Structure Reports

Online
ISSN 1600-5368

Bis[trans-dichloridobis(propane-1,3-diamine- $\kappa^{2} N, N^{\prime}$)chromium(III)] tetrachloridozincate determined using synchrotron radiation

Dohyun Moon, ${ }^{\text {a }}$ Md Abdus Subhan ${ }^{\text {b }}$ and Jong-Ha Choi ${ }^{\text {c* }}$
${ }^{\text {a }}$ Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, ${ }^{\mathbf{b}}$ Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet, Bangladesh, and ${ }^{\text {c }}$ Department of Chemistry, Andong National University, Andong 760-749, Republic of Korea
Correspondence e-mail: jhchoi@andong.ac.kr
Received 13 April 2012; accepted 21 May 2012
Key indicators: single-crystal synchrotron study; $T=95 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.066 ; w R$ factor $=0.198 ;$ data-to-parameter ratio $=16.8$.

In the title compound, $\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$, the $\mathrm{Cr}^{\text {III }}$ atom is coordinated by four N atoms of propane-1,3-diamine (tn) and two Cl atoms in a trans arrangement, displaying a distorted octahedral geometry with crystallographic inversion symmetry; the Zn atom in the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion lies on a $\overline{4}$ axis. The orientations of the two six-membered chelate rings in the complex cation are in an anti chair-chair conformation with respect to each other. The $\mathrm{Cr}-\mathrm{N}$ bond lengths are 2.087 (6) and 2.097 (6) \AA. The $\mathrm{Cr}-\mathrm{Cl}$ and $\mathrm{Zn}-\mathrm{Cl}$ bond lengths are 2.3151 (16) and 2.3255 (13) Å, respectively. Weak intermolecular hydrogen bonds involving the tn NH_{2} groups as donors and chloride ligands of the anion and cation as acceptors are observed.

Related literature

For the synthesis, see: House (1970). For the structures of trans- $\left[\mathrm{Cr}(\mathrm{tn})_{2} L_{2}\right] \mathrm{ClO}_{4}(L=\mathrm{F}, \mathrm{Cl}, \mathrm{Br})$, see: Vaughn \& Rogers (1985); Choi \& Clegg (2011); Choi et al. (2012). For the structures of trans- $\left[\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ and trans$\left[\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2} \mathrm{Cl}_{2}\right]_{2} \mathrm{ZnCl}_{4}$, see: Choi et al. $(2008,2011)$.

Experimental

Crystal data

$\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=749.49$
Tetragonal, $P 4_{2} / n$

$$
\begin{aligned}
& a=15.141(2) \AA \\
& c=6.4220(13) \AA \\
& V=1472.2(4) \AA^{3}
\end{aligned}
$$

$$
\begin{array}{ll}
Z=2 & \mu=4.26 \mathrm{~mm}^{-1} \\
\text { Synchrotron radiation, } & T=95 \mathrm{~K}
\end{array}
$$

$\lambda=0.90000 \AA$

$$
\begin{aligned}
& \mu=4.26 \mathrm{~mm}^{-1} \\
& T=95 \mathrm{~K} \\
& 0.16 \times 0.02 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

Data collection

ADSC Q210 CCD area-detector diffractometer
Absorption correction: multi-scan (HKL-3000 SCALEPACK; Otwinowski \& Minor, 1997) $T_{\text {min }}=0.549, T_{\text {max }}=0.920$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066 \quad 73$ parameters
$w R\left(F^{2}\right)=0.198$
$S=1.11$
1225 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=2.55 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.30 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2$	0.92	2.90	$3.678(6)$	144
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.92	2.87	$3.636(6)$	142
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\text {ii }}$	0.92	2.82	$3.529(6)$	134
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.92	2.72	$3.641(6)$	179
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl}^{\mathrm{iv}}$	0.92	2.56	$3.404(6)$	154

Symmetry codes: (i) $x, y, z+1$; (ii) $-y+\frac{1}{2}, x,-z+\frac{1}{2}$; (iii) $y+\frac{1}{2},-x+1, z+\frac{1}{2}$; (iv)
$-x+1,-y+1,-z+2$.

Data collection: PAL ADSC Quantum-210 ADX Program (Arvai \& Nielsen, 1983); cell refinement: HKL-3000 (Otwinowski \& Minor, 1997); data reduction: $H K L-3000$; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by a grant from the 2012 Research Fund of Andong National University. MAS thanks the NRF of Korea for a postdoctoral fellowship grant 2010. The experiment at the PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2158).

References

Arvai, A. J. \& Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Choi, J.-H. \& Clegg, W. (2011). Acta Cryst. E67, m381.
Choi, J. H., Joshi, T. \& Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 11941198.

Choi, J.-H., Lee, S. H. \& Lee, U. (2008). Acta Cryst. E64, m1429.
Choi, J. H., Subhan, M. A. \& Ng, S. W. (2012). Z. Anorg. Allg. Chem. 638, $433-$ 437.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
House, D. A. (1970). Inorg. Nucl. Chem. Lett. 6, 741-746.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Vaughn, J. W. \& Rogers, R. D. (1985). J. Crystallogr. Spectrosc. Res. 15, $281-$ 287.

supplementary materials

Acta Cryst. (2012). E68, m832 [doi:10.1107/S1600536812023355]

Bis[trans-dichloridobis(propane-1,3-diamine- $\kappa^{2} N, N^{\prime}$)chromium(III)] tetrachloridozincate determined using synchrotron radiation

Dohyun Moon, Md Abdus Subhan and Jong-Ha Choi

Comment

There are two possible conformations with respect to the six-membered rings in the $\operatorname{trans}-\left[\operatorname{Cr}(\mathrm{tn})_{2} L_{2}\right]^{+}(\mathrm{tn}=$ propane-1,3diamine, $L=$ monodentate). The carbon atoms of the two chelate rings of the tn ligands can be located on the same side (syn conformer) or on opposite side (anti conformer) of the equatorial plane. The preference for syn- or anti-conformation in the complex cation is still of interest. The infrared and electronic absorption spectroscopic methods are not useful in distinguishing the syn or anti conformaions of the six-membered chelate rings in the typed transition metal complexes. The different arrangements of the two six-membered chelate rings of tn ligands may be dependent on the packing forces and counter anions in the crystal structure.
In this communication, we report the structure of trans-[$\left.\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{Cl}_{2}\right]_{2} \mathrm{ZnCl}_{4}$ in order to obtain more information on the conformation of the two six-membered chelate rings.
Counter anionic species play a very important role in coordination chemistry. This is another example of a trans- $\left[\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{Cl}_{2}\right]^{+}$but with different counter anion (Choi et al., 2008). The structural analysis shows that there is only one crystallographically independent $\mathrm{Cr}^{\text {III }}$ complex cation where the four nitrogen atoms of two tn ligands occupy the equatorial sites and the two chlorine atoms coordinate to the Cr metal centre in trans configuration. The Cr 1 moiety of complex cation is half occupancy in the asymmetric unit. An ellipsoid plot (30% probability level) of the one $\mathrm{Cr}^{\text {rII }}$ complex cation and anion in the title compound, together with the atomic labelling, is depicted in Fig. 1.
The two six-membered rings have stable chair conformations. Atom Cr 1 is located at a crystallographic centre of symmetry, so the Cr complex cation has molecular C_{i} symmetry. The two chelate rings in the Cr complex cation adopt same anti chair-chair conformation with respect to each other. $\mathrm{The} \mathrm{Cr}-\mathrm{N}(\mathrm{tn})$ distances of 2.087 (76) and 2.097 (6) \AA are good agreement with average $\mathrm{Cr}-\mathrm{N}$ distance of 2.0884 (19) \AA found in $\operatorname{trans}-\left[\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ (Choi \& Clegg, 2011), and the range of 2.0741 (19) to 2.0981 (18) \AA found in trans- $\left[\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2} \mathrm{Cl}_{2}\right]_{2} \mathrm{ZnCl}_{4}$ (Me_{2} tn $=2,2$-dimethylpropane-1,3diamine) (Choi, Joshi \& Spiccia, 2011). The $\mathrm{Cr}-\mathrm{Cl}$ distance of 2.315 (2) \AA is longer than the 2.085 (4) \AA of $\mathrm{Cr}-\mathrm{F}$ found in trans-[$\left.\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{~F}_{2}\right] \mathrm{ClO}_{4}$ (Vaughn \& Rogers, 1985), but slightly shorter than 2.4681 (4) \AA of $\mathrm{Cr}-\mathrm{Br}$ trans- $\left[\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{Br}_{2}\right] \mathrm{ClO}_{4}$ (Choi et al., 2012). The other $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond distances and $\mathrm{Cr}-\mathrm{N}-\mathrm{C}, \mathrm{N}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-$ $\mathrm{C}-\mathrm{C}$ angles are also of usual values for tn ligands in chair conformations. The crystals are held together by weak hydrogen bonds (Table 1) between the NH groups of the tn, Cl ligand and Cl atom of tetrachlorozincate anion. The uncoordinated $\mathrm{ZnCl}_{4}{ }^{2-}$ anion from chromium(III) ion remains outside the coordination sphere. As expected, the Zn atom in the $\mathrm{ZnCl}_{4}{ }^{2-}$ has a tetrahedral coordination surrounded by four Cl atoms. The $\mathrm{Zn}-\mathrm{Cl}$ bond distance of 2.3255 (13) and the $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ angles of 106.28 (4)-116.05 (9) ${ }^{\circ}$ are observed. The coordinate Cl atom in Cr 1 complex cation also forms one hydrogen bond with one NH group in the neighbouring complex cation. The differences found in the conformations of the two six-membered chelate rings may be attributed to the differences in the hydrogen bonding
networks and crystal packing forces between the chromium(III) complex cation and counter anion.

Experimental

The propane-1,3-diamine was obtained from Aldrich Chemical Co. and used as supplied. All chemicals were reagent grade materials and used without further purification. As starting materials, $\operatorname{trans}-\left[\mathrm{Cr}(\operatorname{tn})_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ was prepared as described in the literature (House, 1970; Choi \& Clegg, 2011). The crude chloride salt (0.75 g) was dissolved in 20 ml of $0.1 M \mathrm{HCl}$ at $40^{\circ} \mathrm{C}$ and added 10 ml of 6 M HCl containing 1.2 g of solid ZnCl_{2}. The resulting solution was filtered and allowed to stand at room temperature for several days to give green crystals of the tetrachlorozincate(II) salt suitable for X-ray structural analysis.

Refinement

Non-hydrogen atoms were refined anisotropically; hydrogen atoms were first located in a difference map; $\mathrm{N}-\mathrm{H}$ hydrogen atoms were freely refined and $\mathrm{C}-\mathrm{H}$ hydrogen atoms were constrained to ride on the parent carbon atom, with $\mathrm{C}-\mathrm{H}=0.98$ $\AA \AA$ and $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for methylene groups.

Computing details

Data collection: PAL ADSC Quantum-210 ADX Program (Arvai \& Nielsen, 1983); cell refinement: HKL-3000
(Otwinowski \& Minor, 1997); data reduction: HKL-3000 (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figure 1

A perspective drawing (30% probability level) of the one complex cation and anion

Bis[trans-dichloridobis(propane-1,3-diamine- $\left.\kappa^{2} N, N^{\prime}\right)$ chromium(III)] tetrachloridozincate

Crystal data

$\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]_{2}\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=749.49$
Tetragonal, $P 4_{2} / n$
$a=15.141$ (2) \AA
$c=6.4220(13) \AA$
$V=1472.2(4) \AA^{3}$
$Z=2$
$F(000)=764$

Data collection

ADSC Q210 CCD area-detector diffractometer
Radiation source: PLSII 2D bending magnet
$\mathrm{Si}(111)$ double crystal monochromator
ω and kappa scan
Absorption correction: multi-scan
(HKL-3000 SCALEPACK; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.549, T_{\text {max }}=0.920$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.198$
$S=1.11$
1225 reflections
73 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
\(D_{\mathrm{x}}=1.691 \mathrm{Mg} \mathrm{m}^{-3}\)
Synchrotron radiation, \(\lambda=0.90000 \AA\)
Cell parameters from 16475 reflections
\(\theta=1.0-33.7^{\circ}\)
\(\mu=4.26 \mathrm{~mm}^{-1}\)
\(T=95 \mathrm{~K}\)
Needle, pale blue
\(0.16 \times 0.02 \times 0.02 \mathrm{~mm}\)
7735 measured reflections
1225 independent reflections
1157 reflections with \(I>2 \sigma(I)\)
\(R_{\text {int }}=0.030\)
\(\theta_{\text {max }}=32.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}\)
\(h=-17 \rightarrow 17\)
\(k=-17 \rightarrow 17\)
\(l=-7 \rightarrow 7\)
```

Hydrogen site location: inferred from neighbouring sites H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1185 P)^{2}+13.7893 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=2.55 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.30$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$ Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cr1	0.5000	0.5000	0.5000	$0.0176(6)$
C11	$0.42602(11)$	$0.55586(11)$	$0.7867(2)$	$0.0219(6)$
N1	$0.4440(4)$	$0.3768(4)$	$0.5622(10)$	$0.0250(14)$

H1A	0.4141	0.3811	0.6865	0.030^{*}
H1B	0.4027	0.3657	0.4605	0.030^{*}
N2	$0.6077(4)$	$0.4700(4)$	$0.6928(9)$	$0.0214(13)$
H2A	0.6528	0.5081	0.6592	0.026^{*}
H2B	0.5914	0.4822	0.8277	0.026^{*}
C1	$0.5033(5)$	$0.2982(5)$	$0.5752(11)$	$0.0249(16)$
H1C	0.5309	0.2880	0.4375	0.030^{*}
H1D	0.4676	0.2454	0.6100	0.030^{*}
C2	$0.5748(5)$	$0.3093(5)$	$0.7361(11)$	$0.0244(16)$
H2C	0.6049	0.2518	0.7544	0.029^{*}
H2D	0.5465	0.3245	0.8705	0.029^{*}
C3	$0.6441(5)$	$0.3786(5)$	$0.6887(11)$	$0.0240(15)$
H3A	0.6923	0.3740	0.7922	0.029^{*}
H3B	0.6696	0.3669	0.5494	0.029^{*}
Zn1	0.2500	0.2500	0.2500	$0.0223(6)$
C12	$0.37601(8)$	$0.28336(9)$	$0.0585(2)$	$0.0115(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr 1	$0.0199(9)$	$0.0192(9)$	$0.0138(9)$	$-0.0007(5)$	$-0.0008(6)$	$-0.0002(6)$
C 11	$0.0230(9)$	$0.0287(10)$	$0.0141(9)$	$0.0025(6)$	$0.0014(6)$	$-0.0007(6)$
N 1	$0.026(3)$	$0.024(3)$	$0.025(3)$	$0.000(2)$	$-0.001(3)$	$0.002(3)$
N 2	$0.024(3)$	$0.024(3)$	$0.016(3)$	$-0.002(2)$	$0.000(2)$	$-0.001(2)$
C 1	$0.031(4)$	$0.020(3)$	$0.023(4)$	$0.001(3)$	$-0.002(3)$	$-0.002(3)$
C 2	$0.027(4)$	$0.021(3)$	$0.025(4)$	$-0.001(3)$	$-0.002(3)$	$0.004(3)$
C 3	$0.021(3)$	$0.029(4)$	$0.022(3)$	$0.002(3)$	$-0.002(3)$	$0.003(3)$
Zn 1	$0.0223(7)$	$0.0223(7)$	$0.0222(9)$	0.000	0.000	0.000
C 2	$0.0087(8)$	$0.0138(8)$	$0.0119(8)$	$-0.0024(5)$	$0.0055(5)$	$-0.0009(5)$

Geometric parameters ($A,{ }^{\circ}$)

Cr1-N1	2.087 (6)	C1-C2	1.505 (10)
$\mathrm{Cr} 1-\mathrm{N} 1^{1}$	2.087 (6)	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9900
$\mathrm{Cr} 1-\mathrm{N} 2$	2.097 (6)	C1-H1D	0.9900
$\mathrm{Cr} 1-\mathrm{N} 2^{\text {i }}$	2.097 (6)	C2-C3	1.515 (10)
$\mathrm{Cr} 1-\mathrm{Cl1}{ }^{\text {i }}$	2.3151 (16)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9900
Cr1-Cl1	2.3151 (16)	C2-H2D	0.9900
N1-C1	1.494 (9)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
N1-H1A	0.9200	C3-H3B	0.9900
N1-H1B	0.9200	$\mathrm{Zn} 1-\mathrm{Cl}^{2 i}$	2.3255 (13)
N2-C3	1.489 (9)	$\mathrm{Zn} 1-\mathrm{Cl}^{\text {iii }}$	2.3255 (13)
N2-H2A	0.9200	$\mathrm{Zn} 1-\mathrm{Cl}^{\text {iv }}$	2.3255 (13)
N2-H2B	0.9200	$\mathrm{Zn} 1-\mathrm{Cl} 2$	2.3255 (13)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 1^{\text {i }}$	179.999 (1)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	107.1
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 2$	90.5 (2)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	112.4 (6)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 2$	89.5 (2)	N1-C1-H1C	109.1
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 2^{\text {i }}$	89.5 (2)	C2-C1-H1C	109.1
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 2^{\text {i }}$	90.5 (2)	N1-C1-H1D	109.1

supplementary materials

$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 2^{\text {i }}$	179.999 (1)	C2-C1-H1D	109.1
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{Cl1}^{\text {i }}$	91.27 (18)	$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	107.9
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{Cl}^{\mathrm{i}}$	88.73 (18)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	115.9 (6)
$\mathrm{N} 2-\mathrm{Cr1}-\mathrm{Cl}^{1}{ }^{\text {i }}$	90.80 (16)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	108.3
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cr} 1-\mathrm{Cl}^{\text {i }}$	89.20 (16)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	108.3
N1-Cr1-Cl1	88.73 (18)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	108.3
N1- ${ }^{\text {i }}$ Crl- ${ }^{\text {Cl1 }}$	91.27 (18)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	108.3
N2-Cr1-Cl1	89.20 (16)	$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	107.4
N2 ${ }^{\text {i }}$ Cr1- Cl 1	90.80 (16)	N2-C3-C2	112.5 (6)
$\mathrm{Cl1} 1-\mathrm{Cr} 1-\mathrm{Cl} 1$	180.0	N2-C3-H3A	109.1
C1-N1-Cr1	118.6 (4)	C2-C3-H3A	109.1
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	107.7	N2-C3-H3B	109.1
Cr1-N1-H1A	107.7	C2-C3-H3B	109.1
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	107.7	H3A-C3-H3B	107.8
Cr1-N1-H1B	107.7	$\mathrm{Cl2} 2$ - $\mathrm{Zn} 1-\mathrm{Cl}^{\text {iii }}$	106.24 (3)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	107.1	$\mathrm{Cl2} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{Cl}^{\text {iv }}$	106.25 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cr} 1$	118.6 (4)	Cl 2 iii- $\mathrm{Zn} 1-\mathrm{Cl}^{\text {iv }}$	116.14 (7)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	107.7	$\mathrm{Cl2}-\mathrm{Zn} 1-\mathrm{Cl} 2$	116.14 (7)
$\mathrm{Cr} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	107.7	$\mathrm{Cl2}{ }^{\text {iii- }} \mathrm{Zn} 1-\mathrm{Cl} 2$	106.24 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	107.7	$\mathrm{Cl} 2^{\text {iv }}-\mathrm{Zn} 1-\mathrm{Cl} 2$	106.25 (3)
Cr1—N2-H2B	107.7		

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1 / 2,-y+1 / 2, z$; (iii) $y,-x+1 / 2,-z+1 / 2$; (iv) $-y+1 / 2, x,-z+1 / 2$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl2}$	0.92	2.90	$3.678(6)$	144
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl2}$	v	2.87	$3.636(6)$	142
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl2}^{\text {iv }}$	0.92	2.82	$3.529(6)$	134
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl2}^{\text {vi }}$	0.92	2.72	$3.641(6)$	179
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{Cl1}{ }^{\text {vii }}$	0.92	2.56	$3.404(6)$	154

Symmetry codes: (iv) $-y+1 / 2, x,-z+1 / 2$; (v) $x, y, z+1$; (vi) $y+1 / 2,-x+1, z+1 / 2$; (vii) $-x+1,-y+1,-z+2$.

