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Abstract
Identifying control strategies for biological networks is paramount for practical applications

that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell repro-

gramming. Here we develop a novel network control framework that integrates the structural

and functional information available for intracellular networks to predict control targets. For-

mulated in a logical dynamic scheme, our approach drives any initial state to the target state

with 100% effectiveness and needs to be applied only transiently for the network to reach

and stay in the desired state. We illustrate our method’s potential to find intervention targets

for cancer treatment and cell differentiation by applying it to a leukemia signaling network

and to the network controlling the differentiation of helper T cells. We find that the predicted

control targets are effective in a broad dynamic framework. Moreover, several of the pre-

dicted interventions are supported by experiments.

Author Summary

Practical applications in modern molecular and systems biology such as the search for new
therapeutic targets for diseases and stem cell reprogramming have generated a great inter-
est in controlling the internal dynamics of a cell. Here we present a network control ap-
proach that integrates the structural and functional information of the network. We show
that stabilizing the expression or activity of a few select components can drive the cell to-
wards a desired fate or away from an undesired fate. We demonstrate our method’s effec-
tiveness by applying it to a type of blood cell cancer and to the differentiation of a type of
immune cell. Overall, our approach provides new insights into how to control the dynam-
ics of intracellular networks.
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Introduction
An important task of modern molecular and systems biology is to achieve an understanding of
the dynamics of the network of macromolecular interactions that underlies the functioning of
cells. Practical applications such as stem cell reprogramming [1–3] and the search for new ther-
apeutic targets for diseases [4–6] have also motivated a great interest in the general task of cell
fate reprogramming, i.e., controlling the internal state of a cell so that it is driven from an initial
state to a final target state (see references [7–13]).

Theoretically derived control methods are based on simplified models of the interactions
and/or the dynamics of cellular constituents such as proteins or mRNAs. Some of these models
only include information on which cell components (e.g. molecules or proteins) interact
among each other, i.e., the structure of the underlying interaction network. Other models,
known as dynamic models, include the structure of the interaction network and also an equa-
tion for each component, which describes how the state of this component changes in time due
to the influence of other cell components (e.g. how the concentration of a molecule changes in
time due to the reactions the molecule participates in).

Although the topic of network controllability has a long history in control and systems theo-
ry (see, for example, [14–17]), most of this work is not directly applicable to large intracellular
networks. There are several reasons for this: (i) combinatorial complexity and the size of the
matrices involved makes control theory applicable to small networks only, (ii) linear functions
are used for the regulatory functions and it is unclear how the switch-like behavior of many
biochemical processes [18, 19] will affect these results, and (iii) the notion of controllability in
control theory, i.e. control of the full set of states [14–16] or complete controllability, is different
from that in the biological sense, which commonly encompasses only the biologically admissi-
ble states[8].

In recent work on network controllability [7, 9–13, 20–22] some of the limitations of stan-
dard control theory approaches are addressed. For example, Akutusu, Cheng, Tamura et al.
[20–22] extend the framework of control theory to systems with Boolean (switch-like) dynam-
ics and provide some formal results in this setting. In the work of Liu et al. [7] the size limita-
tion of linear control theory is overcome by using a maximal matching approach to identify the
minimal number of nodes needed to control a variety of real-world large scale networks. Spe-
cifically, for some gene regulatory networks, Liu et al. find that control of roughly 80% of the
nodes is needed to fully control the dynamics of these networks [7]. In contrast, experimental
work in stem cell reprogramming suggests that for biologically admissible states the number of
nodes required for control is drastically lower (five or fewer genes [1–3, 8]). Fiedler, Mochizuki
et al. [12, 13] use the concept of the feedback vertex set, a subset of nodes in a directed network
whose removal leaves the graph without directed cycles (i.e. without feedback loops). They
show that, for a broad class of regulatory functions, controlling any feedback vertex set is
enough to guide the dynamics of the system to any target trajectory of the uncontrolled net-
work [12, 13]. As one of their examples, the authors use a signal transduction network with
113 elements and show that the minimal feedback vertex set is composed of only 5 elements.

Since systems whose interaction networks and dynamics are known equally well are rare,
current control strategies are based on either the network structure [7, 9, 10, 12, 13] or its dy-
namics (function) [11, 20–22]. Yet, as manipulating the activity of even a single intracellular
component is a long, difficult, and expensive experimental task, it is crucial to reduce as much
as possible the number of nodes that need to be controlled. We hypothesize that integrating
network structure with qualitative information on the regulatory functions or on the target
states of interest could yield control strategies with a small number of control targets. Qualita-
tive information about the regulatory functions is commonly known (e.g. positive/negative
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regulation, cooperativity among regulators, etc.), and relative qualitative information on the
desired/undesired states also exists (e.g. upregulation or downregulation of mRNA levels in a
disease state with respect to a healthy state). Thus, we choose a logical dynamic framework as
our modeling method [23]. This framework is well suited for modeling intracellular networks:
discrete dynamic models have been shown to reproduce the qualitative dynamics of a multi-
tude of cellular systems while requiring only the combinatorial activating or inhibiting nature
of the interactions, and not the kinetic details [24–30].

Logical dynamic network models [31–38] consist of a set of binary variables {σi}, i = 1,2,. . .,
N, each of which denotes the state of a node (also referred to as node state). The state ON (or
1) commonly refers to above a certain threshold level, while the state OFF (or 0) refers to below
the same threshold level. The vector formed by the state of all nodes (σ1, σ2,. . ., σN) denotes the
state of the system (or system/network state). To each node vi one assigns a Boolean function fi
which contains the biological information on how node vi’s inputs influence σi; these functions
are used to evolve in time the state of each element. We use the general asynchronous updating
scheme [33, 34, 36] (see Methods), a stochastic scheme which takes into consideration the vari-
ety of timescales present in intracellular processes and our incomplete knowledge of the rates
of these processes.

In a logical (Boolean) model, every temporal trajectory must eventually reach a set of system
states in which it settles down, known as an attractor. The attractors of intracellular networks
have been found to be identifiable with different cell fates, cell behaviors, and stable patterns of
cell activity [24–30, 39, 40]. In general, the task of finding Boolean network attractors is limited
by combinatorial complexity; the size of the state space grows exponentially with the number
of nodes N. To address this, we recently proposed an alternative approach to find the attractors
of a Boolean network which allowed us to identify the attractors of networks for which a full
search of the state space is not feasible [41]. This attractor-finding method is based on identify-
ing certain function-dependent network components, referred to as stable motifs, that must sta-
bilize in a fixed state. A stable motif is defined as a set of nodes and their corresponding states
which are such that the nodes form a minimal strongly connected component (e.g. a feedback
loop) and their states form a partial fixed point of the Boolean model. (A partial fixed point is a
subset of nodes and a respective state for each of these nodes such that updating any node in
the subset leaves its state unchanged, regardless of the state of the nodes outside the subset.) It
is noteworthy that stable motifs are preserved for other updating schemes because of their dy-
namical property of being partial fixed points. For more details on the attractor-finding meth-
od and the identification of the stable motifs see S1 Text and ref. [41]; for a more formal and
mathematical discussion see S2 Text section A or Appendix A of ref. [41].

Once a network’s stable motifs and their corresponding fixed states are identified, a network
reduction technique [36, 42–44] is used for each stable motif by tracing the downstream effect
of the stable motif on the rest of the network (see S1 Text). Repeating this procedure iteratively
for each separate stable motif until no new stable motifs are found yields the attractors of the
logical model. Formally, the result is a set of network states called quasi-attractors, which cap-
ture steady states exactly and are a compressed representation of complex attractors [41]. The
network control method we propose here builds on the concept of stable motifs and its relation
to (quasi-)attractors [41] and takes it much further by connecting stable motifs with a way to
identify targets whose manipulation (upregulation or downregulation) ensures the conver-
gence of the system to an attractor of interest. The use of quasi-attractors in our method does
not compromise its general applicability, but it does require that certain networks with special
types of complex attractors are treated with care when our method is applied. None of the net-
works we discuss in this work nor any intracellular network models we are aware of fall in this
category; for more details see S1 Text, S2 Text, and ref [41].)
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As an illustration, consider the logical network shown in Fig 1(a). This logical network has
four stable motifs (Fig 1(b)): (i) {A = 1, B = 1}, (ii) {A = 0}, (iii) {E = 1}, and (iv) {C = 1, D = 1,
E = 0}. Network reduction for each of these stable motif yields four reduced networks, each of
which has its own stable motifs, all of which are shown in S1 Fig. For example, the reduced log-
ical network obtained from the first stable motif consists of two nodes (D and E) and has two
stable motifs: {E = 1} and {E = 0}. The stable motifs of the remaining three reduced logical net-
works are, respectively: {E = 1} and {D = 1}; {A = 1, B = 1} and {A = 0}; {A = 1} and {A = 0}. Re-
peating the same network reduction procedure with each of the new stable motifs leads to
either a new reduced network or one of four attractors (Ai, i = 1,. . .,4). The stable motifs ob-
tained from the original network and from each reduced network, and the attractors they lead
to are shown in Fig 2. This diagram is a compressed representation of the successive steps of
the attractor finding process, which include the original network, the stable motifs of the origi-
nal network, the reduced networks obtained for each stable motif, the stable motifs of these re-
duced networks, and so on (see S1 Fig). We refer to such a diagram as a stable motif succession
diagram, and we note that it is closely analogous to a cell fate decision diagram. We propose to
use this stable motif succession diagram to guide the system to an attractor of interest.

Results

Stable motif control implies network control
The stable motifs’ states are partial fixed points of the logical model, and as such, they act as
“points of no return” in the dynamics. Normally, the sequence of stable motifs is chosen

Fig 1. Stable motifs of a logical (Boolean) network. (a) An example of a logical network indicating the
regulatory relationships and the logical update function of each node. (b) The four stable motifs of the logical
network in (a) and their corresponding node states. These stable motifs are strongly connected components
and partial fixed points of the logical network.

doi:10.1371/journal.pcbi.1004193.g001

Cell Fate Reprogramming by Control of Intracellular Network Dynamics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004193 April 7, 2015 4 / 24



autonomously by the system based on the initial conditions and timing. We propose to use our
knowledge of the sequence of stable motifs to guide the system to an attractor of interest. We
refer to this network control method as stable motif control.

The basis of the stable motif control approach is that a sequence of motifs from a stable
motif succession diagram like Fig 2 uniquely determines an attractor, so controlling each motif
in the sequence must prod the system towards this attractor. We give the proof of this state-
ment in Lemma 4 and Proposition 6 of S2 Text section B. The number of nodes that need to be
controlled can be minimized by removing motifs that do not need to be controlled and by find-
ing a subset of nodes in a motif which can fix the whole motif’s state. A step by step description
of the stable motif control algorithm is given in Methods. For more details on the motif-remov-
al step involved in minimizing the number of control nodes, see S1 Text; for a justification of
the steps involved in minimizing the number of control nodes, see S2 Text. S3 Text presents a
discussion of the complexity of our methods and mitigation techniques for the most time con-
suming parts of our methods.

As an example, consider the network in Fig 1(a) and chooseA2 in Fig 2 as our target at-
tractor. There are two sequences of stable motifs that lead toA2: ({C = 1, D = 1, E = 0}, {A = 1})
and ({A = 1, B = 1}, {E = 0}). For motif {C = 1, D = 1, E = 0} in the first sequence, fixing E = 0 is
enough to fix the whole motif’s state; for motif {A = 1} in the same sequence there is only one

Fig 2. Stable motif succession diagram for the example in Fig 1. The stable motif succession diagram shows the stable motifs obtained successively
during the attractor finding process and the attractors they finally lead to. A more detailed representation of the first steps of the attractor finding method is
shown in S1 Fig. Nodes are colored based on their respective node states in the motifs or the attractors: gray for 0 and black for 1. The four stable motifs of
the original logical network and their matching node states are shown in the leftmost part of the figure. The attractors obtained for each possible sequence of
stable motifs are shown in the rightmost part of the figure. The result of applying network reduction using a stable motif is represented by each dashed arrow.
If network reduction due to a stable motif leads to a simplified network with at least one stable motif, then the dashed arrows point from the stable motif being
considered to the stable motifs of the simplified network. Otherwise, network reduction leads directly to an attractor and the dashed arrow points towards
the attractor.

doi:10.1371/journal.pcbi.1004193.g002
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node, so the only choice is to fix A = 1. The control set obtained from the first sequence is then
{E = 0, A = 1}. For the second sequence, a similar reasoning leads to the same control set,
{E = 0, A = 1} (E = 0 from {E = 0}, and A = 1 from {A = 1, B = 1}). The result is a single set of
network control interventions for attractorA2, CA2

= {{A = 1, E = 0}}. For a step by step de-
scription of the stable motif control algorithm applied to this example see S1 Text.

Using our approach with each of the remaining attractors we obtain the following network
control interventions: CA1

= {{A = 1, E = 1}}, CA2
= {{A = 1, E = 0}}, CA3

= {{A = 0, E = 1}}, and
CA4

= {{A = 0, E = 0}}. Inspecting these network control interventions we conclude that con-
trolling nodes A and E is enough to guide the system to each of the four possible attractors,
with the exact combination being given by the CAi

’s.
In order to gauge the potential improvement in the control set’s size brought about by our

method, we compare our network control set with the feedback vertex set, the subset of nodes
whose removal leaves the network without directed cycles. This set was demonstrated to be an
effective control target and set an upper limit in the size of the control set in references [12, 13].
Because removing the feedback vertex set from the network must destroy all cycles, including
self-loops, there are two possible minimal feedback vertex sets, {A, B, D, E} and {A, C, D, E}.
The number of nodes that need to be controlled in our method is half of the size of the feedback
vertex set, a substantial improvement. It should be noted that our method does not guarantee
that the resulting control sets are small nor that the control sets are the smallest possible,
though our case studies suggest that the resulting control sets tend to be relatively small (be-
tween one and five nodes out of more than fifty, see Tables 1 and 2, and ref [45]).

Blocking stable motifs may obstruct specific attractors
In many situations the main interest is to prevent the system from reaching an unwanted state
(e.g. the proliferative cell state encountered in tumors). Based on the motif-sequence point of
view provided by the stable motif succession diagram (Fig 2), we hypothesize that blocking the
stable motifs that lead to an attractor will either prevent or make it less likely for the system to
reach this attractor. We refer to this network control method as stable motif blocking. The algo-
rithm for the method is given in Methods.

The interventions obtained from this method are negations of node states of the target at-
tractor, and as such, have the property of eliminating the intended attractor. However, new

Table 1. Intervention targets for each control strategy in the T-LGL leukemia network model.

T-LGL leukemia stable motif control interventions (CTLGL)

{S1P = ON}, {Ceramide = OFF, SPHK1 = ON}, {Ceramide = OFF, PDGFR = ON}

Apoptosis stable motif control interventions (CApoptosis)

{S1P = OFF}, {PDGFR = OFF}, {SPHK1 = OFF}, {TBET = ON, Ceramide = ON, RAS = ON}

{TBET = ON, Ceramide = ON, GRB2 = ON}, {TBET = ON, Ceramide = ON, IL2RB = ON},

{TBET = ON, Ceramide = ON, IL2RBT = ON}, {TBET = ON, Ceramide = ON, ERK = ON},

{TBET = ON, Ceramide = ON, MEK = ON, PI3K = ON}

T-LGL leukemia stable motif blocking interventions (BTLGL)

{S1P = OFF}, {PDGFR = OFF}, {SPHK1 = OFF}, {Ceramide = ON}, {TBET = OFF}, {PI3K = OFF},

{RAS = OFF}, {GRB2 = OFF}, {MEK = OFF}, {ERK = OFF}, {IL2RBT = OFF}, {IL2RB = OFF}

Apoptosis stable motif blocking interventions (BApoptosis)

{S1P = ON}, {PDGFR = ON}, {SPHK1 = ON}, {Ceramide = OFF}, {sFas = ON}, {Fas = OFF},

{TBET = OFF}, {PI3K = OFF}, {RAS = OFF}, {GRB2 = OFF}, {MEK = OFF}, {ERK = OFF},

{IL2RBT = OFF}, {IL2RB = OFF}

doi:10.1371/journal.pcbi.1004193.t001
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attractors can arise that are similar to the destroyed attractor. In biological situations (like in
our test cases) one commonly has certain molecular markers of cell fate which specify the at-
tractor to a large degree but not at the level of every node. Thus the final state obtained after
stable motif blocking may still be consistent with the biological specification of the undesired
attractor, making the intervention unsuccessful. We also adopt a stricter definition for a suc-
cessful intervention: if a long-term but not permanent intervention (i.e. a transient interven-
tion) reduces the number of network states or trajectories that lead to the unwanted attractor,
then the intervention is considered to be long-term successful. The best-case scenario would be
that the manipulated network has only the desired attractors of the original network (i.e., any
but the unwanted attractors), in which case the network will stay in these attractors even if the
intervention is stopped.

Table 2. Intervention targets for each control strategy in the helper T cell network.

Th1 stable motif control interventions (CTh1)

{TBET = ON}

Th2 stable motif control interventions (CTh2)

{GATA3 = ON}

Th17 stable motif control interventions (CTh17)

{GATA3 = OFF, FOXP3 = OFF, TBET = OFF, STAT3 = ON},

{GATA3 = OFF, FOXP3 = OFF, TBET = OFF, IL10 = ON},

{GATA3 = OFF, FOXP3 = OFF, TBET = OFF, IL10R = ON},

{GATA3 = OFF, FOXP3 = OFF, TBET = OFF, IL21 = ON},

{GATA3 = OFF, FOXP3 = OFF, TBET = OFF, IL21R = ON},

{GATA3 = OFF, FOXP3 = OFF, TBET = OFF, IL23R = ON, RORGT = ON}

Treg stable motif control interventions (CTreg)

{GATA3 = OFF, FOXP3 = ON, TBET = OFF}, {GATA3 = OFF, TBET = OFF, STAT3 = OFF},

{GATA3 = OFF, TBET = OFF, IL23R = OFF, IL10R = OFF, IL21R = OFF},

{GATA3 = OFF, TBET = OFF, IL23R = OFF, IL10 = OFF, IL21R = OFF},

{GATA3 = OFF, TBET = OFF, IL23R = OFF, IL10R = OFF, IL21 = OFF},

{GATA3 = OFF, TBET = OFF, IL23R = OFF, IL10 = OFF, IL21 = OFF}

Th1 stable motif blocking interventions (BTh1)

{GATA3 = ON}, {TBET = OFF}, {IL4 = ON}, {IL4R_2 = ON}, {STAT6 = ON}, {STAT1 = OFF},

{IFNG = OFF}, {IFNGR = OFF}, {IL23 = OFF}, {IL10 = ON, OFF}, {IL10R = ON, OFF},

{IL21 = ON, OFF}, {IL21R = ON, OFF}, {STAT3 = ON, OFF}, {IL23R = ON, OFF},

{RORGT = ON, OFF}, {FOXP3 = ON, OFF}

Th2 stable motif blocking interventions (BTh2)

{GATA3 = OFF}, {TBET = ON}, {STAT1 = ON}, {IFNG = ON}, {IFNGR = ON}, {IL23 = OFF},

{IL23R = OFF}, {STAT3 = OFF}, {IL10 = OFF}, {IL10R = OFF}, {RORGT = ON},

{FOXP3 = ON, OFF}

Th17 stable motif blocking interventions (BTh17)

{GATA3 = ON}, {TBET = ON}, {IL4 = ON}, {IL4R_2 = ON}, {STAT6 = ON}, {STAT1 = ON},

{IFNG = ON}, {IFNGR = ON}, {STAT3 = OFF}, {FOXP3 = ON}, {RORGT = OFF},

{IL21 = OFF}, {IL21R = OFF}, {IL23 = OFF}, {IL23R = OFF}, {IL10 = OFF}, {IL10R = OFF}

Treg stable motif blocking interventions (BTreg)

{GATA3 = ON}, {TBET = ON}, {IL4 = ON}, {IL4R_2 = ON}, {STAT6 = ON}, {STAT1 = ON},

{IFNG = ON}, {IFNGR = ON}, {STAT3 = ON, OFF}, {FOXP3 = OFF}, {RORGT = ON, OFF},

{IL21 = ON, OFF}, {IL21R = ON, OFF}, {IL23 = OFF}, {IL23R = ON, OFF}, {IL10 = ON, OFF},

{IL10R = ON, OFF}

doi:10.1371/journal.pcbi.1004193.t002
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Consider, for example, the network in Fig 1(a) and the attractorA3 in Fig 2. From the stable
motif succession diagram (Fig 2), the stable motifs involved in the sequences that lead toA3

are {A = 0}, {D = 1}, and {E = 1}. Our approach proposes blocking these motifs to obstruct the
system from reachingA3, that is, it provides ℬA3

= {{A = 1}, {E = 0}, {D = 0}} or a combination
of these node states as intervention candidates.

To verify the effectiveness of the interventions, we analyze the dynamics of the manipulated
network with each individual intervention. The first intervention (A = 1) causes the system to
haveA1 andA2 as its only attractors, and thus, the network is driven towards these attractors
and away from the unwanted attractorA3. Furthermore, the network stays in those attractors
even after the intervention is stopped, as they are also attractors of the original network, so the
intervention is long-term successful. Similarly, the second intervention (E = 0) causes the sys-
tem to haveA2 andA4 as its sole attractors, so it is also a long-term successful intervention.
The third intervention (D = 0) only leaves attractorA1 intact, and also gives rise to two new at-
tractors. To evaluate if this intervention is long-term successful we compare the probabilities
that an arbitrary initial condition ends inA3 with and without the intervention. For the inter-
vened case, we set D = 0 for a long time, then stop the intervention and wait for the network to
reach an attractor. We find that the intervention makes it more likely for an arbitrary initial
condition to reachA3, so this intervention is not long-term successful.

Verification of the method’s effectiveness in test cases
The network control framework we propose is applicable to any cell fate reprogramming pro-
cess for which a logical dynamical model can be constructed. This is a broad and increasing do-
main of application: refs. [24–28] are examples of recent logical models that had
experimentally validated predictions, while other examples can be found in the review articles
[29, 30].

To demonstrate the potential of our framework, we choose two types of cell fate reprogram-
ming processes: disease therapeutics and cell differentiation. More specifically, we use our net-
work control framework to predict network control interventions on previously developed
logical dynamic models for a leukemia signaling network and for the network controlling the
differentiation of helper T cells. We confirm the effectiveness of the predicted stable motif con-
trol interventions using dynamic simulations, an independent verification of the result we
prove in S2 Text. For the case of stable motif blocking interventions, whose effectiveness is not
guaranteed, we use dynamic simulations to test the effectiveness of the predicted interventions.

T cell large granular lymphocyte leukemia network. Cytotoxic T cells are a central part
of the immune system’s response to infection. These T cells detect antigens in infected cells
and, in response, induce the self-destruction of the infected cells. After fighting infection nor-
mal cytotoxic T cells undergo activation-induced cell death (apoptosis), but in T-cell large
granular lymphocyte (T-LGL) leukemia cytotoxic T cells avoid cell death and survive, which
eventually leads to diseases such as autoimmune disorders.

A Boolean network model of cytotoxic T cell signaling that reproduces the known experi-
mental results of these T cells in the context of T-LGL leukemia was previously constructed by
Zhang et al. [28]. This network model consists of 60 nodes and 142 regulatory edges, with the
nodes representing genes, proteins, receptors, small molecules, external signals (e.g. Stimuli),
or biological functions (e.g. Apoptosis). The T-LGL network is shown in Fig 3 and its logical
functions are reproduced in S4 Text. Previous work by Zhang et al. [28] and Saadatpour et al.
[46] has shown that in the sustained presence of the external signals IL15, PDGF, and Stimuli
(antigen presentation) the system has two attractors: one that recapitulates the survival pheno-
type and node deregulations seen in T-LGL leukemia, and a second one that corresponds to
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self-programmed cell death (apoptosis) (see S4 Text for more details about attractor
specification).

We first use our attractor-finding method on the T-LGL leukemia network in the presence
of the external signals Stimuli and IL15 to obtain the stable motifs and the succession diagram.
The result is 7 different stable motifs, each of which is shown in Fig 3 with a different node/
edge color (nodes and edges with multiple colors are part of several stable motifs). The stable
motif succession diagram for the T-LGL network is shown in Fig 4. For simplicity we do not in-
clude the motifs associated with the node P2 in the succession diagram, as these motifs require
the other stable motifs to influence the resulting attractor in the succession diagram.

The succession diagram in Fig 4 suggests a simple picture for the cell fate determination
process: the activation of any of the three S1P-related motifs is enough to drive the system to ei-
ther apoptosis (either the teal or the green stable motif in Figs. 3 and 4) or T-LGL leukemia
(the red stable motif in Figs. 3 and 4). This result agrees with previous studies of T-LGL leuke-
mia, in which it was found that blocking S1P signaling induced apoptosis in leukemic T-LGL
cells [28, 47], a result reproduced by the network model when the state of S1P was set to OFF
[41, 46].

Fig 3. The T-LGL leukemia survival signaling network. The shape of the nodes indicates the cellular location or the type of nodes: rectangles indicate
intracellular components, ellipses indicate extracellular components, diamonds indicate receptors, and hexagons represent conceptual nodes (Stimuli,
Stimuli2, P2, Cytoskeleton signaling, Proliferation, and Apoptosis). Node colors are used to denote the different stable motifs of the network in the presence
of the external signals Stimuli and IL15. Nodes and edges with multiple colors are part of several stable motifs. An arrowhead or a short perpendicular bar at
the end of an edge indicates activation or inhibition, respectively. This figure and its caption are adapted from [46].

doi:10.1371/journal.pcbi.1004193.g003
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Next, we use the stable motif diagram in Fig 4 and our two control strategies to find inter-
vention targets for the T-LGL leukemia network. The obtained intervention targets for each
control strategy are shown in Table 1. Note that some intervention targets may be present in
both control strategies (e.g. {S1P = OFF} is a target both for apoptosis control and T-LGL at-
tractor blocking). For the case of stable motif blocking one may have the same intervention for
blocking two different attractors (e.g. {TBET = OFF}), which means that this intervention
could block either attractor.

Fig 4. Stable motif succession diagram for the T-LGL leukemia network. The color of the nodes denotes their respective node states in the stable motifs:
gray for 0 and black for 1. The colored rectangle surrounding each stable motif corresponds to the respective color of the motif in Fig 3. There are two
possible attractors for the system: the normal state of self-programmed cell death (apotosis) and the diseased state (T-LGL leukemia). The attractors
obtained for each possible sequence of stable motifs are shown in the rightmost part of the figure.

doi:10.1371/journal.pcbi.1004193.g004
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To validate an intervention target, we compare the probabilities that an arbitrary initial con-
dition ends in the target attractor with and without the intervention (see Methods). The results
of the intervention target validation are summarized in S1 Table. For all the stable motif control
interventions we obtain 100% effectiveness in reaching the desired state, both for the case in
which the intervention is permanent and for the case in which it is not. This means that all sta-
ble motif control interventions are long-term successful, in agreement with our formal results in
S2 Text. For example, when fixing S1P = OFF the apoptosis attractor is reached for all the ini-
tial conditions, indicating that the T-LGL attractor is unreachable. For the case of the stable
motif blocking interventions we find that each of them but one (GRB2 = OFF) is successful in
blocking its target attractor or one of its target attractors, though not always with 100% effec-
tiveness. For example, for TBET = OFF the apoptosis attractor is reached from 10% of the ini-
tial conditions, which is a substantial reduction from the baseline of 62% in the case of no
intervention, indicating that this interventions is effective as an apoptosis blocking strategy.
We also find that most of the stable motif blocking interventions are effective when the inter-
vention is permanent, but only a few of them are effective when the intervention is temporary.

Single interventions are the most commonly used therapeutic strategies for treating diseases.
Thus, we evaluate the success of each single intervention from control sets with more than one
node (see S1 Table). We find that one of the 12 single node interventions, Ceramide = ON, is
100% effective and long-term successful. Of the remaining 11 single node interventions only a
few are successful (Ceramide = OFF, SPHK1 = ON, and PDGFR = ON) and/or long-term suc-
cessful (SPHK1 = ON and PDGFR = ON) but none of them are 100% effective. This result il-
lustrates the benefit of combinatorial interventions over single interventions.

Helper T cell differentiation network. Helper T cells are crucial in the regulation of the
immune response in mammals. These T cells release specific cytokines that alter how the im-
mune system responds to external agents, for example, by recruiting specific immune system
cells to fight infection, promoting antibody production, or inhibiting the activation and prolif-
eration of other cells. Various subtypes of helper T cells are known, such as Th1, Th2, Th17
and Treg, which are distinguished by a differential expression of specific transcription factors
and cytokines.

A logical network model of the regulatory and signaling pathways controlling helper T cell
activation and differentiation was constructed by Naldi et al. [48]. This network model has sev-
eral attractors, which correspond to the known canonical helper T cell subtypes, and also to
some hybrid cell types (see [48] and S5 Text). The reachability of each attractor depends on the
presence of several external environmental signals (either cytokines or antigen), which are rep-
resented as input nodes in the network. For our study we use one of the environmental condi-
tions studied by Naldi et al. (TGFB_e = ON, IL2_e = ON, and APC = ON) [48] because it
allows us to explore control targets for all T cell subtypes. The helper T cell differentiation net-
work under the selected environmental conditions consists of 55 nodes and 121 edges and is
shown in Fig 5. Its corresponding logical functions are reproduced in S5 Text.

We obtain 17 stable motifs, each of which is shown in Fig 5 with a different node/edge
color, and a stable motif succession diagram composed of 697 sequences. Despite the large size
of the succession diagram, a closer look at it gives a simple interpretation: the stable motifs as-
sociated with each attractor regulate the characteristic transcription factor of each helper T cell
subtype. To check this, we look at the minimal subsets of stable motifs that are sufficient for a
sequence to lead to a single differentiated helper T cell subtype (see Fig 6 and S5 Text). We use
the stable motif succession diagram and our stable motif control and stable motif blocking
strategies to find intervention targets for each helper T cell subtype (see Table 2).

To validate the proposed intervention targets we use the same procedure as in the T-LGL
leukemia network case (see Methods). We also look at the effect of single node interventions
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for control sets with more than one node. The results of the intervention targets for the stable
motif control, stable motif blocking strategies, and single node interventions are summarized
in S2 Table. We find that (i) there is a 100% effectiveness in reaching the desired state for all
the stable motif control interventions, (ii) most of the stable motif blocking interventions are
successful in blocking their target attractor or one of their target attractors, though not always
with 100% effectiveness, and (iii) some single interventions are successful, but none of them
are 100% effective.

The control targets transcend the logical modeling framework
The network control approach we propose is formulated in a Boolean framework, which brings
up the question of whether the control targets identified are dependent on the logical modeling

Fig 5. The helper T cell differentiation network. The nodes that encode the environmental conditions (APC = ON, TGFB_e = ON, IL2_e = ON) are located
in the upper part of the network diagram. Node colors are used to denote the different stable motifs of the network in the used environmental conditions.
Nodes and edges with multiple colors are part of several stable motifs. An arrowhead or a short perpendicular bar at the end of an edge indicates activation or
inhibition, respectively. This figure is adapted from [48].

doi:10.1371/journal.pcbi.1004193.g005
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scheme. To address this, we translate the studied Boolean network models into ordinary differ-
ential equation (ODE) models using the method described by Wittmann et al. [49]. In the
ODE models the node state variables ~s i can take values in the range [0, 1]; the differential equa-

tions of the translated model have the form ~s:i ¼ ð1=tiÞ½~f ið~s i1
; . . . ; ~s iki

Þ � ~s i�, where ~f i is a
smooth Hill-type function parameterized by Hill coefficients and threshold parameters, and τi
is a time-scale parameter. The function ~f i is such that it matches the Boolean function fi when-
ever its inputs ~s i1

; . . . ; ~s iki
are either 0 or 1. Thus, the fixed point attractors of the Boolean

model are preserved in the ODE model.

Fig 6. Minimal subsets of stable motifs associated to each helper T cell subtype. Each stable motif is enclosed by a colored rectangle, and motifs which
are part of the sameminimal subset have their enclosing rectangles touching each other. The node colors denotes their respective node states in the stable
motifs: gray for 0 and black for 1. The color of the rectangle enclosing each stable motif corresponds to the respective color of that motif in Fig 5.

doi:10.1371/journal.pcbi.1004193.g006

Cell Fate Reprogramming by Control of Intracellular Network Dynamics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004193 April 7, 2015 13 / 24



We test the effectiveness of the stable motif control interventions in the translated ODE
models by comparing the probability for an uniformly chosen initial condition to reach the tar-
get attractor with and without the intervention (see S6 Text). We find that the stable motif con-
trol interventions are still 100% effective or very close for both permanent and transient
interventions (S3 Table and S4 Table). We also find that the effectiveness of the interventions
is mostly unchanged by varying the Hill coefficients (S5 Table), varying the the time-scale pa-
rameters τi and thresholds (S6 Table), or fixing the intervened node variables close to but not
exactly at the intervention-prescribed values (S7 Table). We finally test single interventions
and find that they still underperform combinatorial interventions (S3 Table and S4 Table).

To further validate the successful control targets we identified, we searched the literature for
experimental support for these targets. We find that several of the single interventions pre-
dicted to be successful in inducing apoptosis of leukemic T cells or in inducing specific T cell
types were found to be successful experimentally. The control targets for which experimental
support was found, the attractors they lead to, and the references are shown in Table 3. Collec-
tively, these results strongly suggest that the control targets identified by our approach tran-
scend the logical framework.

Discussion
Identifying control targets for intracellular networks is of crucial importance for practical ap-
plications such as disease treatment and stem cell reprogramming. Despite recent advances in
network controllability approaches, most of them rely solely on the topology [7, 9, 10, 12, 13]
or the dynamics [11, 20–22] of the network. Thus, potentially important effects that depend on
the interplay between structure (topology) and function (dynamics), such as combinatorial in-
teractions, are not considered. In this work we proposed a network control approach that com-
bines the structural and functional information of a discrete (logical) dynamic network model
to identify control targets. The method builds on the concept of stable motif and its relation to
finding attractors [41], and takes it much further by connecting stable motifs with a way to

Table 3. Experimental support for successful control targets in Tables 1 and 2.

Intervention Target attractor Reference

T-LGL leukemia

{S1P = OFF} Apoptosis [47]

{SPHK1 = OFF} Apoptosis [28]

{PDGFR = OFF} Apoptosis [28, 59]

{Ceramide = ON} Apoptosis [60]

{RAS = OFF} Apoptosis [61]

{MEK = OFF} Apoptosis [61]

{ERK = OFF} Apoptosis [61]

{PI3K = OFF} Apoptosis [59, 62]

Helper T cell differentiation

{TBET = ON} Th1 [63, 64]

{GATA3 = ON} Th2 [63, 65]

{IL21 = ON} Th17 [66]

{IL21R = ON} Th17 [66]

{IL23R = ON} Th17 [66]

{FOXP3 = ON} Treg [67]

doi:10.1371/journal.pcbi.1004193.t003
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identify targets whose manipulation (upregulation or downregulation) ensures the conver-
gence of the system to an attractor of interest. We illustrated our method’s potential to find in-
tervention targets for cancer treatment and cell differentiation by applying it to network
models of T-LGL leukemia and helper T cell differentiation.

The control interventions identified by our method have many desirable characteristics. For
example, stable motif control interventions are guaranteed to drive an initial state to the target
attractor state with 100% effectiveness, regardless of the initial state, a general result which we
prove in S2 Text and corroborate in our test cases (see S1 Table and S2 Table). They are also
long-term successful, meaning that the intervention only needs to be applied transiently for the
network to reach and stay in the desired state, a general result which we also verify in our test
cases (see S1 Table and S2 Table). We attribute these properties to the use of the natural (au-
tonomous) dynamics of the network to control its dynamics.

Another noteworthy characteristic of our stable motif control method is the combinatorial
nature of the multi-target interventions. As shown in S1 Table and S2 Table, only one single-
node intervention (namely, Ceramide = ON in the T-LGL leukemia network) was able to
match the 100% effectiveness of the multi-target interventions. This agrees with recent clinical
studies on the advantages of combinatorial over single target interventions [50–52]. Finally, the
stable motif control interventions for our case studies target only a few nodes (between one
and five out of more than fifty), which matches what is expected from stem cell reprogramming
experiments [1–3, 8].

The framework presented in this work is formulated and applied in the context of logical
network modeling of cell fate reprogramming processes but its applicability is not restricted to
it. Indeed, our control approach is applicable to any dynamic process that can be captured
qualitatively by a Boolean dynamic network model such as ecological community dynamics
[53], social dynamics [54, 55], or disease spreading [56, 57]. The validity of the control targets
on the translated ODE models of our two case studies and the experimental support found for
several of these targets demonstrates the broader, potentially model-independent reach of our
method. Further work is needed to address exactly how to extend the concept of stable motif
and our network control approach to continuous models; formalizing our framework to admit
an arbitrary number of discrete states and other updating schemes may prove a valuable step in
this direction.

Taken together, our results provide a novel framework for the control of the dynamics of in-
tracellular networks that combines realistically obtainable structural and functional informa-
tion of the network of interest. As such, we expect this framework to be significant to a variety
of practical applications and to also provide a new avenue to better understand how the com-
plex behaviors of cells in living organisms emerges from the underlying network of
biochemical interactions.

Methods

Computational methods
The simulations of the logical model were done with the BooleanDynamicModeling Java li-
brary, while the attractor-finding method and the analysis of the stable motif succession dia-
grams were performed using the StableMotifs Java library, both of which are freely available on
GitHub (on http://github.com/jgtz/BooleanDynamicModeling/ and http://github.com/jgtz/
StableMotifs/, respectively). The source code of a Java project that allows the user to reproduce
the stable motif succession diagrams and control sets for the test cases analyzed is also freely
available on GitHub under the examples folder of the StableMotifs Java library. The generation
of the ODE model from the logical model was done using the MATLAB implementation of the
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method of Wittman et al. [49, 58]; the numerical integration of the ODE models was per-
formed using MATLAB’s ode45 function (see S6 Text for more details). The networks in all fig-
ures were created using the yEd graph editor (http://www.yworks.com/).

General asynchronous updating scheme
In the general asynchronous scheme, the state of the nodes is updated at discrete time steps
starting from an initial condition at t = 0. At every time step, one of the variables is chosen ran-
domly (uniformly) and is updated using its respective function and the state of its regulators at
the previous time step

sjðt þ 1Þ ¼ fj sj1
ðtÞ; sj2

ðtÞ; � � � ; sjkj
ðtÞ

� �
; ð1Þ

while the rest of the variables retain their state. In this way, every possible update order is al-
lowed, and thus, all relative timescales of the processes involved are sampled.

Stable motif control algorithm
For an attractor of interestA, the steps of the stable motif network control method are the
following:

- Step 1: Identify the sequences of stable motifs that lead toA. These can be obtained from
the stable motif succession diagram (see Fig 2) by choosing the attractor of interest in the
right-most part and selecting all of the attractor’s predecessors in the succession diagram.

- Step 2: Shorten each sequence S by identifying the minimum number of motifs in S re-
quired for reachingA and removing the remaining motifs from the sequence. This mini-
mum number of motifs can be identified from the stable motif succession diagram (Fig 2);
they are the motifs after which all consequent motif choices lead to the same attractorA.

- Step 3: For each stable motif’s stateM = (σm1
, σm2

,. . ., σml
), find the subsets of stable mo-

tif’s states O = {Mi},Mi�M that, when fixed in the logical model, are enough to force
the state of every node in the motif intoM. At worst, there will only be one subset, which
will equal the whole stable motif’s stateM. If any of these subsets is fully contained in
another subset, remove the larger of the subsets. In each stable motif sequence
S = (M1,. . .,ML), substitute every stable motifMj with the subsets of the stable motif’s
states obtained, that is, S = (O1,. . ., OL).

- Step 4: For each sequence S = (O1,. . ., OL) create a set of states C by choosing one of the
subsets of stable motif’s statesMkj in each Oj and taking their union, that is, C =
Mk1[� � �[MkL,Mkj 2 Oj. The network control set for attractorA is the set of node states
CA = {Ci} obtained from all possible combinations of subsets of stable motif’s statesMkj’s
for every sequence S. To avoid any redundancy, we additionally prune CA of duplicates
and remove each set of node states Ci which is a superset of any of the other sets of node
states Cj (i.e. Cj � Ci).

For a pseudocode of each step of the stable motif control algorithm see S7 Text.

Stable motif blocking algorithm
Given an attractorA one is interested in obstructing, the steps to identify potential interven-
tions are the following:
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- Step 1: Identify the sequences of stable motifs that lead toA. This step is the same as the
first step in the stable motif control algorithm, and can be obtained from the stable motif
succession diagram (Fig 2).

- Step 2: Take each stable motif’s stateMi in the sequences obtained in the previous step.
Create a new setMA with all of these stable motif states,MA = {Mi}.

- Step 3: Take each node state σj �Mi of the stable motif’s statesMi inMA. Create a new

set ℬA with the negation of each node state, ℬA ¼ �sj

� �
. The node states in ℬA and any

combination of them are identified as potential interventions to block attractorA.

For a pseudocode of each step of the stable motif blocking algorithm see S7 Text.

Intervention target validation
To validate an intervention target, we fix the node states prescribed by the intervention, choose
a random (uniformly chosen) initial condition, and evolve the system using the general asyn-
chronous updating scheme for a sufficiently large number of time steps so that the system
reaches an attractor. We find that, for our test cases, temporal evolution for 10,000 time steps
ensures reaching an attractor from any initial condition considered with stable motif control
intervention or without an intervention; to be safe, we choose to evolve for 50,000 time steps in
all cases. We repeat this for a large number of initial conditions (100,000) and calculate the
probability of reaching each attractor from an arbitrary (uniformly chosen) initial condition.
We also look at the probability of reaching each attractor when the intervention is not perma-
nent (i.e. it is transient), that is, we fix the prescribed node states for a large number of time
steps, then stop fixing these states and wait for another large number of time steps for the sys-
tem to reach an attractor. For our test cases, we find that using 10,000 time steps for each evolu-
tion stage (with and then without prescribed node states) is enough to preserve the first three
digits of the estimated probabilities pAttr of reaching the attractor of interest, consistent with
what is expected from the standard deviation of the estimated probability pAttr. To be safe, we
choose to evolve for 50,000 time steps for each evolution stage.

The number of initial conditions we use is chosen to give three significant figures in the esti-
mated probabilities pAttr. For our test cases, we find that 100,000 initial conditions are enough
to estimate the probabilities pAttr of reaching the attractor of interest with an error (standard
deviation of the estimated probability pAttr) of 3�10−3[pAttr(1−pAttr)]1/2. Equivalently, if pAttr is
expressed as a percentage (which we denote as %pAttr for clarity), the error in it is estimated as
3�10−3[%pAttr(100%−%pAttr)]

1/2% (e.g. 0.03% for a %pAttr of 1%, and 0.15% for a %pAttr of
50%). The number of time steps we use is enough to show no changes in pAttr beyond what is
expected from the standard deviation of the estimated probability pAttr, and is also found to be
enough for the initial conditions to reach the attractors when no interventions are applied.

Supporting Information
S1 Text. Details and examples of the attractor finding method and stable motif control al-
gorithm.
(PDF)

S2 Text. Mathematical foundations of the attractor-finding method and of the stable motif
control approach.
(PDF)
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S3 Text. Time complexity and mitigation techniques for the attractor-finding method and
the stable motif control approach.
(PDF)

S4 Text. Logical rules and classification of attractors in the T-LGL leukemia network
model.
(PDF)

S5 Text. Logical rules, classification of attractors, and analysis of the stable motif succes-
sion diagram in the helper T cell differentiation network model.
(PDF)

S6 Text. Translating the logical network models into ordinary differential equation models,
and intervention target validation for the ordinary differential equation models.
(PDF)

S7 Text. Pseudocode for the stable motif control algorithm and the stable motif blocking
algorithm.
(PDF)

S8 Text. List of references that appear in the supporting information files.
(PDF)

S1 Fig. Stable motifs and simplified logical networks for the logical network in Fig 1. Read
from left to right, the figure shows the logical network in Fig 1, the stable motifs of this logical
network, the simplified networks obtained from tracing the downstream effect of each of the
original logical network’s stable motifs, and the stable motifs obtained from these simplified
networks. Nodes are colored based on their respective node state: gray for 0, black for 1, and
white for nodes whose state is not yet determined. Each large arrow has an associated stable
motif sharing the arrow’s color. These large arrows stand for the use of a network reduction
technique on the network they start from by tracing the downstream effect of their associated
stable motifs on this network.
(PDF)

S2 Fig. Example of the expanded network representation of selected nodes of the logical
network in Fig 1. The logical function of each example node is shown above its expanded net-
work representation. Nodes are colored white if they denote normal nodes or complementary
node (complementary nodes have a bar above their name, while normal nodes do not), and
colored black if they denote composite nodes. For more details see S1 Text and S2 Text. (a) Ex-

panded network representation for normal node C, complementary node �C, and their inputs.

(b) Expanded network representation for normal node B, complementary node �B, and
their inputs.
(PDF)

S3 Fig. Example logical network displaying unstable oscillations. The figure shows (a) a two
node Boolean network whose logical functions are given by an XOR function, (b) the network’s
state transition graph, i.e., all combinations of network states and the allowed transitions be-
tween them under the general asynchronous updating scheme, and (c) the network’s stable
motif succession diagram. This Boolean network is the simplest example (up to a relabeling of
node states) of so-called unstable oscillations. Unstable oscillations refer to a subset of nodes
whose node states oscillate in an attractor while their node states are fixed in a different at-
tractor, even though both attractors are the same except for the state of this subset of nodes. In
the example Boolean network shown in this figure, we have the states of nodes A and B oscillate
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between three network states in attractorA0 = {(A = 1, B = 0), (A = 0, B = 0), (A = 0, B = 1)},
while they are fixed in attractorA = {A = 1, B = 1}. Unstable oscillations are treated with special
care when using our attractor-finding method, since ignoring them can lead to missing attrac-
tors displaying this behavior; for more details see S1 Text and S2 Text.
(PDF)

S4 Fig. Example logical network displaying incomplete oscillations. The figure shows (a) a
three node Boolean network that displays incomplete oscillations, (b) the sub-state-space of
nodes A and B in the network’s state transition graph (i.e., all combinations of network states
and the allowed transitions between them) under the general asynchronous updating scheme,
and (c) the network’s stable motif succession diagram. Incomplete oscillations refer to a subset
of nodes whose node states oscillate in an attractor but do not visit all possible states of their
sub-state-space in the attractor. In the example Boolean network shown in this figure, we have
the states of nodes A and B oscillate between three subnetwork states {(A = 1, B = 0), (A = 0,
B = 0), (A = 0, B = 1)} in the attractorsA andA0. Incomplete oscillations are treated with spe-
cial care when using our attractor-finding method, since ignoring them can lead to missing at-
tractors displaying this behavior; for more details see S1 Text and S2 Text.
(PDF)

S5 Fig. Expanded network representation of the stable motifs of the logical network in Fig
1, and the terms in the logical functions associated to each stable motif. Read from left to
right, the figure shows the stable motifs of the logical network in Fig 1, the expanded network
representation of the stable motifs (from which stable motifs are formally defined), and the
terms of the logical function associated to each stable motif. For more details on the expanded
network representation see S1 Text and S2 Text.
(PDF)

S1 Table. Validation of the intervention targets in Table 1 and single interventions from
control sets with more than one node in Table 1 for the T-LGL leukemia network model.
The relative apoptosis % change is defined as (Apoptosis %−Normal apoptosis %)/(Normal ap-
optosis %), where Normal apoptosis % = 62.1% is the percentage of initial conditions that go to
apoptosis when no intervention is applied. Interventions marked with † appear in more than
one control strategy or target attractor in Table 1. The percentages are significant in the digits
shown and have an estimated absolute error (standard deviation of the mean) of 3�10−3[%
pAttr(100%−%pAttr)]

1/2 %, where %pAttr is the percentage shown (e.g. 0.03% for a %pAttr of 1%,
and 0.15% for a %pAttr of 50%).
(PDF)

S2 Table. Validation of the intervention targets in Table 2 and single interventions from
control sets with more than one node in Table 2 for the helper T cell network. The relative
attractor % change is defined as (attractor %−normal attractor %)/(normal attractor %), where
the normal attractor % is the percentage of initial conditions that go to the attractor of interest
when no intervention is applied. The normal attractor percentages are 48.6%, 47.5%, 1.3%, and
2.6% for the Th1, Th2, Th17, and Treg helper T cell subtypes, respectively. Interventions
marked with † appear in more than one control strategy or target attractor in Table 2. The per-
centages are significant in the digits shown and have an estimated absolute error (standard de-
viation of the mean) of 3�10−3[%pAttr(100%−%pAttr)]

1/2 %, where %pAttr is the percentage
shown (e.g. 0.03% for a %pAttr of 1%, and 0.15% for a %pAttr of 50%).
(PDF)
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S3 Table. Validation of the intervention targets in Table 1 for the T-LGL leukemia differen-
tial equation network model and single interventions from control sets with more than one
node in Table 1 for the T-LGL leukemia differential equation network model. The relative
apoptosis % change is defined as (Apoptosis %−Normal apoptosis %)/(Normal apoptosis %),
where Normal apoptosis % = 54.7% is the percentage of initial conditions that go to apoptosis
when no intervention is applied. Interventions marked with † appear in more than one control
strategy or target attractor in Table 1. The percentages are significant in the digits shown and
have an estimated absolute error (standard deviation of the mean) of 6�10−3[%pAttr(100%−%
pAttr)]

1/2 %, where %pAttr is the percentage shown (e.g. 0.06% for a %pAttr of 1%, and 0.3% for a
%pAttr of 50%).
(PDF)

S4 Table. Validation of the stable motif control intervention targets in Table 2 for the help-
er T cell differential equation network model. The relative attractor % change is defined as
(attractor %−normal attractor %)/(normal attractor %), where the normal attractor % is the
percentage of initial conditions that go to the attractor of interest when no intervention is ap-
plied. The normal attractor percentages are 50.0%, 45.4%, 2.8%, and 1.8% for the Th1, Th2,
Th17, and Treg helper T cell subtypes, respectively. Interventions marked with † appear in
more than one control strategy or target attractor in Table 2. The percentages are significant in
the digits shown and have an estimated absolute error (standard deviation of the mean) of
6�10−3[%pAttr(100%−%pAttr)]

1/2 %, where %pAttr is the percentage shown (e.g. 0.06% for a %
pAttr of 1%, and 0.3% for a %pAttr of 50%).
(PDF)

S5 Table. Validation of some stable motif control intervention targets in Table 1 for differ-
ent Hill coefficients (n) in the T-LGL leukemia differential equation network model. The
percentages are significant in the digits shown and have an estimated absolute error (standard
deviation of the mean) of 6�10−3[%pAttr(100%−%pAttr)]

1/2 %, where %pAttr is the percentage
shown (e.g. 0.06% for a %pAttr of 1%, and 0.3% for a %pAttr of 50%).
(PDF)

S6 Table. Validation of some stable motif control intervention targets in Table 1 for differ-
ent Hill coefficients (n) in the T-LGL leukemia differential equation network model with
randomly chosen τi and θi. The percentages are significant in the digits shown and have an es-
timated absolute error (standard deviation of the mean) of 5�10−3[%pAttr(100%−%pAttr)]

1/2 %,
where %pAttr is the percentage shown (e.g. 0.05% for a %pAttr of 1%, and 0.25% for a %pAttr of
50%).
(PDF)

S7 Table. Validation of some stable motif control intervention targets in Table 1 when fix-
ing the intervened node variables close to the intervention-prescribed values in the T-LGL
leukemia differential equation network model. If the intervention is 0 (1), the node variable
is fixed at 0.1 (0.9), 0.8 (0.2), 0.7 (0.3), or 0.6 (0.4). The percentages are significant in the digits
shown and have an estimated absolute error (standard deviation of the mean) of 6�10−3[%
pAttr(100%−%pAttr)]

1/2 %, where %pAttr is the percentage shown (e.g. 0.06% for a %pAttr of 1%,
and 0.3% for a %pAttr of 50%).
(PDF)
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