNAs; moreover, it is not possible to de-
termine which genes are stable and can serve as internal reference 
genes, and how to use appropriate reference genes to calculate the 
expression of circulating lncRNA. Therefore, methods to improve 
the accuracy of detection must be further studied. Furthermore, dif-
ferentially expressed circulating lncRNAs lack specificity for specific 
neurodegenerative diseases. For example, NEAT1 has been found 
to be differentially expressed in AD,58 Parkinson's disease59 and 
amyotrophic lateral sclerosis.60 The occurrence and development of 
polyQ disease is a result of the combined actions of multiple genes. 
Therefore, the detection of only one type of circulating lncRNA has 
limited specificity and sensitivity. Combined detection of multiple 
lncRNAs and the combined diagnostic application with traditional 
serum markers can greatly improve the diagnostic value and will be 
an important direction in future developments. The actual mecha-
nism of lncRNAs as a therapeutic strategy is not fully understood. 
The development of Genasense failed because of the lack of in-
depth understanding of its mechanisms, thus revealing the impor-
tance of understanding mechanisms in drug development.61 Second, 
owing to the low conservatism of lncRNAs, some lncRNAs are ex-
pressed only in primates; therefore, establishing a general experi-
mental model is difficult.62 For most lncRNAs, appropriate animal 
models have not yet been constructed, but the availability of such 
models will be essential to understanding lncRNA function. Third, 
although some experiments on the application of lncRNA have been 
performed, the experimental results are not very reliable because of 
the small sample sizes.57 However, with the gradual advancement of 
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lncRNA research, the prospects of using lncRNAs for the treatment 
of polyQ disease are broad.

5  |  CONCLUSIONS

In recent years, researchers have gradually deepened understand-
ing of lncRNA and have found that lncRNAs play roles in physio-
logical and pathological processes through epigenetic modification, 
post-transcriptional regulation, translation and post-translational 
modification. Similarly, lncRNAs also play important roles in the 
pathogenesis of polyQ diseases. Because in vitro and in vivo studies 
have demonstrated significant effects on the inhibition of mutant 
proteins in polyQ diseases, the development of efficient lncRNA de-
livery technology should be a promising strategy in this direction. By 
exploring advanced molecular biology techniques, lncRNA-mediated 
gene regulation may be a potential method for the treatment of 
polyQ diseases.
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