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Abstract

The straw-colored fruit bat (Eidolon helvum) is a pteropodid whose conservation is crucial

for maintaining functional connectivity of plant populations in tropical Africa. Land conver-

sion has pushed this species to adapt to roosting in urban centers across its range. These

colonies often host millions of individuals, creating intensive human-bat contact interfaces

that could facilitate the spillover of coronaviruses shed by these bats. A better understanding

of coronavirus dynamics in these roosts is needed to identify peak times of exposure risk in

order to propose evidence-based management that supports safe human-bat coexistence,

as well as the conservation of this chiropteran. We studied the temporal patterns of corona-

virus shedding in E. helvum, by testing thousands of longitudinally-collected fecal samples

from two spatially distant urban roosts in Ghana and Tanzania. Shedding of coronaviruses

peaked during the second part of pup weaning in both roosts. Assuming that coronavirus

shedding is directly related to spillover risk, our results indicate that exposure mitigation

should target reducing contact between people and E. helvum roosts during the pup “wean-

ing” period. This recommendation can be applied across the many highly-populated urban

sites occupied by E. helvum across Africa.

Introduction

The straw-colored fruit bat (Eidolon helvum) is a pteropodid widely distributed in tropical

Africa with a described range of at least ~12 million km2 [1, 2]. Its reproductive cycle is sea-

sonal, with delayed implantation [3] and a highly synchronized annual birth pulse [4–6].

Estrus, pregnancy, and birthing seem to occur in several locations but their timing can vary
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across latitudes [4–8]. E. helvum bats roost in trees, forming dynamic colonies that can host

millions of individuals [5, 9–11], and massive migration can cause a 40–50 fold roost size dif-

ference between the annual minimum and peak roost size [11–14].

E. helvum is thought to be a unique seed disperser as a consequence of its large migratory

movements and variable gut passage time [15–17]. Given the ongoing habitat fragmentation

in Africa, seed dispersers that travel over large distances and retain seeds for long periods are

particularly important for maintaining functional connectivity and gene flow of plant popula-

tions in degraded landscapes [16]. Consequently, the conservation of this bat species and the

provision of its ecosystem services are crucial for tropical Africa.

The straw-colored fruit bat is also a distinct species because it has adapted to habitat

destruction by occupying trees in several busy urban centers across its range [7, 18, 19]. These

roosts can host millions of individuals [11, 12], creating intensive human-bat contact interfaces

that facilitate exposure of people to the feces and urine of these chiropterans [7, 20] and possi-

bly to pathogens that are shed through these excretions.

Indeed, available data suggest that E. helvum hosts several viruses. Surveys in urban and

non-urban colonies have reported the detection of viral RNA and DNA and isolation of viruses

from diverse viral taxonomic families including those with zoonotic species ([19, 21–23]; S1

File). Coronaviruses (Coronaviridae family; CoVs) are an important group of viruses previ-

ously detected in these bats [24–32]. This viral family includes SARS-CoV-1, MERS CoV, the

etiology of the current COVID-19 pandemic (SARS-CoV-2) and around half of the new

viruses with highest ranking of animal to human transmission risk following expert opinion

[33].

Concerns about public health risks associated with prevalent CoVs and intense human-bat

interfaces across the extended range of E. helvum, together with the strong need to support the

conservation of this chiropteran, underscore the management challenge. Better understanding

of CoV dynamics in urban roosts are needed to propose evidence-based risk management that

promotes the safe coexistence of E. helvum and people. If viral shedding has high and low peri-

ods, then viral exposure could be mitigated through seasonal management of human behavior.

However, CoV shedding patterns in E. helvum roosts remain almost unknown. Indeed, there

is a lack of general understanding of CoV ecology in African bats, despite these viruses having

been reported in these chiropterans [34, 35] and areas of Africa having been identified as

global hot spots of disease emergence [36].

Here, we aimed to identify CoV shedding patterns in E. helvum roosts and propose data-

based realistic strategies that could support a safer, ethical coexistence between bats and peo-

ple. To accomplish these objectives, we conducted a unique, robust, longitudinal collection

and testing of thousands of fecal samples for an entire year in two spatially distant roosts

(Ghana and Tanzania, located ~4,400 km apart). We hypothesized that CoV shedding in these

roosts is variable over time and associated with E. helvum annual reproductive events. The

identification of such events could offer opportunities for targeted management to reduce

human exposure risk at the studied roosts and others across Africa. We tested this hypothesis

by comparing the fit of different logistic models to the data and by estimating the association

between the reproductive periods and CoV shedding.

Methods

Study period and studied roosts

We studied two previously described E. helvum urban colonies: the roost at the 37 Military

Hospital (5.5882, -0.1824) in Accra, Ghana (West Africa; [7, 11, 19, 21, 37, 38]) and at the

Kikundi Market and Nunge Court (-6.8233, 37.6662) in Morogoro, Tanzania (East Africa; [7];
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Fig 1). Accra is the capital city of the Republic of Ghana with a population of 2.9 million people

and Morogoro is a regional capital in Eastern Tanzania with a population of 315,866 people

[39, 40]. The 37 Military Hospital is located in a busy and heavily urbanized area of Accra, at

the junction of two main avenues with major car, public transport, and pedestrian traffic.

Occupied trees are within and around the hospital property. The Kikundi Market and Nunge

Court are situated in a busy commercial area of Morogoro mainly occupied by pedestrians

and market vendors. Human structures at this site are not as developed nor dense compared

to the 37 Military Hospital area. Occupied trees are adjacent to public buildings and houses, as

well as empty plots. The 37 Military Hospital roost in Accra (hereafter “Accra”) was studied

during March 2017-February 2018. The Kikundi Market and Nunge Court roost in Morogoro

(hereafter “Morogoro”) was studied during August 2017-July 2018. These roosts are separated

by ~4,400 km (Fig 1).

Roost census

We counted the straw-colored fruit bats in both colonies on a monthly basis over an entire

year during the study period (see above). We followed a previously applied method to obtain

an index of abundance of the E. helvum population (e.g., [12]). Briefly, we censused bats in the

colonies by hierarchically adding the estimated number of bats per roosting group (cluster),

per tree branch, and per tree.

The censuses were conducted during the morning when the bats settled down after forag-

ing. Broad-canopy trees allowed the counting of bats in all occupied trees. No other bat species

Fig 1. Location of the studied Eidolon helvum roosts. Panel A shows the locations of the roosts in Africa. Panel B shows some of the trees occupied at

the 37 Military Hospital in Accra, Ghana and Panel C shows roosting bats at the Kikundi Market in Morogoro, Tanzania.

https://doi.org/10.1371/journal.pone.0274490.g001
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were observed, and barcoding of a subset of fecal samples corroborated the single species

composition.

Roost sampling

We collected 97 fecal samples per roost per month, based on an expected CoV shedding pro-

portion of 0.1, an expected precision of 0.1, and a confidence level of 95% (Z = 1.96). Each

month, we set eight new 16 m2 plastic sheets (four by four m disposable tablecloths) below a

specific set of trees to collect feces as previously described ([21, 41]; S1 Fig). In Accra, the loca-

tions of the plastic sheets were consistent across monthly sampling events. In Morogoro, the

locations of the plastic sheet placement varied as the colony moved between the Kikundi Mar-

ket and the nearby Nunge Court during the study period (see Results section). However,

within each area, the locations of the plastic sheets were consistent.

Feces were collected between 3:30 and 6:30 am in order to catch samples from the bats as

they were returning to the roost, obtain fresh droppings deposited beneath the trees, and opti-

mize timing when fewer people were present at the sites. We assumed that each fecal sample

belonged to a single bat, as they typically defecate once during this sampling time period [16]

and because we collected samples ~1 m apart from each other. Samples were first collected

along the edges of the first plastic sheet (~12 samples) followed by sample collection from the

central area (~4 more samples). Then we moved to the next plastic sheet and repeated the

process.

Feces were collected using a sterile polyester-tipped swab as they were deposited to limit

contamination with urine and feces from other bats. Specimens (swab tip and feces) were

placed into separate tubes containing either Trizol1 reagent or Viral Transport Media, imme-

diately stored in liquid nitrogen, and kept at -80 C until testing.

Non-invasive sample collection and exportation of samples to the United States was accom-

plished with the permission of the Tanzania Research Institute, the Wildlife Division of the

Ghana Forestry Commission (2017-264-ER-2011-29), the Ghana Veterinary Services Direc-

torate of the Ministry of Food and Agriculture, the Noguchi Memorial Institute for Medical

Research, University of Ghana (2016-01-1X), and the Institutional Animal Care and Use Com-

mittees (IACUC) at the University of California, Davis (protocol number: 16048).

Coronavirus presence and viral identification

We extracted RNA from all fecal samples (2,328 total samples), and cDNA was prepared as

previously described [34]. Two broadly reactive consensus PCR assays (“Quan” and “Wata-

nabe”) targeting different peptides of the RNA-dependent RNA polymerase were used in

order to detect both known and novel coronaviruses [42, 43]. Amplified products of the

expected size (a ~332 bp length fragment for Quan and a ~434 bp length fragment for Wata-

nabe) were cloned and sequenced as reported by Anthony et al. [34]. We conducted a BLAST

analysis to compare the nucleotide sequences to existing CoV RNA-dependent RNA-polymer-

ase gene sequences in the GenBank database using Geneious Prime 2019.2 [44]. Sequences

were taxonomically classified following Anthony et al. [34]. A fecal sample was considered pos-

itive when at least one assay was PCR-positive and it was taxonomically classified as a CoV.

We assumed that a bat sourcing a positive fecal sample was shedding CoVs.

Reproductive cycle

We did not capture bats for this study; therefore, direct confirmation of pregnant females, neo-

nates, and juveniles was not feasible. Moreover, we did not identify nor count pups attached to

dams because they are very difficult to observe [1, 7, 11]. Consequently, the reproductive cycle
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was inferred based on: i) our previous data of this species in Morogoro and Accra; ii) the syn-

chronized yearly birth pulse of this species [3, 5, 18, 45]; iii) the potential heterogeneity in the

time of estrus, pregnancy, and birth pulse across latitudes [4, 5, 45]; iv) the previous observa-

tion of neonates in Ghana [38]; v) previous observations in the Morogoro and Accra roosts [7,

8, 11, 19, 37, 46]; and vi) reported birth pulse of 2.5–3 months and 60 days of lactation period

[18].

Therefore, in the case of Accra, we assigned April 15th as the start date of the “lactation”

period, June 15th as the last day of the birth pulse, and June 16th as the first date of the pup

weaning period. In the case of Morogoro, we assigned December 15th as the start date of the

“lactation” period, February 15th as the last day of the birth pulse, and February 16th as the

first date of the “weaning” period. The end of the weaning period was set four months later

(October 15th and June 15th in Accra and Morogoro, respectively) because we expected the

potential effects of the “weaning” on CoV dynamics to last up to one month after the last pups

of the season were weaned. The days immediately following these dates were set as the begin-

ning of the “rest of year” period in the corresponding colonies. The defined reproductive sea-

sons were consistent with previously proposed reproductive cycles [4, 7, 18, 45].

Precipitation

Daily cumulative precipitation per month was quantified using data from the ERA-interim,

a global atmospheric reanalysis at 0.75˚ x 0.75˚ resolution (T255) gridded climatic database

from the European Centre for Medium-Range Weather Forecasts [47]. We tracked the precip-

itation during the study period and assessed the appropriateness of the inferred reproductive

cycle. Specifically, we expected the precipitation peak to occur after the birth pulse as reported

in other E. helvum East- and West-African roosts [18, 45].

Statistical analysis

To assess the seasonality of CoV shedding, we compared an “intercept-only” logistic model

that assumed constant CoV shedding over time versus a “sine-cosine” logistic model that

allowed for seasonal cycling of CoV shedding with a period of 12 months and a single annual

maximum and minimum [48]. Shedding of CoV in the ith E. helvum fecal samples was mod-

eled as a Bernoulli process (S2 File). The fit of these logistic models to the data was compared

using the Leave-one-out information criterion (LOOIC [49]) as implemented in the package

“loo” for R [50]. We considered that seasonality was supported if the sine-cosine model had a

better fit (lower LOOIC) and if the 95% Highest Posterior Density Intervals (95% HPDIs) of at

least two monthly CoV shedding posterior predictive distributions (PpreDs) did not overlap.

The 95% HPDI shows the narrowest interval of values containing the 95% of a distribution’s

density. Because few positives were detected in Accra, statistical modeling was conducted with

Morogoro data only.

To assess the association between the reproductive cycle and CoV shedding, we constructed

two logistic models. The “fixed effects” model linked the detection of CoV, assumed as a Ber-
noulli process, to the reproductive periods. The second model, the “hierarchical model”, also

assumed a Bernoulli process but grouped E. helvum fecal samples per month of collection, and

months were grouped per reproductive period (S2 File). The “fixed effects” model supported

that bats have higher odds of CoV shedding during the “weaning” period compared to the

“rest of the year” if the 95% HPDI of the corresponding odds ratio Posterior Probability Distri-

butions (PProD) did not include 1. Similarly, we evaluated the odds of CoV shedding during

the “lactation” versus the “rest of the year” periods and during the “weaning” versus the “lacta-

tion” periods. The “hierarchical model” supported that the odds of a CoV shedding during
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month m belonging to the r reproductive period were higher than the odds in month m’ within

the reproductive period r’ if the 95% HPDI of the corresponding odds ratio PProD did not

include 1. Moreover, a larger standard deviation of the reproductive period distribution (σR)

compared to a larger standard deviation of the month distribution (σM) suggested larger CoV

shedding variability among reproductive periods than among months.

All models were constructed using Stan v. 2.17.0 which was run from R v. 3.6.0 through the

package RStan v. 2.18.2 [51–53]. More details of the Markov Chain Monte Carlo (MCMC)

sampling and sampling diagnostics are provided in S3 File.

Results

Roost census

During the 12-month study period, the Morogoro colony roosted at the Kikundi Market from

August to October 2017 and from May to June 2018. The colony was settled in Nunge Court

from November 2017 to April 2018, and in July 2018. These locations are separated by 850 m.

Morogoro roost abundance peaked during December 2017-March 2018 (~45,000 in February)

and was smallest from August to November 2017 and April to July 2018 (~2,500 in June). The

Accra roost peaked during December 2017-February 2018 (~1.2 million in December) and

reached a nadir from March to November 2017 (~4,000 in June). Bat abundance in Morogoro

increased during the “lactation” period, peaked at the beginning of the “weaning” period, and

began to decline after the wet season began. Bat abundance in Accra remained relatively con-

stant during the “lactation” and “weaning” periods, increased steeply until midpoint of the

“rest of the year” period, and decreased thereafter (Fig 2). We did not count pups attached to

the dams; therefore, the counts reflected migration and seasonal addition of weaned pups.

Roost sampling and coronavirus identification

Overall, 125 and 14 fecal samples were positive for CoVs in Morogoro and Accra, respectively

(proportion of positive samples were 0.107 [125/1164] and 0.012 [14/1164], respectively). The

Genbank Accession Numbers are MT797294.1-MT797304.1; MT797562.1-MT797572.1;

MT797305.1-MT797384.1; MT797573.1-MT797628.1; and MW007350.1. The monthly pro-

portion of positive feces varied with a minimum of 0.03 and 0 and peaks of 0.24 and 0.04 in

Morogoro and Accra, respectively. The proportion of positive feces in the “lactation”, “wean-

ing”, and the “rest of the year” periods were 0.088, 0.153, and 0.084 in Morogoro and 0, 0.018,

and 0.012 in Accra (Fig 2).

BLAST analyses showed that all coronaviruses detected in this study had pairwise sequence

identity between 97.70% and 99.90% with the previously reported Eidolon bat coronavirus/

Kenya/KY24/2006 of the genus Betacoronavirus (pairwise sequence identity ranged between

97.70% to 99.70% in Accra and between 98.10% to 99.90% in Morogoro).

Precipitation

In Morogoro, the precipitation was low from September through February and in July, with

the rainy season starting in March and ending in June. In Accra, the rainy season started in

March and ended in August, and the dry season extended from October through February.

The peak of the wet season paralleled the “weaning” period in both roosts (Fig 2).

Statistical analysis

MCMC sampling diagnostics are provided in S4 File. Summaries of the Posterior Probability

Distributions (PProDs) of models’ parameters are provided in S5 File. The LOOIC of the
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Fig 2. Eidolon helvum monthly abundance (blue line), precipitation (green line), and coronavirus shedding (red line) at the roost in Morogoro,

Tanzania (left); and at the roost in Accra, Ghana (right). Color bands indicate the “lactation” (orange), “weaning” (purple), and “rest of the year”

(blue) reproductive periods.

https://doi.org/10.1371/journal.pone.0274490.g002
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intercept-only model and the sine-cosine model were 795.462 and 764.9, respectively, suggest-

ing a better fit of the latter, which incorporated seasonality. Some of the modeled monthly pro-

portions of E. helvum shedding CoV (PpreDs) did not overlap: i) from October to January

versus June and ii) from November to December versus May and July. The lack of overlap fur-

ther supports CoV shedding seasonality based on the criteria established in the “Methods” sec-

tion (Table 1).

According to the “fixed model” 95% HPDI results, the odds of CoV shedding during the

“weaning” period were between 1.24 and 2.65 times higher than in the “rest of the year”, and

1.06 to 3.16 times higher during the “weaning” period compared to the “lactation” period.

Lastly, the model does not support differences between the “lactation” and “rest of the year”

period (odds ratio covered the neutral value of 1; Fig 3).

Table 1. The lower and upper endpoints of the 95% Highest Posterior Density Interval (HPDI) of the predicted

monthly proportion of Eidolon helvum shedding coronaviruses in Morogoro, Tanzania produced by a sine-cosine

model with a period of 12 months and a single annual maximum and minimum.

Month 95% Highest Posterior Density Interval endpoints

Minimum Maximum

August 0.052 0.196

September 0.031 0.144

October1 0.010 0.103

November1,3 0.010 0.093

December1,3 0.010 0.093

January1 0.010 0.103

February 0.031 0.144

March 0.052 0.196

April 0.072 0.227

May4 0.095 0.263

June2 0.113 0.278

July4 0.093 0.258

1 and 2 months have 95% HPDIs that do not overlap.
3 and 4 months have 95% HPDIs that do not overlap.

https://doi.org/10.1371/journal.pone.0274490.t001

Fig 3. The Posterior Probability Distributions (light blue) and the corresponding 95% Highest Posterior Density Interval (blue) of the odds ratio

for coronavirus shedding by Eidolon helvum in the roost at Morogoro Tanzania during the “weaning” period versus the “rest of the year”, during

the “weaning” period versus the “lactation” period, and during the “lactation” period versus the “rest of the year”. The vertical black line indicates

a neutral odds ratio with a value of one.

https://doi.org/10.1371/journal.pone.0274490.g003
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The “hierarchical model” results showed higher odds of CoV shedding during the later

months of the “weaning” period compared to the “rest of the year”, as well as heightened shed-

ding during the peak of the “weaning” period versus the “lactation” period. Moreover, the

reproductive period standard deviation PProD (σR) tended to contain larger values compared

to the month standard deviation PProD (σM; S5 and S6 Files).

Discussion

The straw-colored fruit-bat, E. helvum, is a key seed-disperser of Africa that has responded to

land-use change by occupying trees in urban centers. This adaptation has led to intense

human-bat interfaces across the continent. Coronaviruses in these bats are prevalent at these

interfaces, presenting a challenge to reduce pathogen exposure in people while also supporting

bat conservation.

To assess public health and conservation win-win solutions, we conducted a longitudinal

study to assess coronavirus shedding dynamics in E. helvum urban colonies. This unique effort

involved the testing of thousands of fecal samples that were collected on a monthly basis dur-

ing an entire year, the inclusion of two urban roosts separated by more than four thousand

km, the quantification of roost sizes across the study, and the inference of the reproductive sea-

sons at both colonies.

The coronaviruses detected in both colonies had high pairwise sequence identity with the

betacoronavirus Eidolon bat coronavirus/Kenya/KY24/2006 which has been found in E. helvum
elsewhere in Africa [24, 26, 27, 34, 54]. This strain represents approximately 94% of all corona-

virus detections in this species to date [55]. Eidolon bat coronavirus/Kenya/KY24/2006 has also

been reported in the Chiropterans Epomops franqueti, Megaloglossus woermanni, Mops condy-
lurus, Rousettus aegyptiacus, Scotophilus dinganii, Tadarida sp., and Triaenops persicus [55].

Until proven otherwise, there is no evidence to date that the specific coronaviruses detected in

the studied bat colonies in Morogoro or Accra present a threat to people’s health and the RNA

detected in this study through PCR does not necessarily equate to an infectious coronavirus.

Nevertheless, its broad distribution inclusive of urban areas, warrants further study.

The overall proportion of positive feces was markedly lower in Accra despite equivalent

sampling, storage, transport, and testing protocols. Low coronavirus detection has been previ-

ously reported in Ghanaian E. helvum roosts [56, 57]. We could not assess if roost-specific

demography could explain these results because we did not capture animals and demographic

data is limited and arguably biased [7].

In both roosts, our results support that coronavirus shedding is seasonal with a peak during

the corresponding colony pup weaning season, regardless of the dramatically different roost

sizes. In Morogoro, the peak roost size precedes the coronavirus detection peak, but the detec-

tion peak occurs before the peak population size in Accra. We observed that as the colony size

increased also did the number of occupied trees, whilst roosting group size seemed to remain

constant. The parallel change in bat populations and occupied trees with perceived constant

group sizes may have yielded relatively similar contact rates over time and is consistent with

the absence of an evident trend between roost size and CoV detection.

Coronavirus shedding seasonality with a peak in the weaning season has been reported in

non-African bat species ([58–63] but see [64]). However, only point estimates of coronavirus

positivity have been presented to date, except for three studies that provided confidence inter-

vals but assuming statistical independence of the tested specimens regarding coronavirus pres-

ence [59, 62, 63]. The confidence intervals during each sampling event reported in [59, 62]

overlapped, suggesting either a lack of statistical power or an actual difference in positivity

over time. Further, these non-African studies reported inconsistent and small sample sizes,
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had variable time lags between sampling events, included only a single colony (leaving uncer-

tainty about pattern consistency across roosts), or assumed independence of the specimens

collected during the same sampling event. Our design allowed us to overcome these constraints

and to statistically model coronavirus shedding to support the feasibility of seasonal manage-

ment of human exposure risk to coronavirus shedding in densely-populated human areas.

The assumed coronavirus shedding seasonality has hypothetically been attributed to the

waning of passively-acquired maternal antibodies in neonates [58]. Supporting this idea, coro-

navirus detection was more common during weaning periods and in non-adult bats [25, 34,

59, 61, 62, 65–67]. We did not directly observe pups as part of this non-invasive study, but our

group and previous authors have observed them attached to lactating females in both studied

colonies [19, 37], favoring the possibility of naïve juvenile influx as a driver of coronavirus

infection during the weaning period. This influx could impact coronavirus transmission across

the entire colony, leading to higher detection in adult bats during the weaning period as well

[25, 65]. Higher detection during this season could also be multifactorial. For example, E. hel-
vum mates during the weaning period [3, 18], which could also impact contact rates, suscepti-

bility, and infectiousness of individuals, and consequently, virus transmission dynamics.

Eidolon helvum can migrate thousands of km and this species is proposed to be panmictic

at<6,500 km across its continental African range [22]; however, migration routes and inter-

connectivity among distant colonies remain unknown. We did not aim to study the epidemio-

logical relationships among the studied roosts and the impact of coronavirus dynamics in a

roost upon the trends of other roosts remains unknown.

The logistical challenges to mitigate human viral exposure at urban bat colonies highlight

the potential for evidence-based forecasting of high shedding seasons that could guide resource

allocation. Although more research is needed to characterize the zoonotic potential of the

coronaviruses hosted by E. helvum and to understand whether greater shedding is associated

with higher probabilities of spillover, our results support that the resources available to prevent

human coronavirus exposure at urban colonies could be more efficiently targeted for use dur-

ing the high-shedding “weaning” period. During this period, access to roosts and surrounding

areas could be limited, especially at the times of the day when bats are actively leaving and

returning to their roots. Hunting and selling of bats could be seasonally banned to protect

human health. Consumption could also be generally discouraged. In addition, human-use

areas below roost trees could be adapted to protect people from bat droppings.

E. helvum is a key seed disperser for the currently highly-fragmented habitats of tropical

Africa [16, 17], which makes their protection a conservation priority for the bats themselves,

as well as the tropical plant species that they support. Therefore, management strategies that

avoid culling are essential. Besides the ethical and welfare concerns, retaliatory killing has

failed to reduce viral infection levels in bats, and this practice could lead to younger popula-

tions, favoring infection and shedding in roosts [68]. Mitigation of coronavirus exposure by

seasonally altering human behavior also prevents roost perturbation during the ecologically-

sensitive period when pups are born, nursed, and weaned.

We expect that our model-based definition of a high-shedding season will be applicable for

roosts located in other urban centers of Africa [5, 7, 18, 19]. Previous data can support the pre-

diction of the birth pulses and weaning periods over time and space for targeting mitigation

interventions in other colonies [69].

Conclusions

Straw-colored fruit bats (E. helvum) at the urban roosts of the 37 Military Hospital (Accra,

Ghana, West Africa) and Kikundi Market–Nunge Court (Morogoro, Tanzania, East Africa)
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shed coronaviruses through feces not uniformly across the year but seasonally in association

with the annual reproductive cycle of this species. In these two urban roosts, coronaviruses

were found in a higher proportion of fecal samples during the corresponding annual weaning

period.

These two urban roosts represent a main wildlife-human interface for conservation conflict

but also for zoonotic pathogen transmission. Therefore, understanding the critical moments

of coronavirus shedding to prevent spillover is key to elaborate win-win One Health solutions

that promote the delivery of the ecosystems services provided by E, helvum, a prominent Afri-

can seed-disperser, while safeguarding public health.

The consistency of the observed coronavirus shedding dynamics support that human expo-

sure to urban E. helvum roosts should be limited when individuals smaller than the adult size

are sighted (to establish the birth pulse-weaning period). This criterion can be applied in loca-

tions where sample collection and testing are hard to accomplish or where they are simply

infeasible. Model-based establishment of reproductive seasons is a potential promising tool to

apply this mitigation strategy across E. helvum range.
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