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Abstract

There is no consensus among research laboratories around the world on the criteria that define endpoint in studies
involving rodent models of amyotrophic lateral sclerosis (ALS). Data from 4 nutrition intervention studies using 162 G93A
mice, a model of ALS, were analyzed to determine if differences exist between the following endpoint criteria: CS 4
(functional paralysis of both hindlimbs), CS 4+ (CS 4 in addition to the earliest age of body weight loss, body condition
deterioration or righting reflex), and CS 5 (CS 4 plus righting reflex .20 s). The age (d; mean 6 SD) at which mice reached
endpoint was recorded as the unit of measurement. Mice reached CS 4 at 123.9610.3 d, CS 4+ at 126.669.8 d and CS 5 at
127.669.8 d, all significantly different from each other (P,0.001). There was a significant positive correlation between CS 4
and CS 5 (r = 0.95, P,0.001), CS 4 and CS 4+ (r = 0.96, P,0.001), and CS 4+ and CS 5 (r = 0.98, P,0.001), with the Bland-
Altman plot showing an acceptable bias between all endpoints. Logrank tests showed that mice reached CS 4 24% and 34%
faster than CS 4+ (P = 0.046) and CS 5 (P = 0.006), respectively. Adopting CS 4 as endpoint would spare a mouse an average
of 4 days (P,0.001) from further neuromuscular disability and poor quality of life compared to CS 5. Alternatively, CS 5
provides information regarding proprioception and severe motor neuron death, both could be important parameters in
establishing the efficacy of specific treatments. Converging ethics and discovery, would adopting CS 4 as endpoint
compromise the acquisition of insight about the effects of interventions in animal models of ALS?
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Introduction

The endpoints used in research studies involving mouse models

of amyotrophic lateral sclerosis (ALS) vary widely between labo-

ratories around the world [1–97]. Not all endpoints are in perfect

agreement with each other; that is, depending on the endpoint, the

age at which mice are euthanized (time point at which age is used

to establish lifespan) may differ independently of the intervention

treatment used in research studies (Table 1). Because specific

endpoints inherently occur early or later in disease progression,

researchers may not be able to directly compare the effectiveness

of treatments on disease severity and progression, as well as func-

tional outcomes, in animal models of ALS conducted in one

research laboratory with similar treatments conducted in different

laboratories. Identifying the proper endpoint is important, because

it impacts lifespan and marks the end of data collection. A solution

would be a universal endpoint which would allow researchers to

follow disease progression and identify the effectiveness of an

intervention treatment, while still meeting stringent ethical stan-

dards. Of relevance, this impacts the adoption of results from

animal-based research for human randomized clinical trials, as

well as the implications of adopting new recommendations,

nutrition or pharmaceutical, for people with ALS.

ALS is a devastating neuromuscular disease characterized by

death of motor neurons in the brain [98] and spinal cord [99].

Symptoms of ALS begin with muscle weakness, ultimately leading

to paralysis and death [100]. The first mouse model used to study

ALS was created by Gurney et al in 1994 [100] who discovered

that a glycine to alanine substitution on the 93rd position in the

human Cu,Zn superoxide dismutase (Cu/Zn-SOD) gene pro-

duced the phenotype of ALS. Mice testing positive for this

mutation begin to overtly exhibit signs of motor degeneration

through a change in gait between 85–110 d of life [15,82,83]. As

the disease progresses, the hindlimbs become paralyzed, paw grip

strength and endurance deteriorate, bony structures become pal-

pable due to severe muscle and tissue loss, mobility is limited, and

an inability to groom and scavenge for food and water become

apparent [20,49,54,73,82]. Researchers conducting intervention

studies in mouse models of ALS monitor the above changes to

track the effectiveness of their intervention, however at what point

is it no longer ethical to keep these mice alive?

Research ethics committees and animal care organizations/

agencies serve to maintain standards for the care and use of animals

used in research, including transgenic mice used in models of ALS

[101]. Standards of care include the selection of ‘‘endpoint’’ which is

the point at which an experimental animal is killed humanely to

terminate pain, distress and/or suffering [101]. Hence, research

ethics committees and animal care organizations/agencies must

consult with ALS researchers to decide on a case-by-case basis

which endpoint is suitable for a specific intervention study, while
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maintaining compatibility with the objectives and the integrity of

the research project. Different laboratories using mouse models of

ALS have chosen varying endpoints, some reflecting more

advanced stages of the disease, including the righting reflex (mice

are placed on their sides and are euthanized if they cannot right

themselves to sternum in 3–30 s, time chosen depends on the

laboratory), an inability to splay the hindlimbs due to paralysis, a

percentage decrease in motor performance or grip strength from

initial values, an inability to obtain food or water, a defined

percentage of body weight loss from peak weight, serious eye

infection, an inability to self-groom, no spontaneous breathing or

movement for a predetermined time with no response to pain,

complete hindlimb paralysis, or combinations of two or more of

these criteria. The most commonly used endpoint is a righting reflex

of at least 3 s [1,4,5,7,10–15,17–23,25,27,28,30–32,36,38–47,49–

51,53,57–59,61,62,64,65,68,70–72,74,77,79–83,84,86–89,91,94–97],

however some studies did not specify the length of time used as the

cutoff for the righting reflex [26,54,60,73,78,85,90,93]. The popular-

ity of the righting reflex is possibly due to its relative simplicity, value as

an indicator of proprioception deterioration [102,103], and/or history

as the first endpoint used in an intervention study in this particular

disease model [79].

To date, a universal endpoint has not been established among

researchers using rodent models of ALS. An ideal endpoint would

meet strict ethical standards, could be adopted by all research

laboratories, and would allow researchers to properly study the

progression of ALS and the effectiveness of treatments tested. A

consistent endpoint across research laboratories would reduce

inter-laboratory variability that may be attributed at least partially

to the selection of endpoint. Thus, our objective was to determine

whether an earlier endpoint could replace the righting reflex,

sparing mice undue suffering, while preserving the integrity of

research in rodent models of ALS. To do this, we used the G93A

transgenic mouse model of ALS to validate if functional paralysis

in both hindlimbs (CS 4) could replace other later endpoints,

including the righting reflex (CS 5).

Materials and Methods

Ethics Statement
The experimental protocols of all 4 studies followed the

guidelines of the Canadian Council of Animal Care and were

approved by the McMaster University Animal Research Ethics

Board. All necessary steps were taken to minimize suffering and

distress to the mice in the studies.

Animals
Raw data for clinical score (CS), body condition and body

weight were compiled from 4 previously published [15,82,83,

104,105] nutrition intervention studies using a total of 162 B6SJL-

TgN-(SOD1-G93A)1Gur autosomal hemizygous mice (100 fe-

males, 62 males) that reached endpoint at a clinical score of 5 (CS

5). All mice expressed the phenotype of ALS due to the G93A

mutation in the SOD1 (Cu/Zn-SOD) gene. Raw data were used

to determine the following endpoint criteria, with age (d) at which

mice reached endpoint as the unit of measurement:

1) CS 4 = both hindlimbs are functionally paralyzed

2) CS 4+ = CS 4 plus the earliest time mice attained one of the

following:

a) weight loss $20% vs. body weight immediately prior to

a clinical score of 2 (CS 2 is considered disease onset) =

20%CS2

b) weight loss $20% vs. peak body weight = 20%Peak

c) body condition score ,2 = BC,2

d) righting reflex .20 s (clinical score of 5) = CS 5

3) CS 5 = CS 4 plus a righting reflex .20 s (considered as the

endpoint in the previous 4 studies)

Body Weight and Body Condition
Body weights of mice in the 4 intervention studies were

measured starting at age 35–40 d until mice reached CS 5. Body

condition was assessed following a 5-point scale: 5 = obese mice,

4 = overconditioned mice (spine is a continuous column and the

vertebrae are palpable only with firm pressure), 3 = well-con-

ditioned mice (the vertebrae and dorsal pelvis are not prominent

and are palpable with slight pressure), 2 = underconditioned mice

(the segmentation of the vertebral column is evident and the dorsal

pelvic bones are easily palpable), and 1 = emaciated mice (the

skeletal structure is extremely prominent and the vertebrae are

distinctly segmented). Body condition was recorded starting at age

43–79 d until mice reached CS 5.

Clinical Score
Using an 8-point scale, clinical score measurements for mice in

the 4 intervention studies started at age 50–81 d until mice

reached CS 5. The clinical score was based on signs exhibited by

the mice to identify the severity of the disease: 0 = no evidence of

Table 1. Raw data and summary of endpoint criteria for 162 B6SJL-TgN-(SOD1-G93A)1Gur autosomal hemizygous female (F) and
male (M) mice.

Endpoint Criteria N Total (F, M) % of Mice Meeting Criteria (F, M) Mean Age (d) (F, M)

CS 4 162 (100, 62) 100.0% (100.0%, 100.0%) 123.9610.3* (125.8610.7, 120.868.8)

20%CS2 47 (28, 19) 29.0% (28.0%, 30.6%) 128.1610.7 (129.5612.1, 125.968.5)

20%Peak 69 (40, 29) 42.6% (40.0%, 46.8%) 126.6610.8 (128.9611.6, 123.668.7)

BC,2 42 (16, 26) 25.9% (16.0%, 41.9%) 121.6611.5 (127.868.3, 117.7611.7)

CS 4+ 162 (100, 62) 100.0% (100.0%, 100.0%) 126.669.8* (129.169.9, 122.568.3)

CS 5 162 (100, 62) 100.0% (100.0%, 100.0%) 127.669.8* (129.7610.0, 124.168.5)

CS 4, clinical score of 4 = functional paralysis of both hindlimbs; 20%CS2, weight loss $20% vs. body weight immediately prior to a clinical score of 2; 20%Peak, weight
loss $20% vs. peak body weight; BC,2, body condition score ,2; CS 5, clinical score of 5 = CS 4 plus a righting reflex .20 s; CS4+, clinical score of 4+ = CS 4 in addition
to the earliest of 20%CS2, 20%Peak, BC,2 or a righting reflex of .20 s.
*Significantly different from each other (P,0.001). Data for Mean Age (d) are presented as means 6 SD.
doi:10.1371/journal.pone.0020582.t001
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disease, 1 = shaking or splaying of the hindlimbs when suspended

by the tail (an indication of weakness in the hindlimbs), 1.5 =

weakness in one hindlimb (compensation for footdrop), 2 = change

in gait (used as disease onset when attained on two consecutive

days), 2.5 = extreme weakness in one hindlimb (inability to dorsi-

flex), 3 = extreme weakness in both hindlimbs, 3.5 = functional

paralysis in one hindlimb, 4 = functional paralysis in both hind-

limbs but can right themselves in less than 20 s after being placed

on their side, and 5 = cannot right themselves to sternum within

20 s after being placed on their sides (endpoint).

Statistical Analysis
Data for all 162 mice were submitted to a one-way repeated

measures ANOVA to determine significant differences between

CS4, CS4+ and CS5. When ANOVA indicated significance, a

Tukey’s HSD post hoc was used to determine the source of

difference. A Pearson product-moment correlation coefficient (r)

was determined to establish the relationship between the different

endpoints. A Bland-Altman plot was used to analyze the agree-

ment between the different endpoints. A logrank test was used to

determine whether there was a difference in the rate at which mice

reached CS4, CS4+ and CS 5. For all logrank tests, CS 4 was used

as the reference when comparing CS 4 vs. CS 4+ and CS 4 vs. CS

5, whereas CS 4+ was used as the reference when comparing CS

4+ vs. CS 5. All ANOVA, linear regression and logrank test

comparisons were planned. All statistical analyses were completed

using GraphPad Prism (version 4.0, GraphPad Software, La Jolla,

CA). Significance was established at P#0.05. Data are presented

as means 6 SD, unless otherwise indicated.

Results

Mice reached CS 4 at 123.9610.3 d, CS 4+ at 126.669.8 d

and CS 5 at 127.669.8 d (Table 1). There was a significant main

effect between endpoints (P,0.001), all being significantly dif-

ferent from each other (P,0.001 for all).

There was a strong positive correlation between CS 4 and CS 5

(r = 0.95; slope = 0.91; P,0.001; Figure 1A), CS 4 and CS 4+
(r = 0.96; slope = 0.92; P,0.001; Figure 2A), and CS 4+ and CS 5

(r = 0.98; slope = 0.98; P,0.001; Figure 3A). The Bland-Altman

plot revealed acceptable bias between CS 4 and CS 5 (3.062.5%;

lower limit = 22.0%, upper limit = 7.9%; Figure 1B), between CS

4 and CS 4+ (2.262.3%; lower limit = 22.4%, upper lim-

it = 6.7%; Figure 2B), and between CS 4+ and CS 5 (0.861.7%;

lower limit = 22.5%, upper limit = 4.1%; Figure 3B).

A logrank test showed a significant difference in the rate at

which endpoint was reached between CS 4, CS 4+ and CS 5

(P = 0.021; Figure 4). Mice reached CS 4 at a rate 34% faster vs.

CS 5 (HR = 1.34; 95% CI 1.10, 1.74; P = 0.006) and 24% faster vs.

CS 4+ (HR = 1.24; 95% CI 1.00, 1.59; P = 0.046). Mice reached

CS 4+ at a non-significant rate of 9% faster vs. CS 5 (HR = 1.09;

95% CI 0.88, 1.38; P = 0.410).

Statistical analyses were conducted for the same 3 endpoints

within each sex. Differences between endpoints within each sex

were similar as above.

Discussion

Our objective was to determine whether an earlier endpoint

could replace the most commonly used righting reflex in a

transgenic mouse model of ALS. This was done to validate the use

of an endpoint that would meet the strict standards set by research

ethics boards to decrease suffering and distress in mice, as well as

to allow researchers from different laboratories the use of a uni-

form and consistent endpoint to directly compare the effectiveness

of treatments in this particular animal model. We found strong

positive correlations between all endpoints with an acceptable

mean bias as measured by a Bland- Altman plot. Using CS 4+ and

CS 5 would prolong life span by 2% and 3%, respectively, as

compared to CS 4. Additionally, mice reached CS 4 at a rate 24%

faster compared to CS 4+ and 34% faster compared to CS 5.

Figure 1. Correlation between CS 4 and CS 5 and the Bland-Altman plot for CS 4 vs. CS 5. (A) Correlation between CS 4 (clinical score of
4 = functional paralysis of both hindlimbs) and CS 5 (clinical score of 5 = CS 4 plus a righting reflex .20 s). There was a strong positive relationship
between CS 4 and CS 5 (r = 0.95, slope = 0.91, P,0.001). CS 5 (d) = (14.8062.83)+[(0.9160.02)6(CS 4 in d)], mean 6 SEM. Dashed line indicates line of
identity. (B) A Bland-Altman plot comparing CS 4 to CS 5. Mean bias 6 SD = 3.062.5%, lower limit = 22.0%, upper limit = 7.9%.
doi:10.1371/journal.pone.0020582.g001
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Once mice reach CS 4, they must rely on the strength of their

forelimbs to obtain food and water which may place them at risk of

starvation and dehydration [43]. Some studies have used the

inability to scrounge for food and water as endpoint [11,13,28,

43,63,67,73,106], however establishing this is time consuming and

indicates an advanced disease state possibly well beyond CS 5. As

well, research ethics committees may institute policy requiring

mice to have access to food and water-based gels at cage floor level

Figure 2. Correlation between CS 4 and CS 4+ and the Bland-Altman plot for CS 4 and CS 4+. (A) Correlation between CS 4 (clinical score
of 4 = functional paralysis of both hindlimbs) and CS 4+ [CS 4 plus the earliest of a) weight loss $20% vs. body weight immediately prior to a clinical
score of 2, b) weight loss $20% vs. peak body weight, c) body condition score ,2, or d) a righting reflex .20 s (CS 5)]. There was a strong positive
relationship between CS 4 and CS 4+ (r = 0.96, slope = 0.92, P,0.001). CS 4+ (d) = (12.7962.56)+[(0.9260.02)6(CS 4 in d)], mean 6 SEM. Dashed line
indicates line of identity. (B) A Bland-Altman plot comparing CS 4 to CS 4+. Mean bias 6 SD = 2.262.3%, lower limit = 22.4%, upper limit = 6.7%.
doi:10.1371/journal.pone.0020582.g002

Figure 3. Correlation between CS 5 and CS 4+ and the Bland-Altman plot for CS 5 and CS 4+. (A) Correlation between CS 5 (clinical score
of 5 = CS 4 and righting reflex .20 s) and CS 4+ [CS 4 plus the earliest of a) weight loss $20% vs. body weight immediately prior to a clinical score of
2, b) weight loss $20% loss vs. peak body weight, c) body condition score ,2, or d) a righting reflex .20 s (CS 5)]. There was a strong positive
relationship between CS 5 and CS 4+ (r = 0.98, slope = 0.98, P,0.001). CS5 (d) = (3.9362.15)+[(0.9860.02)6(CS 4+ in d)], mean 6 SEM. Dashed line
indicates line of identity. (B) A Bland-Altman plot comparing CS 5 to CS 4+. Mean bias 6 SD = 0.861.7%, lower limit = 22.5%, upper limit = 4.1%.
doi:10.1371/journal.pone.0020582.g003
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when mice reach a pre-defined disease severity, which actually

prolongs disease exposure of mice due to easier access to nutrients.

Paw grip endurance and motor performance scores will have

decreased precipitously by the time mice reached CS 4, as com-

pared to scores prior to disease onset, due to hindlimb paralysis

and weakness in the forelimbs [15,82,83]. A decrease in motor

performance and/or paw grip strength has been previously used as

endpoint in mouse models of ALS [3,20]. Adoption of such

endpoints requires expensive, specialized equipment such as the

rotarod apparatus [20] and commercial grip strength meters [3].

Also, there is no standardization for the percent decrease in paw

grip strength among laboratories using this as a criterion for

endpoint [3,20].

All mice in our analyses met the criteria for CS 4+, however

when each additional criterion was assessed in isolation from CS 4,

that is, as standalone criterion for endpoint (data collection ended

at CS 5), only 29% of mice lost greater than 20% body weight

versus their weight immediately prior to disease onset (20%CS2),

43% lost greater than 20% body weight versus peak weight

(20%Peak), 26% had a body condition score of less than 2 (BC,2),

while 100% met the criteria for CS 5 (Table 1). These results

suggest that studies using any one of 20%CS2, 20%Peak, or

BC,2 as a standalone criterion to establish endpoint would be

keeping at least 57% of their mice alive past CS 5, prolonging

disease exposure beyond what is considered humane. Alternative-

ly, another interpretation of these results is that mice could die past

CS 5 without meeting the standalone criteria 20%CS2, 20%Peak,

or BC,2. Past CS 5, motor neuron degeneration is so far

advanced that mice can no longer right themselves to scrounge for

food and water and would be at a pronounced risk of starvation

and dehydration. Our analyses also reveal that fewer than 9% of

all mice met the standalone criteria 20%CS2, 20%Peak, or BC,2

prior to reaching CS 4 (Table 2). Hence, we conclude that CS 4

does not prolong disease exposure compared to 20%CS2, 20%

Peak, or BC,2 in a mouse model of ALS. More male mice met

20%CS2, 20%Peak, or BC,2 prior to reaching CS 4 compared to

females, however this result is expected since male mice have

greater muscle mass than females and muscle atrophy is a result of

disease progression [107].

The righting reflex, either as a standalone criterion or used in

conjunction with other parameters, has long been used to establish

endpoint in a mouse model of ALS [1,4,5,7,10–15,17–23,25–28,

30–32,36,38–47,49–51,53,54,57–62,64,65,68,70–74,77–91,93–97].

The righting reflex has its advantages. Failure to right within a pre-

defined period of time (at least .3 s) demonstrates severe muscle

weakness, an indication of advanced motor neuron degeneration, as

mice must use their strength to right themselves when placed on

their side. The righting reflex may also be a measure of declining

proprioception. Evidence suggests the dorsal root [102], dorsal root

ganglia [102,108–110], dorsal funiculus [102], Clarke’s nuclei

[103,109,111,112] and spinocerebellar tract [103,109,111–113],

the regions of the spinal cord responsible for processing proprio-

ception, may be affected in humans with ALS [103,108–112] and

animal models of ALS [102,113], however some researchers failed

to ascertain this association [113]. It is important to note that the

magnitude of diminished proprioception and muscle loss may be

different depending on the time used as the cutoff for the righting

reflex, with greater atrophy of motor neurons occurring when longer

cutoffs are used [113]. Although the righting reflex may provide

insight into muscle wasting and proprioception deficits, no studies

have used the righting reflex to quantify proprioception and motor

neuron loss. Rather, the righting reflex is simply used to identify

endpoint. Moreover, the time used to establish the righting reflex is

not standardized (at least 3 s), introducing a confounding within the

righting reflex methodology. Some studies did not specify the length

Figure 4. Probability of survival for CS 4, CS 4+ and CS 5.
Probability of survival for the 3 different endpoints (CS 4, black line; CS
4+, blue line; CS 5, red line). For all logrank tests, CS 4 was used as the
reference when comparing CS 4 vs. CS 4+ and CS 4 vs. CS 5, whereas CS
4+ was used as the reference when comparing CS 4+ vs. CS 5. The rate
of reaching endpoint is significantly different (P = 0.021) between CS 4
(clinical score of 4 = functional paralysis of both hindlimbs), CS 4+ [CS 4
plus the earliest of a) weight loss $20% vs. body weight immediately
prior to a clinical score of 2, b) weight loss $20% vs. peak body weight,
c) body condition score ,2, or d) a righting reflex .20 s (CS 5)], and CS
5 (clinical score of 5 = CS 4 and righting reflex .20 s). Mice reached CS 4
at a rate of 34% faster vs. CS 5 (HR = 1.34; 95% CI 1.10, 1.74; P = 0.006)
and 24% faster vs. CS 4+ (HR = 1.24; 95% CI 1.00, 1.59; P = 0.046). Mice
reached CS 4+ at a non-significant rate of 9% faster vs. CS 5 (HR = 1.09;
95% CI 0.88, 1.38; P = 0.410).
doi:10.1371/journal.pone.0020582.g004

Table 2. Raw data and summary of 162 B6SJL-TgN-(SOD1-G93A)1Gur autosomal hemizygous female (F) and male (M) mice
meeting the additional endpoint criteria prior to reaching CS 4.

Endpoint Criteria N Prior to CS 4 (F, M) % of Mice Meeting Criteria Prior to CS 4 (F, M) Mean Age (d) (F, M)

20%CS2 1 (0, 1) 0.6% (0%, 1.6%) 106.0 (NA, 106.0)

20%Peak 7 (3, 4) 4.3% (3%, 6.5%) 119.9611.0 (123.7615.2, 117.068.0)

BC,2 9 (1, 8) 5.6% (1%, 12.9%) 110.6615.7 (108.0, 110.9616.8)

Any of 20%CS2, 20%Peak or BC,2* 14 (3, 11) 8.6% (3%, 17.7%) 115.6615.0 (123.0616.1, 113.6614.8)

20%CS2, weight loss $20% vs. body weight immediately prior to a clinical score of 2; 20%Peak, weight loss $20% vs. peak body weight; BC,2, body condition score
,2.
*Earliest age (d) of 20%CS2, 20%Peak and BC,2 was used to calculate mean age. Data for Mean Age (d) are presented as means 6 SD.
doi:10.1371/journal.pone.0020582.t002
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of time used as the cutoff for the righting reflex [26,54,60,73,

78,85,90,93].

The criteria for the ideal endpoint would meet strict ethical

standards, be easily adopted by research laboratories, and ensure

researchers are able to gather information regarding the pro-

gression of ALS and the effectiveness of treatments in intervention

studies. Also, it would represent a point in the progression of the

disease beyond which additional insight into the nature of disease

or into the effectiveness of an intervention is absent, or at least

nominal. CS 4, representing functional paralysis in both hind-

limbs, occurs in all mice used in mouse models of ALS. CS 4 is

reached earlier than both CS 4+ and CS 5, satisfying standards set

by research ethics committees by shortening the time of disease

exposure. A more difficult challenge arises when addressing the

final criterion required to establish an ideal endpoint, that is, does

CS 4 permit investigators the acquisition of sufficient data relating

to disease progression? In rodent models of ALS, functional

paralysis marks the beginning of the end in disease progression.

Once paralysis is established in the hindlimbs, it will spread to the

diaphragm, ultimately resulting in death due to respiratory failure.

Between disease onset and hindlimb paralysis, changes in gait, paw

grip strength and endurance, and motor performance deteriorate

measurably allowing scientists to track these changes throughout

the course of the disease [15,82,83]. These changes continue to

occur past CS 4, but in severely disabled mice with compromised

quality of life. Our analysis has yielded an equation that will allow

researchers to predict the age at which CS 4+ and/or CS 5

are attained, on average, from CS 4. Animal models of multiple

sclerosis (experimental autoimmune encephalomyelitis; EAE) [114–

116] follow a similar disease progression, including hindlimb

weakness and paralysis, and use similar endpoint criteria as mouse

models of ALS, suggesting our findings may be used in mouse

models of EAE.

Is CS 4 the ‘‘ideal’’ endpoint? The righting reflex may provide

information regarding muscle loss and proprioception deficits

beyond that of CS 4. For those specific studies whereby severe

muscle loss and compromised proprioception are inherent out-

come measures reflecting the effectiveness of a specific interven-

tion, CS 5 should be adopted as an endpoint. Alternatively, we

have shown that CS 4, occurring on average 4 days sooner than

CS 5, can predict the age at CS 4+ or CS 5. These 4 days will

lessen the suffering and distress experienced by mice used in mouse

models of ALS. Adopting CS 4 as endpoint negotiates an accep-

table agreement between scientific discovery and ethics, a partner-

ship that serves to protect scientific integrity and ethical standards

in the humane treatment of research animals. At the forefront is

the strength of the data extrapolated from animal-based research

to serve as the background for potential recommendations adopted

for people with ALS.
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