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ABSTRACT
Background  Microsatellite instability (MSI) represents 
the first pan-cancer biomarker approved to guide immune 
checkpoint blockade (ICB) treatment. However its 
widespread testing, especially outside of gastrointestinal 
cancer, is hampered by tissue availability.
Methods  An algorithm for detecting MSI from peripheral 
blood was established and validated using clinical 
plasma samples. Its value for predicting ICB efficacy 
was evaluated among 60 patients with advanced 
gastrointestinal cancer. The landscape of MSI in blood was 
also explored among 5138 advanced solid tumors.
Results  The algorithm included 100 microsatellite 
markers with high capture efficiency, sensitivity, and 
specificity. In comparison with orthogonal tissue PCR 
results, the method displayed a sensitivity of 82.5% 
(33/40) and a specificity of 96.2% (201/209), for an 
overall accuracy of 94.0% (234/249). When the clinical 
validation cohort was dichotomized by pretreatment blood 
MSI (bMSI), bMSI-high (bMSI-H) predicted both improved 
progression-free survival and overall survival than the 
blood microsatellite stable (bMSS) patients (HRs: 0.431 
and 0.489, p=0.005 and 0.034, respectively). Four patients 
with bMSS were identified to have high blood tumor 
mutational burden (bTMB-H) and trended towards a better 
survival than the bMSS-bTMB-low (bTMB-L) subset (HR 
0.026, 95% CI 0 to 2.635, p=0.011). These four patients 
with bMSS-bTMB-H plus the bMSI-H group collectively 
displayed significantly improved survival over the bMSS-
bTMB-L patients (HR 0.317, 95% CI 0.157 to 0.640, 
p<0.001). Pan-cancer prevalence of bMSI-H was largely 
consistent with that shown for tissue except for much 
lower rates in endometrial and gastrointestinal cancers, 
and a remarkably higher prevalence in prostate cancer 
relative to other cancer types.
Conclusions  We have developed a reliable and robust 
next generation sequencing-based bMSI detection strategy 
which, in combination with a panel enabling concurrent 
profiling of bTMB from a single blood draw, may better 
inform ICB treatment.

BACKGROUND
Microsatellite instability (MSI) has leaped to 
the forefront of cancer molecular diagnosis 
ever since the Food and Drug Administra-
tion (FDA) approved pembrolizumab for 

treating mismatch repair-deficient (dMMR)/
MSI-high (MSI-H) advanced solid tumors.1 2 
Most frequently observed in colorectal and 
endometrial carcinomas, MSI has long 
been utilized to screen for Lynch syndrome 
and was also demonstrated to have prog-
nostic relevance since patients with stage 
II colorectal cancer (CRC) with an MSI-H 
phenotype have a favorable prognosis and 
may not benefit from 5-fluorouracil-based 
adjuvant therapy.3–6 Given its clinical impli-
cations, MSI/MMR testing is nowadays 
recommended by the National Comprehen-
sive Cancer Network (NCCN) guidelines for 
multiple cancer types.7–9

At present, MSI/MMR status is most 
commonly determined using immunohis-
tochemistry (IHC) or polymerase chain 
reaction (PCR). IHC involves staining 
for the MMR proteins (MLH1, MSH2, 
MSH6, and PMS2) while PCR analyzes five 
to seven highly conserved microsatellite 
markers.10 11 However, IHC and PCR only 
correlate in approximately 90% of cases since 
an isolated loss of MMR protein expression 
may not lead to elevated microsatellite alter-
ations and conversely, positive staining may 
result from retained antigenicity of non-
functional MMR proteins and thus does not 
necessarily imply a microsatellite stable (MSS) 
status.12–14 Moreover, there exists significant 
inter-laboratory and intra-laboratory vari-
ability since the precision of IHC relies heavily 
on the antibodies used and the pathologists’ 
expertise.15 PCR-based detection may also 
have limited sensitivity in certain cancer types 
because most panels only cover a handful of 
MSI loci and were primarily developed for 
CRC.16

Over the last decade, a number of next 
generation sequencing (NGS)-based algo-
rithms have been developed to characterize 
MSI from tissue samples.17–21 Nevertheless, 
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their widespread application face the challenge of tissue 
availability, especially for patients with metastatic disease, 
where invasive tissue procurement is strongly contrain-
dicated. In this regard, blood-based testing represents 
a viable alternative. To date, several blood-based MSI 
(bMSI) detection methods have been proposed, but each 
had some caveats.22–24 Primarily developed in early stage 
CRC, the bMSISEA (blood MSI signature enrichment 
analysis) algorithm only incorporated eight microsatellite 
markers and was never evaluated for its ability to guide 
immunotherapy. Georgiadis et al23 also only included five 
markers from the pentaplex panel and they arbitrarily 
used the tissue-derived MSI-H cut-off value to define 
bMSI-H. Willis et al22 used simulated data or contrived 
samples for both model construction and analytical vali-
dation, rendering the clinical applicability of their model 
questionable. Neither did they include patients with 
blood microsatellite stable (bMSS) in the clinical valida-
tion cohort for between-arm comparison.

In this study, we sought to develop a bMSI detection 
strategy where both panel design and validation were 
performed using clinical blood samples. The predic-
tive value of bMSI in response to immune checkpoint 
blockade (ICB) therapy was evaluated among 60 patients 
with advanced gastrointestinal cancer. Blood tumor muta-
tional burden (bTMB) was also assessed as a complemen-
tary approach to inform ICB treatment. The pan-cancer 
landscape of bMSI was interrogated across 18 cancer types 
comprizing 5138 solid tumors to gain more insight into 
the population that may potentially benefit from bMSI 
testing and hence ICB treatment.

METHODS
Samples and patients
Microsatellite loci were initially selected according to the 
whole exome sequencing (WES) data of 10 advanced CRC 
blood samples. Algorithm development was conducted 
using blood samples from 20 MSI-H and 100 MSS 
patients with gastrointestinal cancer (figure 1). Technical 

validation was performed in an independent cohort 
comprizing blood samples from 40 MSI-H and 209 MSS 
patients with advanced gastrointestinal cancer. For both 
algorithm development and technical validation, samples 
were obtained from Peking University Cancer Hospital 
Biobank. They were eligible if they had a confirmed 
pathological diagnosis of gastrointestinal cancer and 
available orthogonal tissue MSI (tMSI) results as char-
acterized by PCR of the pentaplex panel.25 The MSI-H 
cell line SW48 and the MSS cell line HT55 were used to 
determine the limit of detection (LOD).26 Patients with 
advanced gastrointestinal cancer who received ICB treat-
ment at Peking University Cancer Hospital from February 
2016 until January 2020 were retrospectively enrolled 
for clinical validation. Patients were eligible if baseline 
blood samples were collected for circulating tumor DNA 
(ctDNA) sequencing within 2 weeks prior to ICB treat-
ment using a panel targeting the 100 selected MSI loci 
and the exons of 150 cancer-related genes.27 The pan-
cancer prevalence of bMSI-H was assessed among 5138 
advanced tumors of 18 cancer types that were subjected 
to bMSI characterization using the same panel as part of 
routine clinical care (online supplemental table S1).

Cell-free DNA preparation and NGS
DNA isolation, library preparation, targeted hybrid 
capture and sequencing were performed as previously 
described.27 Briefly, blood sample was centrifuged at 
1600 g for 20 min at room temperature. Plasma was 
transferred to a new microcentrifuge tube, followed by 
centrifugation for 10 min at 16 000 g at 4°C to remove 
the residual cells and debris. DNA was isolated using 
the QIAamp Circulating Nucleic Acid Kit (Qiagen) and 
quantified using the Qubit dsDNA HS Assay Kit (Life 
Technologies). Library was prepared with 30 to 60 ng of 
cell-free DNA using the Accel-NGS 2S Plus DNA Library 
Kit (SWIFT) and the DNA fragments were tagged with 
unique molecular identifiers to reduce background noise. 
Hybrid capture was conducted using the xGen Exome 
Research Panel V.2 (Integrated DNA Technologies) 

Figure 1  A diagram illustrating the study design and samples used for each step. bMSI-H, blood-based MSI high; MS, 
microsatellite; MSI-H, microsatellite instability high; MSS, microsatellite stable; PD-1, programmed cell death protein-1; PD-L1, 
programmed death ligand 1.
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with a custom panel covering the whole exon regions of 
150 selected cancer-related genes and 100 selected MSI 
loci.27 Hybrid-captured libraries were loaded onto the 
NextSeq 500 (Illumina) for 75 bp paired-end sequencing. 

bMSI detection by NGS
Sequencing reads were mapped against the human refer-
ence genome (hg19/GRCh37) with BWA V.0.7.12 and 
SAMtools V.1.3. Duplicate reads were removed using 
Picard V.1.130. Reads that were successfully mapped 
to each of the 100 loci were extracted from the de-du-
plicated BAM file. An in-house developed R script was 
employed to evaluate the distribution of read counts 
among various repeat length for each microsatellite locus 
of each sample. The model for determining the stability 
of each locus is described in detail in the Results section. 
A bMSI score was defined as the percentage of unstable 
loci. Any sample with a bMSI score of ≥0.2 was classified 
as bMSI-H, and otherwise bMSS.

bTMB determination by NGS
Sequence alignment and indel calling were carried out 
as described above. Blood TMB was defined as the total 
number of somatic single nucleotide variants and indels 
in the coding regions examined, including missense, 
silent, stop gain, stop loss, in-frame and frameshift muta-
tions. Any variant with an allele frequency of more than 
30% was suspected to be germline variant and thus was 
excluded from bTMB calculation. Any tumor with a 
bTMB of >13 was classified as bTMB-high (bTMB-H). 
The cut-off value was trained using the overall survival 
(OS) data of the clinical validation cohort (online supple-
mental figure S1).

ICB efficacy evaluation
Patients’ demographics and clinical outcome data were 
extracted from their medical records in a de-identified 
manner by two independent physicians and was reviewed 
by a third physician in case of discrepancy. Objective 
response rate (ORR) was assessed as per the Response 
Evaluation Criteria in Solid Tumors (RECIST), V.1.1. 
Progression-free survival (PFS) was defined as the time 
from the onset of ICB treatment to disease progression or 
death by any cause and OS was defined as the time from 
the onset of ICB treatment to death by any cause.

All samples were obtained with informed consent for 
research.

Statistical analyses
The difference in continuous variables between two 
groups were examined by the two-tailed unpaired t-test 
for normally distributed variables or Mann-Whitney 
U test for non-normally distributed variables. χ2 test 
or Fisher’s exact test was used to test the differences in 
categorical variables between two groups. The 95% CI 
for ORR was estimated using the Clopper and Pearson 
method. Kaplan-Meier curves of OS and PFS were 
compared by log-rank test. The HR was examined with 

a Cox proportional hazards regression model. All tests 
were two-sided. A p value of <0.05 was considered signifi-
cant. Statistical analyzes were performed using GraphPad 
Prism V.7.01 (GraphPad Software Inc) and R software, 
V.3.6.1 (R Foundation for Statistical Computing).

RESULTS
Algorithm development for bMSI detection
Five hundred loci with high capture efficiency were 
initially included based on the WES data of 10 CRC blood 
samples and were ranked by their susceptibility to insta-
bility (ie, sensitivity) in a cohort of blood samples from 
20 tissue MSI-H (tMSI-H) and 100 tissue MSS (tMSS) 
gastrointestinal tumors while a high level of specificity was 
maintained. The top 100 loci were eventually selected for 
bMSI determination.

Locus-specific and sample-level stability thresholds 
were then determined using the same 20 tMSI-H and 100 
tMSS blood samples mentioned above. The repeat lengths 
of each locus were first extracted using the microsatellite 
loci BED file, the BAM file and an in-house python script. 
The proportion of each repeat length among all reads 
for a specific locus was then calculated for all samples of 
the MSI-H subtype and the MSS subtype. The percent-
ages for samples within each subtype were then aver-
aged to obtain the cumulative percentage for that repeat 
length for each subtype. The repeat length (Ci) exhib-
iting the greatest difference in cumulative percentage 
between the MSI-H and the MSS subtypes was selected 
as the cut-off value to decide whether a sequencing read 
is unstable (if Lr≤Ci; Lr is the repeat length of a read) 
or stable (if Lr>Ci) for that locus. Subsequently, a locus’s 
stability could be assessed using a binomial probability 
model shown as follows,

	﻿‍ P
(
X = ni

)
= Cni

Ni
pni

i

(
1 − pi

)Ni−ni
‍�

where i is the locus being examined, pi stands for the 
cumulative percentage at the cut-point repeat length (Ci) 
of the MSS subtype, ni denotes the number of unstable 
reads, and Ni represents the total number of reads for 
that locus. A locus was considered unstable if the prob-
ability of P (X≥ni) was ≤0.001. For each sample, a bMSI 
score was calculated as the fraction of unstable loci in 
the 100 selected loci. To aim for a specificity of at least 
95% according to pairwise comparison with tissue PCR 
results, the threshold for defining MSI-H was set to 0.2 
(figure 2). Since variants with an allele frequency below 
0.3% were undetectable according to our previous work, 
blood samples with a maximum somatic allele frequency 
(MSAF) of <0.3% were excluded from subsequent 
analyzes to reduce the risk of false negatives.28 Indeed, 
a preliminary analysis on blood samples from 24 tMSI-H 
patients revealed that those with an MSAF of <0.3% had a 
median bMSI score well below 0.2 (online supplemental 
figure S2).
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Technical validation
In order to determine LOD of the bMSI assay, the 
genomic DNA of the MSI-H cell line SW48 was diluted in 
that of the MSS cell line HT55 to create a titration series 
consisting of 100%, 50%, 20%, 8%, 4%, 2%, 1%, 0.5%, 
and 0.25%, with triplicates for each titration point. Simu-
lated bMSI score was plotted against titration gradient to 
generate a curve at a DNA input of 30 ng (online supple-
mental figure S3). The concentration of the MSI-H DNA 
had to be at least 0.5% in order for the sample’s bMSI 
score to reach 0.2, that is, to allow for MSI-H detection. 
Therefore, the LOD was determined to be 0.5% at 30 ng 
input.

To evaluate the performance of the assay, blood samples 
acquired from 40 tMSI-H and 209 tMSS patients with 
advanced gastrointestinal cancer were analyzed in refer-
ence with tissue PCR results. Our bMSI method detected 
33 patients with tMSI-H and 201 patients with tMSS, 
yielding a sensitivity of 82.5% (33/40, 95% CI 70.2% to 
94.8%), a specificity of 96.2% (201/209, 95% CI 93.5% 
to 98.8%) and an overall accuracy of 94.0% (234/249, 
95% CI 91.0% to 97.0%) (table  1). By reviewing the 
patients’ records, one false positive and two false nega-
tive cases were discovered to have multiple lesions, and 
one false negative had blood sample collected over 1 year 
after tissue procurement, which could have contributed 
to tissue-blood discrepancy.

Clinical validation
Since tMSI may guide patient selection for ICB therapy, 
we set out to investigate whether pretreatment bMSI status 

has the same effect. Sixty patients with advanced gastro-
intestinal cancer who received ICB treatment between 
February 2016 and January 2020 were retrospectively 
enrolled (online supplemental figure S4). They were all 
subjected to ctDNA sequencing using the targeted 150-
gene panel described above within 2 weeks before the 
onset of ICB treatment. The median duration of treatment 
was 3.53 months and the median duration of follow-up 
was 13.47 months. Of the 60 patients, 35 had CRC and 
22 had gastric cancer (online supplemental table S2). 
The majority of the patients (56/60) had received at least 
one line of treatment before ICB. The ICB administered 
included both anti-programmed cell death protein-1 
(PD-1) (55%) and anti-programmed death ligand 1 
(PD-L1) (45%). According to our bMSI algorithm, 31 of 
the patients were classified as bMSI-H and 29 as bMSS. 
There were no statistically significant differences between 
the two groups in most of the baseline characteristics, 
except for a significantly higher lactate dehydrogenase 
(LDH) level among the bMSI-H tumors. Increased LDH 
level is known as a negative prognostic marker in many 
solid tumors and is also associated with resistance to ICB 
in advanced non-small cell lung cancer and metastatic 
melanoma.29–31 Despite the potential interference from 
an elevated LDH level, the bMSI-H patients exhibited a 
significantly higher ORR than the MSS patients (38.71% 
vs 6.90%, p=0.005) (figure  3). Notably, 13 patients of 
the bMSI-H subgroup experienced disease progression, 
consistent with the fact that 10 of them received ICB in 
the third line or above (figure 3A). Two of the patients 
with bMSS displayed partial response, one of which was a 
case of gastric cancer with a 40% PD-L1 expression which 
strongly predicts susceptibility to ICB (figure 3B). Overall, 
the bMSI-H subgroup had significantly prolonged PFS 
(5.57 months vs 2.03 months) (HR, 0.431; 95% CI 0.236 to 
0.787, p=0.005) and OS (20.03 months vs 10.07 months) 
(HR, 0.489; 95% CI 0.249 to 0.961, p=0.034) compared 
with the patients with bMSS (figure 4).

Table 1  The concordance between next generation 
sequencing (NGS) blood microsatelliteinstability (bMSI) with 
PCR tissue MSI (tMSI)

PCR tMSI

Total+ –

NGS bMSI + 33 8 41

– 7 201 208

Total 40 209 249

Sensitivity=82.5% (33/40, 95% CI 70.2% to 94.8%)

Specificity=96.2% (201/209, 95% CI 93.5% to 98.8%)

PPV=80.5% (33/41, 95% CI 67.8% to 93.2%)

NPV=96.6% (201/208, 95% CI 94.2% to 99.1%)

Concordance=94.0% (234/249, 95% CI 91.0% to 97.0%)

NPV, negative predictive value; PPV, positive predictive value.Figure 2  Cut-off value determination to define the blood 
microsatellite instability-high (bMSI-H) status. For each 
sample, a bMSI score was calculated as the fraction of 
unstable loci in the 100 selected loci. To aim for a specificity 
of at least 95% according to pairwise comparison with 
tissue PCR results, the threshold for defining MSI-H was 
determined to be 0.2 as shown by the dashed line. Red dots 
represent tissue PCR-defined MSI-H tumors, and blue dots 
represent tissue PCR-defined (microsatellite stable) MSS 
tumors.
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In view of recent publication showing that MSS CRC 
could be further dichotomized into TMB-H and TMB-L 
subsets in tissue, we were interested to see if it was the 
case with patients with bMSS.32 Using the same 150-gene 
panel for bTMB estimation, which was fully validated 
previously, the bMSI-H group presented a significantly 
higher bTMB load than the bMSS group (19 vs 6, 
p=0.001) (figure  5A).27 Intriguingly, 4 of the 29 bMSS 
tumors were identified to be bTMB-H according to a cut-
off of 13 as trained using the OS data of the ICB treat-
ment cohort and they trended towards a better survival 
than the bMSS-bTMB-L subset (22.38 months vs 9.83 
months) (HR 0.026, 95% CI 0 to 2.635, p=0.011) (online 
supplemental table S2, figure  5B). These four patients 
combined with the bMSI-H group collectively displayed 
significantly improved survival (20.87 months vs 9.83 
months) (HR 0.317, 95% CI 0.157 to 0.640, p<0.001) over 
the bMSS-bTMB-L patients, indicating that patients are 
able to benefit from ICB treatment as long as one of the 
two biomarkers predicts response (figure 5C).

Prevalence of bMSI-H in pan-cancer
Although pembrolizumab was approved for treating MSI-H 
solid tumors years ago, the rate of MSI testing outside of 

gastrointestinal cancer remained scarce. In order to better 
understand the clinical impact MSI testing could have on 
other malignancies, we investigated the bMSI landscape 
across 18 cancer types comprizing 5318 advanced tumors 
that had undergone ctDNA sequencing using the 150-
gene panel. The majority of the patients had advanced 
stage disease (30.5% with stage III and 54.4% with stage 
IV). Eighty patients were identified to be bMSI-H, equiv-
alent of a pan-cancer prevalence of 1.6% (figure 6). The 
relative prevalence of bMSI-H across cancer types was in 
general consistent with that shown for tumor tissue, with 
endometrial, colorectal, and gastric cancers exhibiting 
the highest prevalence and other tumors such as breast, 
kidney and urothelial cancers on the lower end. However, 
prostate cancer was distinguished from other urinary 

Figure 3  Best response of target lesions from the initiation 
of immune checkpoint blockade (ICB) treatment in the 
bMSI-H (A) and bMSS (B) subgroups. The upper and 
lower dashed lines mark progressive disease and partial 
response according to RECIST V.1.1, respectively. bMSI-
H,blood-based microsatellite instability high; bMSS, blood 
microsatellite stable;RECIST, ResponseEvaluation Criteria in 
Solid Tumors.

Figure 4  Kaplan-Meier analyzes of progression-free survival 
(PFS) (A) and overall survival (OS) (B) in the patients with 
bMSI-H versus bMSS. A cohort of 60 patients with advanced 
gastrointestinal cancer were stratified based on their 
pretreatment bMSI statuses and the Kaplan-Meier curves for 
PFS and OS were compared between the bMSI-H and the 
bMSS subgroups. The tick marks indicate censored data. 
bMSI-H, blood-based microsatelliteinstability high; bMSS, 
blood microsatellite stable.
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tumors and ranked second to endometrial cancer with a 
prevalence of 4%.21 It was also noteworthy that bMSI-H 
were detected at much lower rates in endometrial (5.7%), 
colorectal (3.3%) and gastric (3.1%) cancers than those 
estimated for tissue MSI.3 21 33–35

DISCUSSION
In the present study, we developed and validated an 
NGS-based bMSI detection strategy using clinical blood 

samples. The method exhibited high overall concor-
dance with tissue PCR and proved effective in predicting 
response to ICB therapy among advanced gastrointestinal 
tumors. The panel also allowed for simultaneous determi-
nation of bTMB which, in combination with bMSI, may 
maximize patient access to ICB treatment. Furthermore, 
this study represents the first effort to uncover the pan-
cancer MSI landscape in ctDNA among Asian patients.

While liquid biopsy becomes increasingly adopted to 
profile biomarkers in cancer diagnosis, some argue that 
it is still in early development. The main challenges asso-
ciated with MSI detection from ctDNA include panel 
design and low tumor cell fraction in the blood.36 Loci 
that cannot be effectively captured or mapped or those 
substantially variable in MSS tumors (ie, less specific) 
are considered uninformative and therefore should be 
excluded from panel design.22 In our study, each locus 
was selected based on a comprehensive assessment of its 
capture efficiency and sensitivity/specificity. The thresh-
olds for determining locus-specific and sample-level 
stability were also trained using clinical blood samples to 
ensure high reliability. It is true that tumor-derived DNA 
can sometimes be present at an extremely low fraction in 
cell-free DNA but this problem could be readily resolved 
by implementing quality control to exclude blood samples 
with an MSAF of <0.3%.

Apart from loci selection and tumor fraction, sample-
related factors may also affect bMSI detection. Among 
the 15 tissue-blood discordant cases, three had multiple 
lesions while one had an extended interval between tissue 
and blood collection. Although there was not enough 
sample left for confirmatory tests, it was not irrational to 
speculate that intralesional and interlesional heteroge-
neity may have contributed to tissue-blood inconsistency, 
especially when the vast majority of the validation popula-
tion were previously treated advanced patients. Previous 
literature showed that MSI-H and MSS cell populations 
may co-exist within the same MSI-H tumor and patients 
burdened with multiple tumors could also have discrete 
genotypes in different lesions, both of which are expected 
to be better captured by liquid biopsy.37–41 Temporal 

Figure 5  Blood tumor mutational burden (bTMB) as a 
complement to bMSI to inform ICB treatment. (A) The bTMB 
levels in the bMSI-H versus the bMSS groups; (B) Kaplan-
Meier analysis of OS in the patients with bMSS-TMB-H 
versus bMSS-TMB-L; (C) Kaplan-Meier analysis of OS in 
the bMSI-H or bMSI-H versus the bMSS-bTMB-L patients. 
A cohort of 60 patients with advanced gastrointestinal 
cancer were stratified based on pretreatment bMSI and 
bTMB statuses, and those classified as bMSI-H-bTMB-L, 
bMSS-bTMB-H, or bMSI-H-bTMB-H were pooled as one 
group in (C). The tick marks indicate censored data. bMSI-
H,blood-based microsatellite instability high; bMSS, blood 
microsatellite stable;H, high; ICB, immune checkpoint 
blockade; L, low; OS, overallsurvival.

Figure 6  Prevalence of bMSI across 18 cancer types 
comprizing 5138 solid tumors. bMSI,blood-based 
microsatellite instability; GIST, gastrointestinal stromal tumor; 
NSCLC,non-small cell lung cancer.
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discordance may also have played a role since a previous 
study showed that tissue-blood concordance dropped 
from 100% to 60% as the time interval between tissue 
biopsy and blood draw increased from  ≤2 weeks to  >6 
months.42

The feasibility of predicting ICB efficacy by NGS-
determined bMSI has been explored previously. As Willis 
et al22 reported, 16 patients with pretreated MSI-H meta-
static gastric cancer achieved an ORR of 63% after ICB 
monotherapy. In Georgiadis et al’s ICB-treated pan-cancer 
cohort, the bMSI-H subgroup displayed a median PFS of 
16.2 months and a median OS of 16.3 months, which were 
significantly and numerically prolonged compared with 
those of the bMSS subset, respectively.23 In comparison, 
the bMSI-H patients in our validation cohort showed an 
ORR of 38.71% and a median PFS of 5.57 months, which 
we feel are in better agreement with the 39.6% ORR 
and the 4.1-month median PFS reported previously for 
patients with pretreated gastrointestinal cancer.43–45

Given the precedent of patients with tMSS being diag-
nosed as TMB-H and responding to ICB therapy, it would 
be desirable to examine bTMB in parallel instead of relying 
solely on bMSI for ICB efficacy prediction.32 Indeed, our 
study took these findings forward by demonstrating in 
blood that bMSS patients could be further dichotomized 
into bTMB-H and bTMB-L subsets. Although the survival 
benefit of the bTMB-H subset was not statistically signif-
icant due to the small number of bTMB-H patients, the 
trend was prominent. Moreover, the bMSS-TMB-H and 
the bMSI-H groups collectively predicted significantly 
improved outcome, indicating that bMSI combined with 
bTMB may maximize the scope of ICB therapy. There-
fore, the information regarding bTMB as provided by our 
method will serve as a valuable complement to ICB effi-
cacy prediction by bMSI.

Additionally, improving patient access to ICB therapy 
also involves identifying patients potentially benefiting 
from ICB in tumor types where MSI is rarely tested. 
Even though the 4% bMSI-H rate in prostate cancer was 
only marginally higher than the 3.1% to 3.7% seen in 
previous tissue and blood analysis, its relative prevalence 
compared with other cancer types was striking.46 47 This 
was not completely unprecedented as Willis et al observed 
a similar trend for prostate cancer in their pan-cancer 
analysis.22 A possible explanation could be that patients 
with castration-resistant prostate cancer (CRPC) were 
over-represented in our cohort, and MSI-H was reported 
to be found at a higher rate in CRPC (4.5%) than in 
hormone-sensitive prostate cancer (2.4%).46 The lower 
than expected prevalence of bMSI-H in endometrial, 
colorectal and gastric cancers could have resulted from a 
much larger proportion of advanced patients in our pan-
cancer cohort than that included in tissue-based studies, 
since MSI-H is observed more frequently in early stage 
cancers.48

A limitation of our study is that both the development 
and validation were performed using gastrointestinal 
cancer samples, although the algorithm was intended to 

be used in a pan-cancer setting. Therefore, the applica-
bility of the bMSI algorithm described herein needs to be 
further validated in other cancer types. In addition, the 
clinical validation was conducted retrospectively in a small 
population. Prospective trials with larger sample sizes will 
be warranted to confirm these findings. Orthogonal tMSI 
results would also be valuable for a concordance analysis 
between tMSI-predicted and bMSI-predicted ICB efficacy. 
Taken together, we have provided a reliable NGS-based 
bMSI detection strategy, which in combination with a 
panel that allows for concurrent profiling of bTMB may 
better inform ICB treatment.
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