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The aim of this study was to analyze the diversity of the macrolide resistance gene, erm(C) in relation to structural
alterations affecting the gene expression. In addition, the association of erm(C) to mobile genetic elements (MGEs) in
staphylococci mainly from Danish pigs was investigated. In total, 78 erythromycin-resistant isolates were screened for
erm(C) by PCR. The erm(C) genes incl. the upstream regulatory region were sequenced and the expression types were
characterized phenotypically (agar diffusion test) and genotypically (sequence analysis). Phylogenetic analysis of erm(C)
was compared with structural alterations affecting the gene expression. Plasmids carrying erm(C) from seven selected
isolates were fully or partially sequenced. Thirty-seven isolates were shown to be erm(C) positive and erm(C) from pigs
were all constitutively expressed, mainly caused by different sized deletions (118, 111, 107, 70, 66, 16 and 3 bp) in the
regulatory region. Duplication (63 bp) and substitutions were also found to cause a constitutive phenotype. Only one
horse isolate had an inducible expression type. Phylogenetic analysis showed that structural alterations have happened
in different erm(C) allele groups and not only in one group. Furthermore erm(C) was found mainly on plasmids
(~2.4–8 kb) and gene sequence types correlated with plasmid replication (rep) gene types. One erm(C) type was linked to
an IS257 element able to circularize. In conclusion, structural alterations giving rise to constitutive expression of erm(C)
have happened several times in the evolution of erm(C). Interestingly, the diversity of erm(C) appears to be linked to the
plasmid type or MGE carrying the gene.

Introduction

Staphylococci are part of the natural skin flora and count for some
of the most important veterinary pathogens, e.g., Staphylococcus
aureus and Staphylococcus hyicus.1 A very high prevalence of
macrolide-lincosamide-streptogramin B (MLSB) resistance isolates
has been found among staphylococcal isolates from animals,2 and
the erythromycin ribosome methylase (erm) gene erm(C) is the
most predominant MLSB resistance gene in staphylococcal isolates
from both humans and animals.3,4 The erm(C) gene has mostly
been found on small multi-copy plasmids (2.3–2.5 kb),5 but also
larger and more diverse plasmids (3.7–4 kb) with mobilization
(mob) and/or plasmid recombination (pre) genes have been
reported.6-9

The expression of erm(C) can be either inducible or con-
stitutive. Macrolide antibiotics are characterized by a lactone ring
containing 12–16 members, but only 14- and 15-membered
macrolides like erythromycin can induce erm(C) expression by
translational attenuation.10-13 This mechanism is controlled by
the formation of a hairpin structure of the erm(C) mRNA formed
by the pairing of four inverted repeat (IR) sequences located in the
region upstream of erm(C) (Fig. 1A).10,12 In the absence of an

inducer, IR1 pairs with IR2 and IR3 pairs with IR4 in a two loop
structure which renders the erm(C) start codon non-accessible to
the ribosome, and only a leader peptide located just upstream of
erm(C) is translated.10 Upon induction, inducers bind to the
ribosome translating the leader, which leads to alteration in the
mRNA secondary structure so that IR2 pairs with IR3, the erm(C)
start codon becomes accessible, and erm(C) is translated.10

Structural alterations within the upstream region of erm(C) can
result in constitutive expression of erm(C) which also confers
resistance to 16-membered macrolides (e.g., tylosin) and lincosa-
mides, streptogramin B and ketolides.7,9,14,15 Clinical reports and
in vitro studies have shown that the gene expression can change
from inducible to constitutive under selective pressure of non
inducers.5,15-18 Although the use of non-inducing growth pro-
moters such as tylosin was discontinued in Denmark after 1998,
tylosin is still the predominant macrolide used for therapeutic
treatment of infections in pigs.19,20 Alterations causing constitu-
tive expression of erm(C) are believed to be a result of high
concentrations of non-inducible macrolides like e.g., tylosin in the
environment.5,16

The literature contains a number of reports of structural
alterations detected in the upstream regulatory region of
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erm(C).8,14-16 Until now, three different types have been identified
(Fig. 1): Sequence deletions of varying length, duplications of
parts of the erm(C) gene as well as multiple point muta-
tions.8,14-16 However, no one has studied the evolution of the
erm(C) gene in comparison with different structural alterations
causing a constitutive gene expression, and how the gene
diversity is related to associated mobile genetic elements
(MGEs). Thus, the aim of this study was to analyze the diversity
of erm(C) in relation to structural alterations affecting the gene
expression, and to characterize associated MGEs in staphylococci
mainly from Danish pigs. Specifically, erythromycin resistant
isolates were screened for the erm(C) gene, and a phenotypic test
revealed the erm(C) expression types. Sequence analysis
identified the genetic background for observed phenotypes.
Finally, phylogenetic analysis of the erm(C) gene were compared
with structural alterations causing a constitutive phenotype and
with replicon types (rep gene) found on erm(C) carrying
plasmids.

Results

Screening S. aureus and S. hyicus isolates for erm(C). Out of
78 erythromycin-resistant staphylococcal isolates, 16 S. aureus
and 21 S. hyicus isolates were shown to be positive for erm(C) (all
37 isolates are listed in Table 1). The highest prevalence of
erm(C) was found among S. aureus isolates from pigs, with
60.9% compared with 40.4% among S. hyicus isolates.

Expression types for erm(C). Agar diffusion tests showed that
only one S. aureus horse isolate (7504026-1) had an inducible
clindamycin resistance phenotype (Fig. S1), and sequence analy-
sis showed the upstream regulatory region of erm(C) to be
identical or highly similar to corresponding regions from isolates
known to have an inducible phenotype; S. aureus pT48
(GenBank, M19652), pE5 (GenBank, M17990), pWG738
(GenBank, DQ088624), pE194 (GenBank, V01278), S. hominis
pSES5 (GenBank, Y09001) and S. lentus pSTE2 (GenBank,
AJ888003). For these sequences, IR1:IR2 (DG = -44.43 kJ/mol,
-10.62 kcal/mol) and IR3:IR4 (DG = -52.72 kJ/mol, -12.60
kcal/mol) were predicted to pair in the absence of an inducer
with a total change in Gibbs free energy of DGtotal = -97.15
kJ/mol (-23.22 kcal/mol) (Fig. 1A). In the presence of an
inducer, IR3 and IR4 were predicted to pair, DG = -66.11
kJ/mol (-15.80 kcal/mol) (Fig. 1A).

Thirty-six S. hyicus and S. aureus isolates (35 from pig and 1
from horse isolates) had a constitutively expressed clindamycin
resistance phenotype (Table 1; Fig. S1). Sequence analysis of the
upstream regulatory region showed that 31 isolates contained
different size deletions (118 bp, 111 bp, 107 bp, 70 bp, 66 bp,
16 bp and 3 bp), predicted to result in alternative secondary
structures of the erm(C) mRNA, leaving IR4 and SD2 accessible
for translation of erm(C) (Fig. 1B). Observed deletions of size,
118 bp, 111 bp and 107 bp included IR1-IR3. Deletions of size
70 bp, 58 bp and 66 bp only included IR1, and pairing of IR2
with IR3 were predicted to be more stable (DG = -66.11 kJ/mol,
-15.80 kcal/mol) than the pairing of IR3 with IR4 (DG =
-52.72 kJ/mol, -12.60 kcal/mol) (Fig. 1A and B). Finally,
deletions of size 6 bp and 3 bp included all or part of IR3. No
pairing of IR3 containing a 3 bp deletion with IR4 was predicted,
since the calculated change in Gibbs free energy (DG -15.90 kJ/
mol, -3.80 kcal/mol) was much higher than the threshold for
pairing (, -41.84 kJ/mol, -10 kcal/mol) (Fig. 1B).

However, four S. hyicus isolates (9805143-1, 9811071-1,
7630009-4, 7430116-4) contained an upstream erm(C) region
with a complete leader sequence and four IR sequences, these
were shown to have a constitutive phenotype. An agar disk
diffusion test of an E. faecalis recipient (JH2–2) transformed with
the plasmid carrying erm(C) from one of these four S. hyicus
isolates (9811071-1), ruled out the possibility that another gene
could have caused the observed constitutive phenotype. The
sequence analysis showed that, for these four isolates, the
upstream erm(C) region contained four IR sequences with a few
substitutions (Fig. 1C) that have not been characterized pre-
viously, and these substitutions could explain the observed
phenotype. The pairing of IR2:IR3 was predicted (DG = -83.68
kJ/mol, -20.00 kcal/mol) instead of IR1:IR2 and IR3:IR4, thus
leaving the IR4 and SD2 accessible for translation of erm(C)
(Fig. 1C). Finally, one isolate that was lost (S. aureus 65–5) could
not be tested phenotypically, but sequence analysis showed it to
contain a 63 bp duplication including an additional SD2´/IR4´ in
the upstream regulatory region (Fig. 1D). This erm(C) gene was
predicted to be constitutively expressed by the pairing of IR1:IR2
(DG = -49.04 kJ/mol, -11.72 kcal/mol) and IR3:IR4´ (DG =
-52.71 kJ/mol, -12.60 kcal/mol) with a total change in Gibbs
free energy of DGtotal = -101.75 kJ/mol (-24.32 kcal/mol) and
leaving IR4 and the erm(C) start site accessible for translation
(Fig. 1C).

Figure 1 (See previous page). Schematic representation of the inducible erm(C) gene and structural alterations in the upstream regulatory region, which
lead to constitutive expression of erm(C). The erm(C) mRNA begins at +1 and besides the erm(C) gene (735 bp) it contains an upstream leader ORF (60
bp). Ribosomal binding sites, Shine Dalgarno sequence (SD) precedes both genes. In the absence of an inducer, the inverted repeat sequences (IR), IR1-
IR4 form a double hairpin structure, rendering the erm(C) start codon non-accessible to the ribosome. Predicted pairing of IR sequences is indicated with
arrows (threshold for predicted pairing was DG , -41.84 kJ/mol, -10 kcal/mol) and hypothetical pairing are indicated with dotted arrows. Structural
alterations that have not previously been reported are highlighted with an asterix (*). (A) The upstream region of erm(C) from the S. aureus isolate
(7504026–1) shown to have an inducible phenotype aligned with two GenBank sequences known to have an inducible phenotype. (B). The region
upstream erm(C) containing deletions resulting in a constitutive phenotype. The alignment shows the different size deletions found in sequences from
this study that had a constitutive phenotype. (C). Substitutions (underlined in read) in the upstream region of erm(C) from four S. hyicus isolates were
predicted to result in the pairing of IR2 with IR3, which explains the constitutive phenotype (see text). (D) The upstream region of erm(C) in the S. aureus
isolate (65–5) predicted to have a constitutive expression of erm(C) due to a 63 bp duplication containing a truncated erm(C)´ including an additional
SD2´/IR4´.
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Table 1. Staphylococci strains carrying erm(C) used in this study

Strain Species Source /year Other resistance
phenotypes

Approx size of
erm(C) plasmid or

DNA ring1

erm(C)
phylogenetic

group2

Expression
type of erm(C)3

GenBank
accession
number

9710013-1 S. hyicus pig/1997 STR 2.4 kb 4a Constitutive JF968519

9730769-3 S. hyicus pig/1997 PEN, SPT, STR, SUL, TMP 1.7 kb 2 Constitutive JF968541

9805143-1 S. hyicus pig/1998 PEN, STR, SUL, TET, TMP 3.7–4 kb 1b Constitutive JF968536

9805598-14 S. hyicus pig/1998 - 2.4 kb 4a Constitutive JF968536

9810320-1 S. hyicus pig/1998 PEN, STR, TET, TMP 1.7 kb 2 Constitutive JF968538

9811071-1 S. hyicus pig/1998 PEN, SUL, TET, TMP 3.7–4 kb 1b Constitutive JF968540

9831219-14 S. hyicus pig/1998 - 2.4 kb 4a Constitutive JF968524

9905227-14 S. hyicus pig/1999 PEN, STR 2.4 kb 4a Constitutive JF968528

9911527-1 S. hyicus pig/1999 - 2.4 kb 4b Constitutive JF968522

9911757-14 S. hyicus pig/1999 PEN 2.4 kb 4a Constitutive JF968529

7213504-1 S. hyicus pig/2000 CIP, PEN, STR, TET, TMP 2.4 kb 4a Constitutive JF968521

7231274-2 S. hyicus pig/2000 - 2.4 kb 4c Constitutive JF968517

7313178-1 S. hyicus pig/2001 TET 2.4 kb 4a Constitutive JF968543

7313624-1 S. hyicus pig/2001 PEN, STR, TET 2.4 kb 4a Constitutive JF968520

7330561-6 S. hyicus pig/2001 PEN, SPT, STR, SUL, TET, TIA 2.4 kb 4a Constitutive JF968514

7410443-1 S. hyicus pig/2002 PEN, SPT, STR 2.4 kb 4c Constitutive JF968515

7411659-1 S. hyicus pig/2002 CIP, PEN, STR 2.4 kb 4a Constitutive JF968516

7430116-4 S. hyicus pig/2002 PEN 3.7–4 kb 1b Constitutive JF968534

7510871-1 S. hyicus pig/2003 PEN, STR 2.4 kb 4a Constitutive JF968531

7514773-1 S. hyicus pig/2003 PEN, TET 2.4 kb 4a Constitutive JF968518

7630009-4 S. hyicus pig/2004 PEN, STR 3.7–4 kb 1b Constitutive JF968535

7311242-1 S. aureus5 CC398 pig/2001 SPT, STR, TET 2.4 kb 4a Constitutive JF968512

7312429-1 S. aureus pig/2001 SPT 2.4 kb 4c Constitutive JF968510

7411141-1 S. aureus5 CC9 pig/2002 PEN, TET 4 kb 3 Constitutive JF968526

7413727-1 S. aureus5 CC398 pig/2002 PEN, TET 2.4 kb 4a Constitutive JF968513

7414035-2 S. aureus5 CC398 pig/2002 PEN, STR, TET 2.4 kb 4a Constitutive JF968509

7511314-2 S. aureus5 CC398 pig/2003 SPT, TET, TMP 2.4 kb 4a Constitutive JF968508

7512166-1 S. aureus5 CC398 pig/2003 PEN, STR, TET, TMP 7–8 kb 1a Constitutive JF968537

7512986-1 S. aureus5 CC398 pig/2003 SPT, TET 4 kb 3 Constitutive JF968527

7504026-1 S. aureus5 CC30 horse/2003 PEN, STR 2.4 kb 4 Inducible JF968532

7612628-4 S. aureus5 CC398 pig/2004 SPT, TET 7–8 kb 1a Constitutive JF968539

200610584-1 S. aureus5 CC9 pig/2006 PEN, TET, TMP 2.4 kb 4a Constitutive JF968530

200640995-1 S. aureus horse/2006 PEN 2.4 kb 4a Constitutive JF968511

65-5 S. aureus pig/2007 ND ND 4a Constitutive JF968533

66-1 S. aureus5 CC9 pig/2007 - 2.4 kb 4a Constitutive JF968507

71-1 S. aureus5 CC398 pig/2007 PEN, TET, TMP 4 kb 3 Constitutive JF968525

9b S. aureus5 CC398 pig/2007 CEF, PEN, SPT, STR, TET, TMP 2.4 kb 4a Constitutive JF968542

1Determined as the approximate size of the PCR product generated with primers pointing out of the erm(C) gene (primers 2020 and 2021 or 2022).
2Determined by a phylogenetic analysis (Fig. 2). 3Determined by agar diffusion test, except for 65-1 that was predicted to be constitutively expressed. 4PFGE
pattern of 9805598-1 was shown be identical with 9831219-1 and the pattern of 9905227-1 was shown to be identical with 9911757–1 (Fig. S5). 5CC type
that could be deduced from spa types (Table S1). Isolates predicted to be of CC398 represented different related spa types such as t034, t2876, t571. CEF,
Ceftiofur; CIP, Ciprofloxaicin; CHL, chloramphenicol; ERY, erythromycin; FLO, florfenicol; PEN, penicillin; SPE, spectinomycin; STR, streptomycin; SUL,
sulfamethoxazole; TET, tetracycline; TIA, tiamulin; TMP, trimethoprim; ND, not determined.
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Phylogenetic analysis of erm(C) compared with expression
types. Comparing the erm(C) gene and the corresponding amino
acid sequences from all 37 staphylococcal isolates revealed 7
unique sequence types both on DNA and amino acid level. A
phylogenetic analysis of the 37 erm(C) gene sequences and 19
erm(C) GenBank sequences divided them into four erm(C) groups
(Fig. 2). A comparison of the corresponding amino acid sequences
also resulted in the same grouping of four Erm(C) groups (data
not shown). As illustrated in Figure 2, all 56 erm(C) gene sequences
were highly similar (95.1–100% DNA identity). The erm(C)
sequences within groups 2, 3 and 4 were highly related (98.8–99%
DNA identity) whereas erm(C) of group 1 were more distinct
(95.1–95.9% DNA identity) compared with the other groups.

The phylogenetic tree showed structural alterations in the
erm(C) upstream regulatory region to be located in all four erm(C)
groups (Fig. 2). Interestingly, inducible erm(C) genes were
only present within erm(C) group 3 and 4 (e.g., V01278;
pE194 and M19652;pT48/ M117990; pE5) (Fig. 2). Thus com-
plete regulatory sequences of inducible erm(C) genes have not
been reported for sequences belonging to erm(C) group 1 and 2.
Overall, deletions appear to be the most common form of
alteration causing a constitutive erm(C) expression and specific
type/sizes of deletions appear to be specific for the different
erm(C) groups. Only deletions of 16 bp were present in more
than one of the erm(C) groups; the highly related erm(C) group 3
and 4 (Fig. 2). Altogether, this showed that structural alterations

Figure 2. Phylogenetic gene tree of erm(C) compared with structural alterations in the upstream regulatory region of erm(C) conferring constitutive
expression. Sequences from this study (marked in bold letters) were mainly isolated from pigs (Table 1), whereas the GenBank sequences were mainly
from human isolates. Structural alterations causing constitutive expression of erm(C) are marked with a color code, and the type of alteration is noted
with a number which indicates the size (in bp) of deletion or duplication causing the constitutive phenotype. Bootstrap values are indicated at branch
points (out of 1,000 generated NJ trees). The relatively low bootstrap values at some branch points within group 4 can be explained by single nucleotide
differences between sequences in this group.
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giving rise to constitutive expression have happened in different
allele groups of erm(C) as opposed to in one type only.

The erm(C) gene sequences are linked to the plasmid carrying
the gene. In order to test whether the sequenced erm(C) genes
were located on small plasmids, which is most often the case,5-9

PCR reactions using primers pointing in opposite directions out
of erm(C) (Fig. S2), were performed. If erm(C) was located on a
plasmid or a circular DNA molecule, PCR products would be
generated also when the primers were pointing in opposite
directions. In this case, different size PCR products were amplified
for 36 isolates (except S. aureus 65-5 that was lost during the
study), and the product sizes were shown to correlate with the
four erm(C) groups (Fig. 2; Table 1). Full or partial sequencing of
these PCR products, representing each of the four groups, showed
erm(C) of group 1, 3 and 4 to be located on rep containing
plasmids of approximately 2.4–8 kb, whereas erm(C) of group 2
was associated with a IS257-like transposase containing element of
1.7 kb (Fig. S3).

In order to study the relationship between erm(C) and asso-
ciated plasmids, a phylogenetic tree based on sequenced rep genes
from this study and rep genes from erm(C) carrying plasmids
available from GenBank was constructed. The rep genes were
divided into three main groups of repU, repF and repL
corresponding to erm(C) phylogenetic group 1, 3 and 4 respectively
(Fig. 2; Fig. S4). Thus, the erm(C) gene sequences appear to be
linked to the plasmid (or the mobile element) carrying them.

Discussion

The screening of erythromycin resistant staphylococci showed
approximately half of the pig isolates to contain the erm(C) gene
(60.9% of S. aureus and 40.4% of S. hyicus) which is in overall
agreement with former prevalence studies.2,3,21

Phenotypic testing revealed all pig isolates containing erm(C)
to be constitutively expressed, and only one horse isolate was
shown to contain an inducible erm(C) gene. In environments
with high concentrations of non-inducing macrolides (e.g.,
tylosin), staphylococci with constitutively expressed erm(C) genes
are believed to have a selective advantage both to sensitive
staphylococci and to staphylococci containing a regulated erm(C)
gene.5,16 Macrolides are one of the most commonly used anti-
microbial agents for therapeutic treatment of infections in pigs in
Denmark, and tylosin is the predominant macrolide used. Also
large amounts of non-inducing lincosamides are used in pigs.20 In
2008, a total of 14,181 kg macrolide and lincosamides were sold
for therapeutic use in pigs in Denmark. In comparison, only
about half of this use (7,600 kg of macrolide and lincosamides)
was sold for therapeutic treatment in pigs in 1996 (before growth
promoters were discontinued in Denmark), but the use of tylosin
for growth promotion alone was 68,350 kg. Evidence suggesting
that the use of non-inducing macrolides (tylosin for growth
promotion) and lincosamides in domestic animals from Germany,
UK and Denmark have selected for constitutively resistant
erm(C)-carrying staphylococcal strains have also been reported.5

Another study has suggested that the discontinuation of tylosin
use for growth promotion after 1998 in Denmark could be

reflected in the prevalence of regulated erm(C) genes compared
with constitutively expressed genes.16 In contrast, we found that
all pig isolates containing erm(C) (1997–2007) were constitutively
expressed, and therefore our results indicate that the therapeutic
usage of non-inducing macrolide and lincosamides in Denmark still
play an important role in selecting for constitutively expressed
erm(C) genes in staphylococci from pigs. Alternatively, these results
may simply reflect that the main reservoir of erm(C) carrying strains
were selected for constitutively expressed erm(C) genes before the
ban of growth promoters, and that the therapeutic use of macrolides
and lincosamides continue to select for resistance genes such as
erm(C). It is worth noting that the only isolate found to have an
inducible erm(C) expression was from a horse. This may be an
indication of the much lower consumption of macrolides in horses
compared with pigs (in 2008, only about 1 kg of macrolides and
lincosamides were sold for therapeutic use in horses compared with
the 14,181 kg sold for the use in pigs).20 Although, this would have
to be investigated further in a study designed to compare expression
types between different animal reservoirs.

Investigating the genetic basis of the observed expression types,
we found mostly deletions of different size to be the cause of the
constitutive phenotype. In this study, we identified structural
alterations causing constitutive expression of erm(C) that have
not previously been reported. These included deletions of 3 bp, 66
bp, 118 bp, a duplication of 63 bp, and new substitutions within
the IR sequences. The latter alteration was verified to be responsible
for the observed phenotype by transforming the S. hyicus plasmid
carrying erm(C) (9811071-1) into an Enterococcus recipient strain.
This strongly suggests that the erm(C) located on the S. hyicus
plasmid was responsible for the observed phenotype, even if erm(C)
induction might work slightly different in different genera.

The phylogenetic analysis illustrated that different types (sizes)
of structural alterations causing a constitutive erm(C) expression
may appear to be specific for the erm(C) groups, with the
exception of 16 bp deletions that have occurred both in erm(C)
groups 3 and 4. However, a larger test population would be
required to draw any broader conclusions from the observed
trend. A former study showed the recombination system of a
host cell to play a role in the development of different types of
structural alterations associated with constitutive erm(C) gene
expression, and a model for the development of deletions in the
erm(C) regulatory region by homologous recombination sug-
gested the sequence region beginning just before IR3 until SD2
to be involved in a 16 bp deletion.14 The sequence in this region
is identical in erm(C) group 2, 3 and 4 but differs from erm(C)
group 1, which explains why 16 bp deletions have been observed
in erm(C) group 3 and 4, but not in group 1. Replication slippage
or illegitimate recombination may result in tandem duplications
observed in the erm(C) translational attenuator.15 Altogether, our
results showed that different types of alterations causing con-
stitutive expression of erm(C) have happened in different erm(C)
attenuators, and that the size and/or type of alterations that have
happened appear to depend mainly on the sequence surround-
ing the alteration. However, it has also been suggested that the
frequency and type of alteration may depend on the selecting
antimicrobial agent.22
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Interestingly, this study show that the erm(C) gene sequences
are linked to the replicon type of the plasmid (or IS element)
carrying the gene. We found erm(C) to be located mainly (25/36
isolates) on small repL containing plasmids of approx 2.4 kb, but
we also identified erm(C) on larger repF plasmids of approx.
3.8 kb (3/36 isolates) and on repU plasmids of approx. 4–8 kb
(6/36 isolates), also containing a pre/mob gene. In addition,
erm(C) was also found (for 2/36 isolates) to be associated with an
IS257 transposase (also known as IS431), an active staphylococcal
insertion sequence23,24 previously found to be associated with
other resistance genes in staphylococcus species,25 but this is the
first report of erm(C) associated with IS257. Regarding the gene
regulations, it is worth noting that no complete regulatory
sequence of an inducible erm(C) has been reported for erm(C)
group 1 and 2 linked to repU plasmids and IS257 transposase
elements, respectively. Thus it is not known whether possible
structural alterations conferring constitutive expression for these
two erm(C) types may have occurred before or after the genes
were associated with their respective MGE. In fact, it remains to
be proven whether these two erm(C) types have actually developed
from an inducible gene type at all.

As illustrated by the phylogenetic tree (Fig. 2), erm(C) encod-
ing plasmids have been detected in different staphylococcal species
from various animal sources and also from humans. These
plasmids can be spread by mobilization between members of
different staphylococcal species, but also between staphylococci
and bacillus.26-28 Most of the small erm(C) carrying plasmids,
however, do not encode any mobilization genes. In correlation
with this, the phylogenetic erm(C) tree illustrates that within
erm(C) group 4, three subgroups of identical erm(C) sequences
with identical size deletions in the upstream region have been
detected both in S. aureus and S. hyicus (16 bp and 111 bp
deletion) and S. aureus, Bacillus subtilis and Neisseria meningitides
(107 bp deletion). Thus, horizontal transfer of erm(C) on small
plasmids without genes encoding mobilization has not only
occurred between different species of staphylococci but also
between bacteria from different genera. Such a transfer may have
occurred by tranduction or transformation,29,30 or alternatively
mobilization proteins encoded by other plasmids may facilitate
mobilization of small erm(C) plasmids carrying an oriT.31,32 The
dissemination is believed to be controlled by the plasmids stability
in the new hosts28 or alternatively by the occurrence of
chromosome integration, which appears to be the case for erm
(C) observed in Neisseria meningitides. In this study we also
identified erm(C) on a mobilizable plasmid (repU) containing a
pre/mob gene in S. hyicus. This plasmid was related to previously
reported plasmids from Gram positive bacteria; with a pre/mob
gene identical to pUB10, pC16, pG01, pSK41 and a recomb-
ination site, RSA (oriT) identical to a corresponding site in S.
saprophyticus plasmid pSES22 (AM159501). Interestingly, an
almost identical region (1534 bp) from this S. hyicus plasmid,
including erm(C) and starting just before the RSA, (data not
shown) has also been detected on a large (20 kb) plasmid from
Lactobacillus reuteri (FJ489650) isolated from a pig in the
1970s.33,34 This strongly suggests that exchange of erm(C)
between Lactobacillus and Staphylococcus has occurred. Finally,

the finding of erm(C) associated with an IS257 element on a
circular DNA element without any rep gene suggests a large
mobilization potential for this erm(C) gene, since it appears to
have the ability to integrate both in chromosomal, transposon and
plasmids sites containing IS257 elements.

In summary, we have shown that erm(C) genes in Danish
staphylococci mainly from pigs are constitutively expressed, which
is mainly caused by deletions in the regulatory region. Alterations
giving rise to constitutive expression have happened in different
allele groups of erm(C) and not only in one type, and the type
and/or size appear to be linked to the sequence surrounding the
alteration. Furthermore, erm(C) was found to be located mainly
on small plasmids, and the gene sequence was shown to be linked
to the plasmid or the element carrying the gene. Altogether
this suggests the different erm(C) carrying plasmids found in
staphylococci species until now have evolved independently.

Materials and Methods

Strains. The 78 erythromycin resistant isolates from Danish pigs,
horses and lamb used in this study were identified as S. aureus or
S. hyicus as described previously.35 Different clones were repre-
sented among the studied isolates as shown by spa typing or PFGE
typing (Table S1; Fig. S5). All of the 52 S. hyicus and 20 of the 26
S. aureus were different diagnostic submissions to the National
Food Institute, DTU (1997–2006), which originated from farms
all across Denmark. Six S. aureus isolates were obtained from
different healthy pigs from at least two different farms (2007). As
part of the standard procedure at DTU, all isolates were tested
for susceptibility to ceftiofur, chloramphenicol, erythromycin,
florfenicol, penicillin, spectinomycin, streptomycin, sulfa-
methoxazole, tetracycline and trimethoprim by using the broth
microdilution Sensititer method (Trek Diagnostic Systems Ltd,
UK) as described previously and following CLSI guidelines
(Table 1).36,37 Due to a change in the standard procedure, strains
isolated from 2000 and later were also tested for susceptibility to
tiamulin and ciprofloxacin (Table 1). Two isolates (9b and 71-1)
were positive for a mecA screening PCR, showing them to be
methicillin-resistant S. aureus (MRSA) (http://www.crl-ar.eu/
data/images/meca-pcr_protocol%2006.02.08.pdf)

PCR and sequencing. All the 78 erythromycin resistant
staphylococcal isolates were screened for erm(C) by PCR as
described previously2 using DNA Taq polymerase (Ampliqon,
Denmark) and the primers 28 and 29 (Table S2). The Bacillus
subtilis strain B.3HU104 containing erm(C) on the plasmid
pE194 was used as a positive control for all PCR reactions.
The erm(C) gene including an upstream regulatory region
(766-947 bp) of the 37 staphylococcal isolates that were positive
for erm(C) (Table 1), was sequenced by Macrogen, Korea (www.
macrogen.com/eng/sequencing/sequence_main.jsp) as outlined in
Figure S2.

PCR reactions using the primers 2020 and 2021 or 2022
pointing in opposite directions out of erm(C) (Fig. S2) were
performed for 36 isolates (all isolates that were positive for erm(C),
except for S. aureus 65-5). PhusionTM High-Fidelity DNA
Polymerase (Finnzymes, Finland) was used with conditions
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recommended by the manufacturer. Such PCR products were
completely or partially sequenced for seven isolates which were
selected to represent different erm(C) phylogenetic groups as
determined by the phylogenetic analysis: For three S. hyicus
(7313178-1, 9730769-3, 9811071-1) and two S. aureus (9b,
7312429-1) isolates, the PCR products were completely
sequenced, and for two S. aureus (7512986-1, 7612628-4) the
PCR products were partially sequenced. The following combina-
tions of sequencing primers were used: For isolates 7512986-1
and 9730769-3, primers 2020, 2022 and ned234 were used, for
isolates 7313178-1 and 9b, primers 2020, 2022, ned234 and
gr4ned_b, for isolate 9811071-1 primers, 2020, 2021, op1SH,
ned1, gr1upSH_b and gr1nedSH_SA_b and finally for isolate
7612628-4, primers 2020, 2021, gr1nedSH_SA_b and op1SA
were used. All sequences were assembled, annotated and visualized
in Vector NTI (Invitrogen). All primers used in this study are
listed in Table S2.

Sequence analysis. GenBank was searched for full length
erm(C) genes based on the definition that the erm(C) gene shares
$ 80% similarity on the amino acid level.4 Nineteen gene
sequences were selected based on the following criteria; the
upstream regulatory sequence should be sequenced and the
sequences should be published in a paper containing information
about the phenotypic erm(C) expression type. A neighbor-joining
(NJ) tree based on a multiple alignment of the 37 erm(C) gene
sequences (735 bp) obtained in this study and 19 erm(C) genes
from GenBank was constructed in Clustal X38 and visualized by
MEGA 4.0.2.39 The tree was rooted with the S. aureus erm(B)
gene (GenBank, AB300568) as outgroup. Another NJ tree based
on 5 replication (rep) genes that were identified on the full or
partial sequenced erm(C) plasmids from this study and 14 rep
genes located on full or partial erm(C) containing plasmids deposit
in GenBank, was constructed as described above.

Sequence analysis of the upstream region of erm(C) was
performed for the 37 isolates listed in Table 1 by alignment in
ClustalX38 and manual checking and editing of alignments in
Bioedit version 7.0.0.40 Changes in Gibbs free energy (DG) for
predicted pairing of IR sequences in the erm(C) mRNA were
calculated with the program RNAfold (http://bibiserv.techfak.
uni-bielefeld.de/rnafold/submission.html) using sequence regions
containing the specific IRs as queries.41-43 Pairing of IR sequences
were predicted for DG , -10 kcal/mol (-41.84 kJ/mol). All pair-
wise sequence comparisons were performed with the EMBOSS
program water (local alignments) and/or needle (global align-
ments) (http://www.ebi.ac.uk/emboss/align/).44

Transforming a erm(C) plasmids into a recipient strain.
Plasmid purification from one S. hyicus isolate (9811071-1) was

performed using QIAfilter Plasmid Midi Kit (Qiagen).
Electrocompetent Enterococcus faecalis, JH2-2RF cells were
transformed with purified S. hyicus plasmid (9811071-1) or with
an Enterococcus erythromycin resistant plasmid, PAT18 (positive
control), as described previously.45 Transformants were selected
on brain heart infusion (BHI) agar plates (Becton, Dickinson and
Company, USA), supplemented with 12.5 mg/L of rifampicin
and 12.5 mg/L of fusidic acid and either 4 mg/L or 8 mg/L
erythromycin. Altogether, 10 transformants (five from each the
BHI plates with 4 or 8 mg/L erythromycin, respectively) were
selected and confirmed to carry a plasmid borne erm(C) by two
PCRs; one erm(C) PCR screen using primers 28 and 29, and a
long PCR using the primers 2020 and 2021 pointing out of the
erm(C). For one transformant (JH2-2_9811071-1 B1-RFE), the
PCR product from the long PCR (primer 2020–2021) was
partially sequenced with primer 2021, and the upstream region of
erm(C) was confirmed to be identical with the corresponding
region from donor S. hyicus (9811071-1) erm(C) plasmid.

Agar diffusion test of erm(C) expression types. For 36 staphy-
lococcal isolates (all isolates listed in Table 1, except 65-5) and the
10 E. faecaelis transformants (inclusive JH2–2_9811071–1 B1-
RFE), expression types were tested by an agar disk diffusion test,
as described previously and in accordance with the standard CLSI
disk diffusion method.46,47 For each of the tested strains,
an erythromycin disc (15 mg) was placed in the middle
surrounded by two clindamycin discs (2 mg) (lincosamide
antibiotic) within a distance of 1–2 cm on a müller-hinton plate
streaked with a standard 0.5 McFarland inoculum suspension.
Plates were incubated for 16 to 18 h at 37°C. Flattening of the
clindamycin zone adjacent to the erythromycin disc (a “D-zone”)
was considered proof for an inducible expression type.
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