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Abstract

Vocal fold leukoplakia (VFL) has a risk of malignant transformation. Therefore, patients can have symptoms such as dysphonia,
vocal strain, difficulty breathing, and dysphagia. Additionally, there is a genetic predisposition that can be associated with
genetic polymorphisms. We aimed to evaluate the influence of genetic polymorphisms and protein levels in the etiology of VFL.
Our study followed the PRISMA checklist and was registered on PROSPERO database. The questions were: ‘‘Are genetic
polymorphisms involved in the etiology of VFL? Are protein levels altered in patients with VFL?’’. Eligibility criteria were case
control studies that compared the presence of polymorphisms or/and protein levels of subjects diagnosed with VFL and healthy
controls. Of the 905 articles retrieved, five articles with a total of 1038 participants were included in this study. The C allele of the
single nucleotide polymorphisms (SNP)–819 T/C IL-10, A allele of the SNP –592 A/C IL-10, CT genotype of the SNP
rs11886868 C/T BCL11A, GG genotype of the SNP rs4671393 A/G BCL11A, LL genotype, and L allele of (GT)n repeat
polymorphisms of the HO-1 were risk factors for VFL development. Nevertheless, there was a lack of association between VFL
and the –1082 A/G IL-10, rs14024 CK-1, and –309 T/G Mdm2 SNPs. The concentrations of the MDM2, BCL11A, and HO-1
proteins were modified, while IL-10 levels were normally expressed in these subjects. In conclusion, most markers evaluated in
this review could be potential indicators to develop effective therapies, avoiding a malignant transformation of the lesion.
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Introduction

Vocal fold leukoplakia (VFL) is a clinical diagnosis of
white plaque lesions on the vocal fold epithelial surface
(1). This condition may or may not be related to dysplasia
(2), and there is a risk of malignant transformation (3).
Patients with VFL can have symptoms such as dysphonia,
vocal strain, difficulty breathing, and dysphagia (4).

The risk factors for VFL are consumption of alcohol
and tobacco, pulmonary disease, diabetes mellitus,
hypertension, hyperlipidemia, reflux disease (4), voice
abuse (5), and in recent years, some studies have
demonstrated that there is a genetic predisposition that
can be associated with genetic polymorphisms (6,7). The
management of VFL is still controversial because there is
no international consensus on a surgical procedure, an

effective treatment approach, the frequency of surveil-
lance, and conservative or excisional management (1).

Molecular evaluation of VFL has been indicated to
further characterize the lesion (8). Investigations demon-
strated that molecular markers such as genetic poly-
morphisms and protein concentrations are associated with
a susceptibility to develop VLF (5,6). The combination of
different types of molecular data has indicated the genetic
basis of diseases helping define the clinical status of
patients (9,10). With this in mind, single nucleotide poly-
morphisms (SNPs), the most common type of mutation,
have been predominant in the study of the link between
genetic variations and pathologies (11). SNPs involve the
replacement of one nucleotide for another, usually
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involving the substitution of cytosine (C) for thymine (T)
(12). Microsatellite repeats are another type of polymor-
phism involving 1 to 10 nucleotides (13). They are simple
DNA segments that constitute genomic repeat regions (13).

Therefore, it is essential to identify molecular markers
that may contribute to the detection of VFL for a better
understanding of etiology, pathogenesis, lesion character-
istics (1), new diagnostic methods, and treatments strate-
gies (14). Gene-based high-throughput assays that can
detect predictive and prognostic gene markers are emerg-
ing in healthcare as effective methods to support clinical
decision making that may also be applicable in VFL (15).

Studies have found a significant positive association
between molecular markers and VFL (6,16), but some
researchers did not find a genetic association (5,17).
Besides, the lack of review studies on this topic empha-
sizes the need for evidence synthesis to better understand
the genetics in VFL etiology.

In order to have markers for the development of new
diagnostic methods and effective treatments to facilitate
clinical practice, this systematic review aimed to evaluate
the influence of genetic polymorphisms and protein levels
on the etiology of VFL. Our research hypotheses were
1) genetic polymorphisms are involved in VFL etiology
and 2) proteins levels are altered in VFL.

Material and Methods

Protocol registration
The present study followed the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses
(PRISMA) checklist (18) and was structured based on
models published in the literature (19–21). Moreover, the
review protocol was registered in the International
Prospective Register of Systematic Reviews, PROS-
PERO (CRD number 42020219983).

Eligibility criteria
Two questions were addressed in this systematic

review, which was based on the Population, Intervention,
Comparison, and Outcome (PICO) model. The questions
were: ‘‘Are genetic polymorphisms involved in the etiology
of vocal fold leukoplakia? Are protein levels altered in
patients with vocal fold leukoplakia?’’. Thus, the Popula-
tion was participants diagnosed with VFL and healthy
controls; the Intervention/Exposure were polymorphisms
and measurement of protein concentrations in participants
with VFL; and the Comparison was with healthy indivi-
duals. The primary Outcome was VFL according to poly-
morphisms or not and the secondary Outcome was
modified protein levels in patients with VFL or not.

Inclusion criteria were studies published in English that
compared the presence of polymorphisms or/and proteins
between subjects diagnosed with VFL and healthy
controls. Exclusion criteria were case reports, reviews,
and articles with other molecular markers.

Search methods
On January 4, 2021, C.P. Campello and C.A.A. Lemos,

two independent researchers, performed an online search
of PubMed/MEDLINE, The Cochrane Library, Web of
Science, and Embase databases for articles published in
December 2020 or earlier that met the eligibility criteria. In
addition, Open Grey (www.opengrey.eu) was accessed to
consult the gray literature. The search terms were: ‘‘Vocal
Cords Leukoplakia OR Vocal Cord Dysfunction Leukopla-
kia OR Vocal Fold Leukoplakia OR Vocal Cords Genetic
Markers OR Vocal Cord Dysfunction Genetic Markers OR
Vocal Fold Genetic Markers OR Vocal Cords Polymor-
phism OR Vocal Cord Dysfunction Polymorphism OR Vocal
Fold Polymorphism OR Vocal Cords Interleukin OR Vocal
Cord Dysfunction Interleukin OR Vocal Fold Interleukin’’ in
combination with the Boolean operator.

The authors (C.P.C. and C.A.A.L.) read all the titles
and abstracts. When data in the title and abstract were not
enough to make a decision, the whole study was acquired.
Articles were excluded when they failed to meet the
eligibility criteria.

Data collection process
One investigator (C.P.C.) extracted the data from the

studies, a second author (C.A.A.L.) revised all the data
collected, and a third author (M.T.C. Muniz) evaluated the
divergences in the selection between the researchers.
In this way, agreement was achieved. The researchers
collected variables such as author, type of study, number
of subjects with VFL, number of healthy individuals, mean
age, gender, the presence of polymorphisms, and protein
concentrations.

Quality assessment of included studies
The risk of bias of selected studies was evaluated using

the Newcastle-Ottawa Scale (NOS) (22), which is based
on blinding, outcome data, and other possible biases. The
appraisal is based on the selection of study groups, their
comparability, and the investigation of exposure. The NOS
uses eight questions that evaluate the quality of studies.
A maximum of nine stars can be assigned to a study,
with a maximum of four stars for selection, two stars for
compatibility, and three stars for exposure.

Additional analysis
The Kappa inter-rater test was used to establish the

inter-rater agreement of articles selected in PubMed/
MEDLINE, The Cochrane Library, Web of Science, and
Embase databases.

Results

Literature search
The details about the article selection process are

shown in a flowchart (Figure 1). The search yielded 905
articles: 242 from Pubmed/MEDLINE, 179 from Web of
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Science, 23 from The Cochrane Library, and 461 from
Embase. After duplicate studies were eliminated, 598
articles remained. The titles and abstracts were reviewed
considering the inclusion and exclusion criteria. Finally,
5 articles were considered eligible for this systematic
review: Zhou et al. (23), Zhou et al. (17), Tang et al. (16),
Zhou et al. (6), and Yang et al. (5).

The kappa inter-rater agreement was high (Kappa
coefficient=1.00).

Description of the studies
Details about the five included studies are described in

Table 1. All were case-control studies that investigated the
presence of polymorphisms or/and protein concentrations
in patients with VFL and healthy controls. The findings of
these studies were: i) incidence of –1082 A/G, –819 T/C,
and –592 A/C interleukin (IL)-10 SNPs and IL-10 levels
(23); ii) occurrence of -309T/G Murine double-minute 2
(MDM2) SNP and MDM2 expression (17); iii) presence of
(GT)n repeat polymorphisms in the heme oxygenase-1
(HO-1) gene and HO-1 concentration (16); iv) presence of
rs11886868 C/T and rs4671393 A/G B-cell lymphoma/
leukemia 11A (BCL11A) SNPs and BCL11A levels (6); and
v) detection of the rs14024 cytokeratin 1 (CK-1) SNP (5).

A total of 1038 participants were included in this sys-
tematic review. Three hundred and sixty-four individuals

were diagnosed with VFL, 13 females and 351 males.
The healthy control group consisted of 674 individuals,
24 females and 650 males.

Quality assessment and risk of bias of included
studies

The studies by Zhou et al. (23), Zhou et al. (17), Tang
et al. (16), and Zhou et al. (6) scored seven stars, while
the study by Yang et al. (5) scored six stars, which
indicated that there was a low risk of bias in all articles.
The studies lost a star because they did not report if
the controls were from the community and if they had a
negative history of VFL. Additionally, the study by Yang
et al. (5) lost a star because they analyzed an additional
factor in the cases subgroup but did not consider the
controls in this analysis (Table 2).

Presence of SNP and VFL
The presence of SNPs in patients with VFL and

healthy controls was analyzed in four studies (Table 3).
One of them provided data from three SNPs of the IL-10
gene, –819 T/C, –592 A/C, and –1082 A/G (23). This
study included 61 patients and 119 controls. Regarding
the –819 T/CIL-10 SNP, the cases were 23TT: 27TC:
11CC, while healthy individuals were 64TT: 39TC: 16CC,
showing that the TC genotype was a borderline risk factor

Figure 1. PRISMA flow diagram of study selection.
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for developing VFL (OR=1.93, P=0.05). The T allele was
present in 73 patients and 167 controls and the C allele
was found in 49 patients and 71 healthy subjects, demon-
strating that this allele is a risk factor for VFL (OR=1.58;
P=0.049).

Similarly, regarding the –592 A/C IL-10 SNP, patients
had the 23AA: 27AC: 11CC genotypes and controls had
the 64AA: 39AC: 16CC genotypes, indicating that the AC
genotype was a borderline risk factor for VFL (OR=1.93,
P=0.05). The alleles in cases were 49A: 73C, while in
controls were 71A: 167C, illustrating that the A allele is a
risk factor for VFL (OR=1.58, P=0.049).

On the other hand, the investigation of the –1082 IL-10
SNP detected 50AA: 11AG: 0GG genotypes in cases and
107AA: 11AG: 1GG in the healthy group (AG; OR=2.14,
P=0.09). The alleles were present in the experimental
group, A111: G11, and in controls, A225: G13 (OR=1.72,
P=0.20), showing no association with VFL.

The second study evaluated the –309 T/G Mdm2 SNP
in 61 patients and 212 healthy people (17). The experi-
mental group presented the 13TT: 29TG: 19GG geno-
types and the control group, 35TT: 109GT: 68TT
(OR=0.72, P=0.39). Fifty-five patients presented the T
allele and 67 the G allele, while the healthy subjects had
179T: 245G (OR=0.89, P=0.57), showing no involvement
with VFL etiology.

The third study analyzed two SNPs of the BCL11A
gene in 155 cases and 310 controls (6). Concerning the
rs11886868 C/T BCL11A SNP, the CT genotype was
frequent in patients (144CC: 11CT: 0TT), but the con-
trol group had 302CC: 7CT: 1TT, showing that the CT
genotype considerably increased the risk of VFL (OR=
3.30, P=0.011). In addition, the T allele was significantly
higher in subjects with VFL, 299C: 11T, than in healthy
people, 611C: 9T (OR=2.50, P=0.038).

The GG genotype of rs4671393 A/G BCL11A SNP
was overrepresented in cases (4AA: 43AG: 108GG)
compared with controls (19AA: 121AG: 170GG) (OR=
3.02, P=0.041). Furthermore, the G allele was a significant
risk factor for VFL development, as patients were 51A:
259G while controls were 159A: 461G (OR=1.75,
P=0.002).

The fourth study analyzed the rs14024 CK-1 SNP, and
155 VFL subjects had the 10AA: 86AG: 59GG genotypes
and 266 healthy people had the 30AA: 142AG: 94GG
genotypes, with no statistical difference (AG, OR=1.82,
P=0.12; GG, OR=1.88, P=0.11). Similar results can be
seen with alleles, with cases being A106: 204G and
controls being A202: G330 (OR=1.18, P=0.27) (5).

Microsatellite repeat polymorphisms and VFL
One study examined the (GT)n repeat polymorphisms

in the HO-1 gene (Table 4), and the LL genotype was
significantly more common in individuals with VLF (9LL:
3ML: 29SL: 0MM: 4SM: 9SS) than in controls (5LL:
6ML: 43SL: 3MM: 14SM: 27SS) (OR=3.72, P=0.039).
Moreover, the L allele was considerably higher in the
patient group (49L: 8M: 51S) than in the control group
(58L: 27M: 111S) (OR=1.9, P=0.006), showing that the
LL genotype and the L allele are risk factors for VFL (16).

Expression of protein levels and VFL
Four studies (6,16,17,23) evaluated protein levels in

patients with VFL and controls (Table 5). The proteins

Table 2. Risk of bias of case-control studies according to
Newcastle-Ottawa Scale.

Studies Selection Comparability Exposure Total

Zhou et al. (23) $$ $$ $$$ 7

Zhou et al. (17) $$ $$ $$$ 7

Tang et al. (16) $$ $$ $$$ 7

Zhou et al. (6) $$ $$ $$$ 7

Yang et al. (5) $$ $ $$$ 6

Table 1. Profile of patients and controls.

Studies on vocal Patients (n) Controls (n) Gender Mean age Ethnicity

fold leukoplakia
Patients Controls Patients Controls

Zhou et al. (23) 61 119 2 females 5 females 56.54±10.7 62.32±7.9 Chinese

59 males 114 males

Zhou et al. (17) 61 212 2 females 9 females 56.54±10.7 61.34±6.8 Chinese

59 males 203 males

Tang et al. (16) 54 98 3 females 1 female 57.59±9.73 68.32±11.85 Chinese

51 males 97 males

Zhou et al. (6) 155 310 5 females 15 females 58.67±7.9 60.37±5.9 Chinese

150 males 295 males

Yang et al. (5) 155 266 5 females 8 females 58.63±9.5 61.45±7.7 Chinese

150 males 258 males

Data are reported as means±SD.
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MDM2 and BCL11A were overexpressed in the VFL group
compared with the control group (Po0.01, Po0.01).The
concentration of HO-1 was significantly lower in cases
than in controls (Po0.01). Nevertheless, no statistical
difference was found between cases and controls
concerning IL-10 levels (P40.05).

Discussion

This systematic review aimed to investigate the
influence of genetic polymorphisms and protein levels in
the etiology of VFL for the improvement of diagnostic
methods and clinical treatments. This study included

Table 3. Distribution of genotypes and alleles for polymorphisms in cases and controls.

Studies SNP VFL patients

genotypes/alleles

Controls

genotypes/alleles

P OR

Zhou et al. (23) IL-10 AA AG GG AA AG GG 0.092 2.14

-1082 A/G 50 11 0 107 11 1

rs1800896 A G A G 0.201 1.72

111 11 225 13

Zhou et al. (23) IL-10 TT TC CC TT TC CC 0.05 1.93

–819 T/C 23 27 11 64 39 16

rs1800871 T C T C 0.049 1.58

73 49 167 71

Zhou et al. (23) IL-10 AA AC CC AA AC CC 0.05 1.93

-592 A/C 23 27 11 64 39 16

rs1800872 A C A C 0.049 1.58

73 49 167 71

Zhou et al. (17) MDM2 TT GT GG TT GT GG 0.39 0.72

–309 T/G 13 29 19 35 109 68

rs2279744 T G T G 0.57 0.89

55 67 179 245

Zhou et al. (6) BCL11A CC CT TT CC CT TT 0.011 3.30

C/T 144 11 0 302 7 1

rs11886868 C T C T 0.038 2.50

299 11 611 9

Zhou et al. (6) BCL11A AA AG GG AA AG GG 0.041 3.02

A/G 4 43 108 19 121 170

rs4671393 A G A G 0.002 1.75

51 259 159 330

Yang et al. (5) CK-1 AA AG GG AA AG GG 0.11 AG 1.82

rs14024 10 86 59 30 342 94 0.12 GG 1.88

A G A G 0.96 1.18

106 330 202 330

SNP: single nucleotide polymorphism, VFL: vocal fold leukoplakia, OR: odds ratio, IL-10: interleukin 10 gene, MDM2: murine double
minute 2 gene, BCL11A: B-cell lymphoma/leukemia 11A gene, CK-1: cytokeratin-1 gene.

Table 4. Microsatellite repeat polymorphisms in cases of vocal fold leukoplakia (VFL) and controls.

Study (GT)n HO-1 rs3074372 P OR

VFL patients Controls

Tang et al. (16)

Genotypes LL ML SL LL ML SL 0.039 3.72

9 3 29 5 6 43

MM SM SS MM SM SS

0 4 9 3 14 27

Alleles L S M L S M 0.006 1.9

41 42 7 54 84 23
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articles that evaluated genetic polymorphisms in subjects
with VFL comparing their results with healthy individuals.
A total of 364 patients were included, 13 females and
351 males. The prevalence of this lesion in males was
reported by some studies (4,24–26).

The C allele of the –819 T/C IL-10 SNP and the
A allele of the -592 A/C IL-10 SNP increased the risk
of suffering from VFL (OR=1.58, P=0.049; OR=1.58,
P=0.049) (23). Concerning the –1082 A/G IL-10 SNP,
there was a lack of association between this genetic
polymorphism and VFL. These three IL-10 SNPs are
located in the promoter region of the gene (27). The T
allele of the –819 T/C SNP, the A allele of the –592 A/C
IL-10 SNP, and the A allele of the –1082 A/G IL-10 SNP
were associated with lower IL-10 concentration, while the
CCG haplotypes of these SNPs, respectively, were related
to higher IL-10 secretion (28).

The normal IL-10 levels in subjects with VFL could be
explained by the fact that most of the patients presented
the C allele of the –819 T/CIL-10 SNP correlated to
greater IL-10 production and the A allele of –592 A/C IL-10
SNP associated with its lower expression, which could
balance the IL-10 concentration. Analogical results were
observed in an investigation that evaluated levels of IL-10
in patients with oral leukoplakia and healthy controls
(P40.05) (29). Likewise, another study did not find a
different expression pattern for IL-10 between leukoplakia
of the oral cavity compared with healthy gingiva (30).

IL-10 is an anti-inflammatory cytokine (31), which is
considered a key regulator of immune responses, down-
regulating the pro-inflammatory cytokines such as tumor
necrosis factor-alpha (TNF-a), IL-6, IL-1, IL-8, and IL-12
(32). Recently, an immunohistochemical analysis revealed
a significantly elevated expression of IL-8 (stroma) and
TNF-a (epithelium and stroma) in oral leukoplakia without
dysplasia compared with the normal oral mucosa
(P=0.022, 0.0017, and 0.047, respectively) (33). Another
study found altered IL-6 levels in leukoplakia with co-
existing periodontitis in comparison to healthy volunteers
(Po0.001) (34).

We speculated that the inflammation in VFL cases
analyzed in this systematic review could have increased
the levels of pro-inflammatory cytokines. However, the
expression of IL-10 remained stable and it contributed to
an inflammatory profile of these patients because normal

IL-10 concentrations cannot decrease high pro-inflamma-
tory cytokines levels, leading to an imbalance in the
inflammatory profile. The genotype-specific disturbances
in the expression of pro- and anti-inflammatory interleu-
kins have been shown to alter the functioning of the
immune system (32). We suggest that future studies
evaluate the pro- and anti-inflammatory cytokines to
assess whether there is an imbalance between them in
individuals with VFL.

The –309 T/G Mdm2 SNP was not a risk factor for VFL
development (OR=0.72, P=0.39). However, the levels of
the Mdm2 protein were exacerbated in cases compared to
healthy controls (Po0.01) (17). This polymorphism is
localized in the promoter region and can rise Mdm2
concentration (35). Mdm2 controls p53, a tumor suppres-
sor protein that acts in important processes such as DNA
repair, cell cycle arrest, apoptosis, and aging (36). When
the level of cellular stress rises, p53 increases via the
post-translational mechanism, leading to cell cycle arrest
or apoptosis. In the absence of cellular stress, p53 is
controlled by Mdm2 in the cell, and there is a feedback
mechanism between these proteins in which when one
increases the other declines (36). Therefore, the –309 T/G
Mdm2 SNP and the overexpression of Mdm2 increase
cancer risk and accelerate tumorigenesis (37). Altered
levels of Mdm2 could be an alert for the possibility of a
malignant transformation in VFL.

The CT genotype of the rs11886868 C/T BCL11A SNP
and the GG genotype of the rs4671393 A/G BCL11A SNP
increase the risk of VFL(OR=3.30, P=0.011; OR=3.02,
P=0.041, respectively) (6). Moreover, the G allele of the
rs4671393 A/G BCL11A SNP markedly raised the risk of
VFL development (OR=1.75, P=0.002), and the levels of
BCL11A were significantly exacerbated in subjects with
VFL compared with the control group (Po0.01).

The rs11886868 C/T BCL11A and rs4671393 A/G
BCL11A SNP are in intron 2 of the BCL11A gene and are
associated with BCL11A production (38). This protein has
been related to many diseases such as type II diabetes,
intellectual disability, b-hemoglobinopathies, cancer, and
hematological malignancies, but the mechanisms by
which BCL11A is connected to these diseases are not
yet completely understood (39). BCL11A is a reducer of
fetal hemoglobin gene expression (38) and it remains
active in adulthood (40). Individuals with the AG or GG

Table 5. Plasma levels of proteins in patients with vocal fold leukoplakia and control group.

Studies Protein Protein detection method Patients Controls P value

Zhou et al. (23) IL-10 ELISA 20.33±3.1 pg/mL 19.02±7.01 pg/mL 40.05

Zhou et al. (17) MDM2 ELISA 301.42±8.6 pg/mL 255.76±8.2 pg/mL o0.01

Tang et al. (16) HO-1 ELISA 1.271±0.632 ng/mL 2.069±0.607 ng/mL o0.01

Zhou et al. (6) BCL11A ELISA 80.63 mg/L 71.97 mg/L o0.01

Data are reported as means±SD. Chi-squared test. IL-10: interleukin 10; MDM2: murine double-minute 2; HO-1: heme oxygenase-1;
BCL11A: B-cell lymphoma/leukemia 11A.
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genotypes of the rs4671393 A/G BCL11A SNP are more
likely to have a high concentration of BCL11A (6), which
leads to a low level of fetal hemoglobin (38), and con-
sequently anemia.

A recent study showed that subjects with oral leukoplakia
had significantly greater deficiencies of iron (P=0.032),
vitamin B12 (Po0.001), folic acid (Po0.001), and hyperho-
mocysteinemia (Po0.001) compared with healthy volun-
teers (41). Perhaps, patients with VFL from the study by
Zhou et al. (6) could have had the same deficiencies
because they presented an overexpression of BCL11A
(Po0.01), a suppressor of hemoglobin production, which
can lead to anemia development. It suppresses the immune
system, and as a result, individuals become more prone to
develop diseases and lesions like VFL.

There was a lack of association between the rs14024
CK-1 SNP and VFL, (AG, OR=1.82, P=0.12; GG, OR=1.88,
P=0.11) (5). Cytokeratins are keratin proteins that are part
of intermediate filaments frequently found in epithelial cells
(42). Keratinocytes and immune cells control skin inflam-
matory and immune responses, producing cytokines,
antimicrobial peptides, and expressing other proteins (42).
CK-1 is associated with skin diseases and epithelial tissue
damage (43,44), therefore it could also be associated with
VFL, which causes epithelial tissue damage.

The LL genotype and the L allele of the (GT)n repeat
polymorphisms in the HO-1 gene were risk factors for VFL
(OR=3.72, P=0.039; OR=1.9, P=0.006, respectively) (16).
Likewise, the levels of HO-1 were significantly lower in
subjects with VFL than in the control group (Po0.01). HO-
1 is an enzyme involved in the production of free iron,
carbon monoxide, and biliverdin, which is transformed into
bilirubin (45), substances with an anti-inflammatory and
anti-oxidative role (46).

The (GT)n repeat polymorphisms are in the promoter
region of the HO-1 gene on chromosome 22q12 and can
affect the secretion of HO-1 (47). The S allele is classified
as a short allele with p26 (GT)n repeats, while the L allele
is classified as a long allele, having 426 (GT)n repeats
(48). Longer repeats are linked to a reduction in HO-1
secretion and activity (46,49), while shorter repeats are
related to elevated HO-1 activity (46,49).

The LL genotype and the L allele of the (GT)n repeat
polymorphisms in the HO-1 gene were risk factors for VFL
development, and HO-1 concentrations were decreased
in cases compared to controls (16), which indicates a
lower production of anti-inflammatory and anti-oxidative
substances, increasing the likelihood of developing dis-
eases. The (GT)n repeat polymorphisms in HO-1 have
been associated with severe acute pancreatitis (49),

encephalitis in HIV infection (50), pediatric non-alcoholic
fatty liver disease (51), and cancer (52), and lower levels
of HO-1 are linked to diabetic retinopathy (53) and
peripheral artery diseases (54).

Overall, the studies analyzed in this systematic review
had a low risk of bias according to the NOS criteria,
indicating the good validity of the present results.

Based on our results, the first hypothesis that ge-
netic polymorphisms are involved in VFL etiology was
accepted. The second hypothesis that the protein levels of
MDM2, BCL11A, and HO-1 were altered in VFL patients
was also accepted.

These data can be extremely important in clinical
practice because these SNPs and proteins could be
powerful markers for diagnosis and treatment. Treatments
for VFL include speech therapy, surgical techniques, vocal
fold injection (55), and the use of drugs (56). However,
there is no effective therapy yet (1), and more indicators
for developing new treatment options are needed. The
molecular markers evaluated in this study could be
potential indicators for better treatment outcomes. Natural
products and pharmacological medications targeting IL-10
(57), MDM2 (9), BCL11A (58), and HO-1 (59) have been
shown to be effective in clinical and pre-clinical studies
involving other diseases and may also be effective in
treating patients with VFL and preventing the onset of
cancer.

Further research in different ethnicities is required to
confirm the involvement of these markers in VFL, as all
studies included in this systematic review were performed
in China. Although the evaluated genetic markers are
present in other populations such as from Austria, United
Kingdom, America, Turkey, India, Finland, France,
Poland, Pakistan, Egypt, Tunisia, Thailand, Iran Spain,
Brazil, and Mexico (28,50,60–74), to the best of our
knowledge, there are no published studies on the
involvement of genetic polymorphisms in patients with
VFL from these countries.

Conclusion
Most genetic polymorphisms analyzed in this sys-

tematic review were risk factors for VFL development, and
most proteins were modified in VFL patients. New markers
could lead to the development of effective therapies for
this lesion, avoiding a malignant transformation.
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