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Abstract Considerable effort has been devoted to the

analysis of genotype by environment (G 9 E) interactions in

various phenotypic domains, such as cognitive abilities and

personality. In many studies, environmental variables were

observed (measured) variables. In case of an unmeasured

environment, van der Sluis et al. (2006) proposed to study

heteroscedasticity in the factor model using only MZ twin

data. This method is closely related to the Jinks and Fulker

(1970) test for G 9 E, but slightly more powerful. In this

paper, we identify four challenges to the investigation of

G 9 E in general, and specifically to the heteroscedasticity

approaches of Jinks and Fulker and van der Sluis et al. We

propose extensions of these approaches purported to solve

these problems. These extensions comprise: (1) including DZ

twin data, (2) modeling both A 9 E and A 9 C interactions;

and (3) extending the univariate approach to a multivariate

approach. By means of simulations, we study the power of the

univariate method to detect the different G 9 E interactions

in varying situations. In addition, we study how well we could

distinguish between A 9 E, A 9 C, and C 9 E. We apply a

multivariate version of the extended model to an empirical

data set on cognitive abilities.

Keywords Genotype by environment interaction �
ACE-model � Factor analysis � Heteroscedasticity �
Marginal maximum likelihood � Power

Introduction

The topic of genotype by environment (G 9 E) interaction

has received increasing attention in the past decade in twin

and family studies, and in (genome-wide) genetic associ-

ation studies (GWAS). A G 9 E interaction denotes the

degree to which the phenotypic variation explained by

genetic factors varies across environmental conditions, or,

conversely, the degree to which phenotypic variation

explained by environmental influences varies across

genotypes (see Boomsma and Martin 2002).

Using multi-group designs (Boomsma et al. 1999) or the

moderation model proposed by Purcell (2002), various

twin and family studies have shown that within the ACE-

model, the phenotypic variance decomposition into addi-

tive genetic factors (A), common environmental factors

(C) and unique environmental factors (E) varies across

environmental conditions. This has been established with

respect to various behavioral measures (e.g. aggression and

alcohol consumption; see Kendler 2001, for a review

including more examples) and specifically with respect to

cognitive ability (Bartels et al. 2009a; Grant et al. 2010;

Harden et al. 2007; Johnson et al. 2009a; Turkheimer et al.

2003; van der Sluis et al. 2008), personality (Bartels et al.

2009b; Boomsma et al. 1999; Brendgen et al. 2009; Distel

et al. 2010; Heath et al. 1998; Hicks et al. 2009a; Hicks
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et al. 2009b; Johnson et al. 2009b; Silberg et al. 2001;

Tuvblad et al. 2006; Zhang et al. 2009), health-related

phenotypes (Johnson and Krueger 2005; Johnson et al.

2010; McCaffery et al. 2008; McCaffery et al. 2009), and

measures of brain morphology (Lenroot et al. 2009;

Wallace et al. 2006).

In these studies, the extent to which the additive genetic

factor A explains phenotypic variation fluctuates as a

function of a specific measured environmental variable. It

has, however, proven difficult to identify the (multiple)

relevant environmental conditions that moderate the

influence of genetic factors (e.g. Eichler et al. 2010). In

GWAS, for example, G 9 E interaction is usually not

modeled, although in theory, the presence of unmodeled

G 9 E may affect the power to detect genetic variants (e.g.

Eichler et al. 2010; Maher 2008; Manolio et al. 2009).

As the identification of environmental variables

involved in G 9 E can be difficult, methods to detect

G 9 E interactions given unmeasured genetic and envi-

ronmental factors remain useful. At presence, two MZ-twin

based methods are available. Letting Y1 and Y2 denote MZ

twin pair scores, Jinks and Fulker (1970) showed that

G 9 E may be detected in the dependency of |Y1 - Y2|, a

proxy for the variance of E, on Y1 ? Y2, a proxy for the

level of A (see Jinks and Fulker 1970). In a similar

approach, van der Sluis et al. (2006) used marginal maxi-

mum likelihood to test for heteroscedastic E variance by

conditioning on A in MZ twin data (Hessen and Dolan

2009; Molenaar et al. 2010). Like Jinks and Fulker (1970),

these authors focused on the detection of A 9 E, i.e. het-

eroscedastic E variance as a function of A.

In the following, we use the term ‘G 9 E’ to refer to the

general concept of ‘genotype-by-environment interaction’.

In addition, we refer to specific instances of G 9 E that are

modeled in a given statistical model (e.g. A 9 E in the

ACE model; A 9 M in the moderation model of Purcell

2002, where M is a measured variable).

Problems with existing heteroscedasticity approaches

The methods of Jinks and Fulker (1970) and van der Sluis

et al. (2006) face a number of challenges. Here we address

the following four: non-normality, conflation of A 9 E and

C 9 E, heteroscedastic measurement error, and genotype–

environment correlation.

Non-normality

As heteroscedasticity due to G 9 E results in non-nor-

mality of the observed phenotypic variable, other sources

of non-normality can result in spurious G 9 E. These

include floor and ceiling effects (see van der Sluis et al.

2006), poor scaling of the measurement (Eaves 2006;

Evans et al. 2002) and non-linear factor-to-indicator rela-

tions (Tucker-Drob et al. (2009)).

Heteroscedastic measurement error

As discussed by Turkheimer and Waldron (2000), the

statistical ‘unique environment factor’, E, is not necessarily

equal to the conceptual notion of environmental influences

underlying phenotypic scores, as the former may for

instance include measurement error (see also Loehlin and

Nichols 1976). This is a challenge as heteroscedastic

measurement error may mimic G 9 E.

Conflation of A 9 E and C 9 E

The existing univariate approaches by Jinks and Fulker and

van der Sluis utilize MZ twin data only. This precludes

distinguishing between the additive genetic effects, A, and

the common environment effects, C (Evans et al. 2002). It

is therefore possible that an observed effect can be due to

C 9 E rather than A 9 E.

Genotype–environment correlation

Measures of the environment that interact with A may

themselves be affected by either the same or unique genetic

influences (e.g. Turkheimer et al. 2009). Such genotype–

environment correlation is known to affect tests using

measured environments, in both the case that the genetic

influences are unique and common to the measured envi-

ronment and the phenotype (Purcell 2002). It is however

unknown how it affects the heteroscedasticity approaches

as presented above.

Note that the problems discussed above are not limited

to the approaches of Jinks and Fulker and van der Sluis

et al. in which the environment is unmeasured. Given

measured environment, non-normality of the phenotypic

variable can also result in spurious G 9 E (Purcell 2002).

In addition, testing for G 9 E in presence of a genotype–

environment correlation is a challenge in the measured

moderator approach as well (see van der Sluis et al. 2011;

Rathouz et al. 2008).

Towards a solution

In this paper, we address the problems mentioned above in

an extended version of the approach of van der Sluis et al.

Specifically, we extend the van der Sluis et al. method to

include dizygotic (DZ) twin data to avoid the conflation of

the A and C components. The inclusion of DZ data has

several advantages: first, one can distinguish between

A 9 E and A 9 C. Second, inclusion of DZ twin data will

increase the power simply due to the increase in total
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sample size. Third, A 9 E effects may be detected more

readily if the C component can be isolated. Finally, as A

and C are separated, we hypothesize that the presence of

C 9 E does not result in spurious A 9 E.

In addition to the extension of van der Sluis et al.

(2006), we propose a multivariate extension. In the multi-

variate extension we use the common path way model to

distinguish between the measurement model (a phenotypic

one factor model) and the biometric model (McArdle and

Goldsmith 1984; Kendler et al. 1987; Franić et al. 2011). In

this model, genetic and environmental influences contrib-

ute to the observed phenotypic variance via one common

phenotypic construct. In the measurement model, the

observed phenotypic variables are linked to the latent

phenotypic construct. In the biometric model, the latent

phenotypic construct is decomposed into the A, C, and E

components. In this way we can introduce the A 9 E and

A 9 C interactions at the level of the construct, instead of

at the level of the observed variable. We thereby avoid the

conflation of measurement error with unique environment

influences, as measurement error is now explicitly modeled

in the measurement part of the model, and the unique

environment factor is separately modeled at the level of the

latent phenotypic construct. So we can introduce heteros-

cedastic residuals in the measurement model to account for

floor, ceiling, and/or poor scaling effects, and test G 9 E at

the level of the biometric model.

Below, we first shortly introduce the univariate method

discussed by van der Sluis et al. (2006) to detect A 9 E

interactions in MZ twin data. Next, we extend this model to

an ACE-model with both A 9 E and A 9 C interactions.

We then investigate the extended model in simulation

studies. We investigate whether the method can properly

distinguish the different interactions. In addition, we

compare the power to detect the various interactions of the

extended method to the power of the van der Sluis et al.

(2006) approach. We also investigate whether we can

distinguish between A 9 E/A 9 C on the one hand and

C 9 E on the other hand. Furthermore, we compare the

present method with unmeasured C and E factors to the

approach of Purcell (2002) that makes use of measured

environment variables. Next, we discuss an extension of

the method to include multivariate data, and apply the

multivariate extension to an IQ data set (Osborne 1980).

We conclude the paper with a short discussion.

The univariate case

Van der Sluis’ model: AE

Van der Sluis et al. (2006) was limited to the AE model.

Specifically, given N twin pairs:

Yj ¼ t þ a � Aj þ e � Ej ð1Þ

where Yj denotes the phenotypic score of the j-th twin

member (j = 1, 2), and Aj and Ej denote the zero mean

additive genetic and unshared environmental factor,

respectively. The parameter t is the intercept (phenotypic

mean) and a and e are regression coefficients (factor

loadings).

Given the usual assumptions of the twin method, the MZ

covariance matrix includes the elements:

var Y1ð Þ ¼ var Y2ð Þ ¼ r2
A þ r2

E ð2Þ

cov Y1; Y2ð Þ ¼ r2
A ð3Þ

To test for a possible A 9 E interaction, van der Sluis

et al. (2006) proposed to test for heteroscedasticity of rE
2,

by testing whether rE
2 varied systematically over the values

of factor A. They specified a parametric function between

rE
2 and the score of the twins on A, i.e.

r2
Ej A ¼ exp b0 þ b1Að Þ ð4Þ

where ‘rE
2|A’ denotes ‘rE

2 conditional on the level of A’.

The exponential function, exp(.), is used to avoid negative

variances (see also Bauer and Hussong 2009; Hessen and

Dolan 2009; Molenaar et al. 2010). In the equation, b0 is a

baseline parameter and b1 is a heteroscedasticity parame-

ter, which models the dependency of rE
2 on A. If b1 = 0,

the model reduces to the standard AE-model. The model

may be extended to accommodate more complicated rela-

tions between rE
2 and A, e.g. rE

2|A = exp(b0 ? b1A ?

b2A2).

To fit the model to data, van der Sluis et al. used mar-

ginal maximum likelihood (Bock and Aitkin 1981). As

A1 = A2 = A, the marginal log likelihood function con-

tains a single integral over A, which may be approximated

using a one-dimensional Gauss-Hermite quadrature

approximation, i.e.

‘ ¼ log

Z1

�1

f ðy1; y2; ljA; r2
EjAÞgðAÞdA

� log
XQ

g¼1

Wg � f ðy1; y2; ljNg; r
2
EjNgÞ ð5Þ

where g(A) is the normal density for factor A, f(.) is the

bivariate normal density function for y1 and y2, condi-

tional on the level of A, with l|A = m ? aA, and rE
2|A

given by Eq. 4, and cor(y1,y2)|A = 0. Wg and Ng are the

g-th weight and node in the Gauss-Hermite quadrature

approximation (e.g. Stroud and Secrest 1966). Van der

Sluis et al. (2006) showed that the model performed well

in terms of statistical power to detect the A 9 E inter-

action. Below we extend this model by the addition of the

DZ twins.
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ACE-model

In the classical twin model, including MZ and DZ twins,

the phenotypic covariance matrix of the ACE model

includes the elements:

var Y1ð Þ ¼ var Y2ð Þ ¼ r2
A þ r2

C þ r2
E ð6Þ

cov Y1; Y2ð Þ ¼ qA � r2
A þ r2

C

where rC
2 is the shared environmental variance and qA is 1

(MZ) or 0.5 (DZ). We now consider both A 9 E and

A 9 C interactions. To introduce the A 9 E interaction,

we proceed as above, i.e.

r2
EjAj ¼ exp b0 þ b1Aj

� �
ð7Þ

We now include the subscript j because A of twin 1 and

2 are distinct in DZ twins. We model A 9 C interaction as

heteroscedastic C variance, conditional on A:

r2
Cj Aj ¼ exp c0 þ c1Aj

� �
ð8Þ

with

cov C1;C2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

CjA1 � r2
CjA2

q
ð9Þ

where c0 and c1 are the baseline and heteroscedasticity

parameter, respectively (as in Eq. 7). If A 9 C is present,

the covariance between C1 and C2 will vary as a function of

A1 and A2. However, as required, the correlation between

C1 and C2 will be 1 for every level of both A1 and A2. We

model these A 9 C and A 9 E simultaneously, i.e. we

estimate b1 and c1 simultaneously. In the standard ACE-

model without G 9 E, the distribution of the phenotypic

scores of the twins and their co-twins is assumed to be a

bivariate normal distribution (Fig. 1a). In case of G 9 E,

the bivariate distribution of the data becomes skewed due to

A 9 C (Fig. 1b) or A 9 E (Fig. 1c). As can be seen, the

two types of interactions result in specific violations of

bivariate normality. Specifically, the presence of a positive

A 9 C interaction (c1 [ 0; C variance is increasing across

A) results in an observed distribution that is skewed to the

right, see Fig. 1b. Similarly for positive A 9 E, see Fig. 1c.

In addition, a negative A 9 C interaction (c1 \ 0) or a

negative A 9 E interaction (b1 \ 0) results in left skew.

In this approach of modeling G 9 E we choose to model

rE
2 and rC

2 as a function of a latent A factor. This is dif-

ferent from Purcell (2002) who modeled the factor loading

of A as a function of observed E or C. We choose the

former option as it connects better to the framework of

Jinks and Fulker (1970) who define G 9 E as heterosced-

astic E with respect to A (see also Evans et al. 2002).

With MZ and DZ twin data, the marginal log likelihood

involves a double integral (i.e. over A1 and A2), which can

be approximated using multivariate Gauss-Hermite quadr-

atures. As we have two dimensions now, we have two sets

of nodes, N1g and N2h, where g = 1, …, Q and h = 1, …,

Q (the total number of nodes is therefore Q2).

Standard two-dimensional Gauss-Hermite quadrature

approximation assumes both dimensions (here A1 and A2)

to be uncorrelated. We therefore transform the nodes N1g

and N2h into N1g
* and N2h

* so that these transformed nodes

have the proper correlations (i.e. 1 for MZ twins and 0.5 for

DZ twins). Thus for the MZ twins we use

N�1g ¼ N1g ð10Þ

N�2h ¼ N1h ð11Þ

and for the DZ twins:

N�1g ¼ N1g ð12Þ

N�2h ¼ :5 � N1g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:52
p

� N2h ð13Þ

The likelihood function of the model is now given by

‘ ¼ log

Z1

�1

Z1

�1

f ðy1; y2; ljA1;ljA2; r2jA1;r
2jA2ÞhðA1;A2ÞdA1dA2

� log
XQ

g¼1

XQ

h¼1

WgWh � f ðy1; y2; ljN�1g;ljN�2h; r2jN�1g;r
2jN�2hÞ

where h(.) is the multivariate normal distribution for A1

and A2, f() is the bivariate normal distribution of Y1 and Y2

with l|Aj = m ? rA 9 Aj and

r2 Aj ¼ r2
E

�� ��Aj þ r2
CjAj ð14Þ

Wg and Wk are the same weights as in the AE model (see

above). The conditional correlation between y1 and y2 is

Fig. 1 Schematic

representation of the implied

bivariate distribution of the twin

data in case of a the standard

ACE-model, b an ACE model

with positive AxC (c1 [ 0), and

c an ACE-model with positive

AxE (b1 [ 0)
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cor y1; y2ð ÞjA�1; A�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

CjA1 � r2
CjA2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

CjA1 þ r2
EjA1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

CjA2 þ r2
EjA2

p
ð15Þ

Simulation study 1

With the present models in place, we studied how well we

can detect the various types of interactions, and how well

we can distinguish between them. In addition we investi-

gated whether the presence of a C 9 E interaction will

influence the detection of A 9 E and/or A 9 C.

Design

We simulated data according to three scenarios. In all

scenario’s A, C, and E are continuous variables. In scenario

I, named ‘A predominant’, explained phenotypic variances

by the A, C, and E factor equaled approximately 50, 25 and

25%, respectively (in the absence of any G 9 E interac-

tion). In scenario II, named ‘AC predominant’, explained

variances equaled approximately 40, 40, and 20% for the

A, C, and E factors, respectively. Finally, in scenario III,

named ‘C predominant’, explained variances equaled 20,

60, and 20%.

Within each scenario we simulated five different data

sets. The first data set included an A 9 E interaction. The

second data set included an A 9 C interaction. The third

data set was simulated with both interactions (A 9 C and

A 9 E) in the same direction, the fourth data set was

simulated with both interactions in opposite direction, and

the fifth data set included a C 9 E interaction. For each

scenario, we additionally simulated a data set with no

effect, i.e. according to the standard homoscedastic ACE-

model. All data sets including an interaction effect were

simulated to include either a small, a medium, or a large

effect. We considered an interaction ‘small’ when the

percentage of variance explained by the environmental

factor in question increased with 3–4% for each standard-

ized unit of A within the [-3; 3] interval. In the ‘medium’

condition, explained variance increased with 4–5% over

the levels of A. In the ‘large’ condition explained variance

increased with 5–6% over the levels of A. See Table 1 for

the true values of the heteroscedasticity parameter, b1 and

c1. The other parameters equaled: rA
2 = 4, b0 = 0.45, and

c0 = 0.45 (scenario I), rA
2 = 4, b0 = 0.65, and c0 = 1.40

(scenario II), and rA
2 = 2, b0 = 0.65, and c0 = 1.70 (sce-

nario III). See Fig. 2 for a graphical representation of the

effect sizes across the scenarios.

For each condition in the design of the simulation study

we simulated 1,000 data sets with 500 MZ and 500 DZ

twin pairs. To each of these data sets, we fitted an ACE

model: (1) with A 9 E interaction (ACE–AxE), (2) with

A 9 C interaction (ACE–A 9 C), (3) with an A 9 E and

an A 9 C interaction simultaneously (ACE–AxE–AxC),

and (4) with A 9 E interaction using the MZ twin data

only (AE–A 9 E). For each model, we calculated the

power of the likelihood ratio test to detect the effects in the

model (see Saris and Satorra 1993; Satorra and Saris 1985).

See Molenaar et al. (2009) for an easy step-by-step illus-

tration. All models were fitted in the freely available

software package Mx (Neale et al. 2006). We used mar-

ginal maximum likelihood estimation (Bock and Aitkin

1981) with 100 multivariate Gauss-Hermite quadrature

points (i.e. 10 for each dimension) to approximate both

integrals in the likelihood function as discussed above. In

case of the AE-model, we used 10 quadrature points as the

likelihood function of this model only includes a single

integral. Power was calculated using a 0.05 level of sig-

nificance. All Mx input scripts are available from the

website of the first author.

Results

In Table 1, parameter recovery is summarized for the cases

in which the true model is fitted to the data (e.g. ACE–

A 9 E when the data contains an A 9 E effect and ACE–

A 9 E–A 9 C when the data contains both effects). In the

Table 1, average parameter estimates of the G 9 E

parameters, b1 and c1 are shown together with their true

values, standard deviation, and bias (which is defined as the

difference between the average estimate and the true value

divided by the true value). As appears from the Table 1, in

case of an A 9 C effect in the data, the A 9 C parameter

c1 is somewhat underestimated within the ACE–A 9 C

with percent bias between 15 and 29% in the three sce-

narios. In case of only an A 9 E effect in the data, the

A 9 E parameter, b1, of the ACE–A 9 E is hardly biased

with bias between 3 and 14%. In the case that both effects

are in the opposite direction in the data, b1 is overestimated

(bias between 20 and 37%), but c1 is reasonably unbiased

(bias between -11 and 22%). In the case that both effects

are in the same direction in the data, b1 is somewhat biased

in scenario I and II, but not biased in scenario III, and c1 is

severely biased in scenario I and II. The latter suggests that

when both effects are in the same direction in scenario I

and II, the A 9 C effect is absorbed to some degree by the

A 9 E parameter b1.

Table 2 shows the power of the different models to

detect the effects in scenario I (‘A predominant’). We only

focus on scenario I to save space (as tables get really large)

and because the main conclusions are the same for all

scenario’s. However, power results of scenario II and III

are available from the website of the first author. As can be

seen in Table 2, in the absence of an effect, power

Behav Genet (2012) 42:483–499 487

123



coefficients approximately equal the level of significance

(0.05). For example, when only an A 9 E is in the data,

power to detect A 9 C should equal 0.05, as ideally the

A 9 E effect in the data should not be detected as an

A 9 C interaction. For all such cases, power coefficients

are underlined in Table 2.

The underlined power coefficients in the Table 2 show

that for each effect size, false positives are largely absent.

That is, all power coefficients are close to 0.05 in the

absence of an effect. Furthermore it can be concluded from

the power coefficients that in the ACE–A 9 E–A 9 C

model, the distinct interaction effects (A 9 E vs. A 9 C)

are generally not confounded. However, in the ACE–

A 9 E and ACE–A 9 C models, there is an increased risk

on false positives. Specifically, the ACE–A 9 E model has

an increased power to detect the A 9 C effect, and the

ACE–A 9 C model has an increased power to detect the

A 9 E effect.

Table 1 Mean, standard deviation and percent bias of the parameter estimates in simulation study 1 for the G 9 E parameters

Effect Scenario Size A 9 E parameter b1 A 9 C parameter c1

True Mean SD % Bias True Mean SD % Bias

A 9 C I Small – – – – 0.20 0.17 0.15 -15.11

Medium – – – – 0.25 0.21 0.17 -14.20

Large – – – – 0.30 0.25 0.15 -18.19

II Small – – – – 0.15 0.11 0.08 -26.11

Medium – – – – 0.20 0.15 0.08 -26.41

Large – – – – 0.25 0.18 0.08 -26.80

III Small – – – – 0.15 0.11 0.07 -26.83

Medium – – – – 0.20 0.14 0.07 -27.76

Large – – – – 0.25 0.18 0.07 -28.49

A 9 E I Small 0.20 0.22 0.09 11.67 – – – –

Medium 0.25 0.28 0.09 13.97 – – – –

Large 0.30 0.34 0.09 13.36 – – – –

II Small 0.20 0.22 0.10 10.08 – – – –

Medium 0.25 0.28 0.10 13.24 – – – –

Large 0.30 0.34 0.10 12.82 – – – –

III Small 0.20 0.21 0.12 3.50 – – – –

Medium 0.25 0.27 0.11 6.54 – – – –

Large 0.30 0.32 0.11 7.93 – – – –

Opp. I Small 0.20 0.27 0.10 35.51 -0.20 -0.24 0.15 22.01

Medium 0.25 0.33 0.10 31.54 -0.25 -0.29 0.13 14.17

Large 0.30 0.39 0.09 31.46 -0.30 -0.33 0.13 8.36

II Small 0.20 0.27 0.12 36.29 -0.15 -0.16 0.09 6.81

Medium 0.25 0.34 0.11 34.33 -0.20 -0.20 0.08 1.48

Large 0.30 0.40 0.11 34.54 -0.25 -0.24 0.08 -2.42

III Small 0.20 0.24 0.15 21.95 -0.15 -0.14 0.09 -9.26

Medium 0.25 0.31 0.14 24.79 -0.20 -0.18 0.08 -10.25

Large 0.30 0.38 0.13 26.28 -0.25 -0.22 0.08 -11.67

Same I Small 0.20 0.25 0.12 26.19 0.20 0.07 0.19 -65.05

Medium 0.25 0.32 0.11 26.82 0.25 0.10 0.19 -59.16

Large 0.30 0.37 0.10 21.92 0.30 0.14 0.20 -54.17

II Small 0.20 0.24 0.14 22.20 0.15 0.07 0.11 -55.94

Medium 0.25 0.31 0.13 22.82 0.20 0.10 0.11 -50.30

Large 0.30 0.35 0.13 18.00 0.25 0.13 0.11 -47.06

III Small 0.20 0.20 0.18 1.85 0.15 0.10 0.11 -36.17

Medium 0.25 0.26 0.18 5.25 0.20 0.13 0.11 -35.13

Large 0.30 0.31 0.17 3.89 0.25 0.16 0.11 -37.51

Same dir. Both an A 9 E and an A 9 C interaction are in the data in the same direction, opp. dir. they are in opposite direction
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Fig. 2 A graphical representation of the effect sizes as used in simulation study 1. Depicted is for each scenario-the percentage of total variance

explained by E (top graphs) and C (bottom graphs) as a function of the level of A

Table 2 Power to detect A 9 C and A 9 E using different models in scenario I

Effect Data ACE–A 9 E–A 9 C ACE–A 9 C ACE–A 9 E AE 500 AE 1,000

Power to detect A 9 C A 9 E Both A 9 C A 9 E A 9 E A 9 E

No G 9 E 0.06 0.05 0.05 0.05 0.05 0.05 0.05

Small A 9 E 0.08 0.61 0.26 0.72 0.64 0.42 0.70

A 9 C 0.16 0.05 0.24 0.11 0.18 0.05 0.05

Same dir. 0.05 0.54 0.70 0.90 0.83 0.47 0.76

Opp. dir. 0.35 0.67 0.06 0.44 0.57 0.35 0.60

C 9 E 0.07 0.30 0.13 0.36 0.29 0.20 0.36

Medium A 9 E 0.09 0.81 0.40 0.90 0.85 0.63 0.90

A 9 C 0.24 0.05 0.34 0.15 0.27 0.05 0.05

Same dir. 0.07 0.73 0.90 0.98 0.97 0.72 0.95

Opp. dir. 0.50 0.85 0.09 0.65 0.79 0.52 0.81

C 9 E 0.07 0.42 0.17 0.50 0.42 0.32 0.56

Large A 9 E 0.11 0.92 0.55 0.97 0.95 0.77 0.97

A 9 C 0.32 0.05 0.46 0.19 0.36 0.05 0.05

Same dir. 0.10 0.85 0.97 1.00 1.00 0.84 0.99

Opp. dir. 0.70 0.96 0.12 0.82 0.93 0.68 0.93

C 9 E 0.11 0.56 0.24 0.66 0.59 0.43 0.72

Underlined values consider the cases in which the fitted model includes none of the effects in the data. The results for the AE-model are based on

the MZ-twins only

Same dir. Both an A 9 E and an A 9 C interaction are in the data in the same direction, opp. dir. they are in opposite direction, AE 500 and AE
1,000 the analyses are based on 500 MZ and 1,000 MZ twins, respectively
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If we consider the power to detect the effects that are

actually in the data (i.e. the power coefficients that are

not underlined in Table 2), we can conclude that within

the ACE-models, the power to detect an A 9 E interac-

tion is generally acceptable. For the ACE–A 9 E–A 9 C

model, power is good for a large effect size (0.92), power

is acceptable for a medium effect size (0.81), and mod-

erate for a small effect size (0.61). Power to detect

A 9 C interaction using the different models is far lower

than the power to detect A 9 E. That is, large sample

sizes are needed to detect the A 9 C effect. For the

ACE–A 9 E–A 9 C model, power to detect A 9 C is at

most 0.32 in case of a large effect size, while it is 0.92

for A 9 E. However, if the A 9 C interaction is

accompanied by an A 9 E interaction in the opposite

direction, effects are somewhat easier to resolve with

power of at most 0.70.

We now compare the results of the models including

data for both MZ and DZ twins with the AE-model, which

includes data of MZ twins only. As the previous analysis

involved a total of 1,000 subjects, we calculated the power

of the AE-model to detect the interactions in the data in

case of 1,000 MZ twins. In this case, power is approxi-

mately equal to the ACE–A 9 E model.

Finally, from Table 2 we conclude that the presence of

a C 9 E interaction results in an increased false positive

rate in detecting A 9 E. Specifically, given a small effect

size, the ACE–A 9 C–A 9 E model has a power of 0.30

to detect an A 9 E interaction, while a C 9 E interaction

is in the data. This power coefficient could be compared

to the case that there truly is an A 9 E interaction in the

data. In that comparison, this model has a power of 0.61

to detect an A 9 E effect. Thus, from Table 2 it can be

seen that in scenario I for all effect sizes, power to detect

A 9 E is larger when A 9 E is present than when C 9 E

is present, which is reasonably acceptable. However, with

respect to scenario II and III (not tabulated), results are

somewhat different: in scenario II, where C explains more

variance, the power to detect an A 9 E interaction is

about equal when A 9 E is in the data and when C 9 E

is present, for all effect sizes. In scenario III where C is

the predominant factor, power to detect an A 9 E inter-

action is even larger when C 9 E is present than when

A 9 E is in the data.

Conclusion

Overall, the power to detect an A 9 E interaction is

acceptable. In contrast, to detect an A 9 C interaction,

large sample sizes are needed as the power is low. This

appears to be mainly due to underestimation of the A 9 C

parameter, particularly in the case that A 9 C and A 9 E

effects are both present in the same direction. However,

results show that it could be important to take the A 9 C

effect into account as it will increase the power to detect an

A 9 E interaction. Within the ACE model, it is thus

advisable to use the ACE–A 9 E–A 9 C model when one

has no idea whether the interaction is A 9 E or A 9 C.

Using the ACE–A 9 E or the ACE–A 9 C model can lead

to an increased false positive rate (i.e. an A 9 C may be

detected as an A 9 E, while A 9 E is absent).

Besides the underestimation of A 9 C, it appeared that

the A 9 E effect could in some cases be somewhat

overestimated. However, this is not a main problem as it

appeared from the power study that the A 9 E effect is

not associated with false positives. That is, when there is

no A 9 E effect in the data, no spurious A 9 E effect

arise.

From the simulation it is also clear that one can distin-

guish relatively well between A 9 E and A 9 C. However

it is difficult to distinguish between A 9 E and C 9 E,

particularly when C is a relatively large source of variation.

If a C 9 E interaction is present, it may be mistakenly

detected as an A 9 E interaction. We return to this point in

the discussion.

Simulation study 2

In simulation study 2 we investigate the relation between

the present approach with unmeasured environment, and

the G 9 E approach where the environment is measured

(Purcell 2002). First, it is interesting to see how interac-

tions between genotypes and measured environment are

detected in the ACE–A 9 E–A 9 C model, and second it

is interesting to see how the ACE–A 9 E–A 9 C model

deals with G 9 E interactions where the environment is

open to genetic influences as well. To investigate this, we

simulated data according to an ACE-model in which the A

component is moderated by a measured environment var-

iable. We distinguish between two cases (1) univariate

moderation, in which the environment moderates the

genetic variance unique to the phenotype of interest (i.e.

the moderator may be influenced by genes, but these genes

are not shared with the phenotype of interest), (2) bivariate

moderation, in which the environment moderates the

genetic variance common to the moderator and the phe-

notype of interest (i.e. the moderator is influenced by the

same genes as the phenotypic variable resulting in a G 9 E

correlation). Purcell (2002) proposed a model for both

cases, which we refer to as the univariate and bivariate

moderation model, respectively. We considered both the

univariate model and the bivariate model, and fitted the

ACE–A 9 E–A 9 C model to it to see whether the mod-

eration effects are detected and how the gene by environ-

ment correlation influences the results.
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Design univariate moderation

We simulated data according to an ACE-model, in which

the A component was moderated by an external variable,

M, i.e. (omitting subject and twin subscript)

Y ¼ m �M þ a0 þ a1Mð Þ � Aþ c � Cþ e � E

ð16Þ

where M is the (mean-centered) moderator, i.e. a mea-

sure of the environment, a0 is the baseline parameter, a1

is the moderation parameter, and parameter m takes into

account the main effect of M (which is advisable when

modeling interactions, see Nelder 1994). If a1 departs

from 0, A is moderated by M, which amounts to an

A 9 E interaction. In the present simulation study we

choose: a0 = c = e = 1. In addition, we choose the

main effect of the moderator to be to be either small

(m = 0.5), medium (m = 0.75), or large (m = 1.0). Note

that the main effect of the moderator is the same across

the MZ and DZ twins (i.e. a C moderator). In addition,

we chose the degree of moderation, to be small

(a1 = 0.5), medium (a1 = 0.75), or large (a1 = 1).

Finally, we manipulated the within twin correlation of

M to be either 0, 0.5, 0.7, or 1.0). As we are not

interested in the exact power of the ACE–A 9 E–A 9 C

model to detect the effects, effect sizes do not necessary

reflect realistic effect sizes. The main aim of this sim-

ulation study is to see whether the moderation effects are

detected by the ACE–A 9 E–A 9 C model. Note that

we simulated the data using the observed moderator

variable, but in fitting the ACE–A 9 E–A 9 C model,

we do not use this variable.

Results univariate moderation

Table 3 shows the power to detect A 9 E in the presence

of A 9 C and the power to detect A 9 C in the presence of

A 9 E. Given these results, we note that when the within

twin correlation of the moderator is 0 or 0.5, power to

detect A 9 E is generally large, while the power to detect

A 9 C is small. This indicates that the moderation effect in

the data is generally detected as A 9 E. When the corre-

lation increases to 0.7 or 1.0, power to detect A 9 E is

small, and power to detect A 9 C is large, i.e. in this case

the moderation effect in the data is generally detected as

A 9 C. These results hold irrespective of the size of the

main effect of the moderator. Power of the Purcell model

equaled 1 in nearly all simulated scenarios (not tabulated).

Power of the Purcell model is thus larger than the power in

the ACE–A 9 E–A 9 C model, but this is not surprising

as this approach uses the information available in the

moderator variable.

Design bivariate moderation

As noted in Purcell (2002) the moderator could share

genetic influences with the phenotypic variable, we denote

these common influences, Ac. Purcell proposes the fol-

lowing model for the mean-centered M and Y:

Table 3 Power to detect A 9 E in the presence of A 9 C, and power

to detect A 9 C in the presence of A 9 E when data is simulated

under Purcell’s univariate moderation model

Cor.

within

Twins

Main

effect

mod

Effect

G 9 E

ACE–A 9 E–A 9 C

A 9 E A 9 C

0 Small Small 0.92 0.24

Medium 0.79 0.39

Large 0.72 0.76

Medium Small 0.99 0.21

Medium 0.99 0.21

Large 0.98 0.05

Large Small 1.00 0.19

Medium 1.00 0.23

Large 1.00 0.22

0.5 Small Small 0.51 0.22

Medium 0.37 0.57

Large 0.49 0.92

Medium Small 0.72 0.14

Medium 0.60 0.40

Large 0.52 0.46

Large Small 0.85 0.15

Medium 0.77 0.25

Large 0.76 0.38

0.7 Small Small 0.29 0.31

Medium 0.26 0.73

Large 0.44 0.94

Medium Small 0.33 0.33

Medium 0.29 0.74

Large 0.29 0.78

Large Small 0.44 0.44

Medium 0.31 0.72

Large 0.29 0.86

1 Small Small 0.22 0.30

Medium 0.54 0.75

Large 0.75 0.93

Medium Small 0.18 0.66

Medium 0.47 0.95

Large 0.49 0.98

Large Small 0.15 0.94

Medium 0.37 1.00

Large 0.46 1.00

Cor within twins correlation between the twin 1 and 2 scores on the

moderator variable
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Y ¼ a0 þ a1 � Mð Þ � Ac þ cc � Cc þ ec � Ec þ au

� Au þ cu � Cu þ eu � Eu ð17Þ

M ¼ am � Ac þ cm � Cc þ em � Em ð18Þ

i.e. the phenotypic variance is decomposed into Ac, Cc, and

Ec components which are shared with the moderator vari-

able, and into Au, Cu, and Eu components which are unique

to the phenotypic variable. Note that the model could be

extended to introduce moderation of the Cc and Ec. When

only the Au component is moderated, the univariate mod-

eration model from Eq. 16 will suffice.

We simulated data according to the bivariate moderation

model. We manipulated the effect size of the G 9 E effect

into no effect (a1 = 0), a small effect (a1 = 0.5), a medium

effect (a1 = 0.75), and a large effect (a1 = 1.0). In addi-

tion, we manipulated the size of the G 9 E correlation, into

0.3 (i.e. am = 0.5), 0.4 (am = 0.75) and 0.5 (am = 1). We

simulated an ‘E moderator’, that is, besides the effects of

A, the moderator was influenced by E but not by C

(cm = 0, em = 1). The other parameters equaled

cc = ec = cu = a0 = au = eu = 1. We note again that the

chosen effect sizes are not necessarily realistic as we are

only interested in how the ‘Purcell’ effects are detected in

the ACE–A 9 E–A 9 C model.

Results bivariate model

Table 4 shows the power of the ACE–A 9 E–A 9 C

model to detect A 9 E and A 9 C effects in the data under

the different scenarios. We see that the moderation effect in

the data is mainly detected as A 9 E (i.e. power of A 9 E

effect is large, power of A 9 C effect is small). This was to

be expected as the moderator was not influenced by C. In

addition, we see that in case of no moderation in the data,

no G 9 E is detected (i.e. power approaches 0.05 in all

these cases). Thus, the G 9 E correlation does not appear

to cause spurious interactions.

Conclusion and discussion

This second simulation study showed two important

results. First, a correlation between phenotype and envi-

ronment due to shared genes does not affect the results

concerning tests on G 9 E in the ACE–A 9 E–A 9 C

model. Second, interactions between observed measures of

the environment and the additive genetic factor, A, can in

principle be detected using the ACE–A 9 E–A 9 C

model. Depending on the within twin correlation of the

moderator, the interaction will arise as an A 9 E or

A 9 C. Of course power is an issue here, as small effects

will possibly remain undetected. However, given a suffi-

ciently large sample size, phenotypic variables can be

screened on G 9 E when no explicit hypotheses exist on

which measures of the environment will interact with

genetic influences of the phenotype, or when the relevant

environment measures are not available (e.g. an IQ datasets

which lacks a measure of SES).

Application

We applied the univariate G 9 E model to the Osborne

data (Osborne 1980), which comprise scores of 477 twin

pairs on various tests of cognitive ability. We analyzed the

scores of the twin pairs on the first-principal component of

13 cognitive ability tests from the Osborn data. We found

the ACE–A 9 E model to provide the best model fit,

indicating that an A 9 E interaction is present in these

data. We do not present the detailed results in this paper to

save space, and because we apply the multivariate model to

these data below. However, a small report of this appli-

cation is available from the site of the first author.

The multivariate case

In this section, we introduce a multivariate approach in

which we distinguish between a measurement model and a

biometrical model (the common pathway model). In the

biometrical part of the model, we introduce the A 9 C and

A 9 E effects, and in the measurement model we introduce

heteroscedastic residuals to account for possible heteros-

cedastic measurement error, and/or floor, ceiling, and poor

scaling effects. In addition, we show how one can test for

Table 4 Power to detect AxE in the presence of A 9 C, and power

to detect A 9 C in the presence of A 9 E when data is simulated

under Purcell’s bivariate moderation model

rGE G 9 E effect ACE–A 9 E–A 9 C

Power to detect A 9 E A 9 C

0.3 None 0.05 0.05

Small 0.84 0.05

Medium 0.87 0.05

Large 0.91 0.05

0.4 None 0.05 0.05

Small 0.66 0.05

Medium 0.70 0.05

Large 0.84 0.05

0.5 None 0.06 0.06

Small 0.51 0.20

Medium 0.53 0.45

Large 0.95 0.65

rGE Size of the genotype by environment correlation due to shared

genes between the moderator and the phenotypic variable
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non-linear factor loadings within the multivariate approach.

We outline the multivariate approach below.

Let y1 denote the N 9 p-dimensional matrix of the scores

of the N twin 1 members on p phenotypic scores, and let y2

denote the scores of the twin 2 members. These scores are

submitted to a k dimensional factor model which is referred

to as the measurement model. In the measurement model,

the observed variables are linked to a (set of) phenotypic

construct(s). Specifically, the covariance matrix Ry1, y2 of

the horizontally stacked matrices y1, y2 is modeled as

Ry1;y2 ¼ KRgKþ Rh ð19Þ

where K are the factor loadings, Rg is the covariance

matrix of the phenotypic constructs, and Rh is the covari-

ance matrix of the residuals. The structure of the factor

loading matrix, K, may be derived from theory, such as the

general intelligence theory by Spearman (1904), or the Big

Five personality theory (Digman 1990). In principle, K can

be submitted to a Cholesky decomposition to test for

general and specific genetic and environmental contribu-

tions, however then, the measurement model is not sepa-

rated from the biometric model anymore. Here, we focus

on a theory based factor model, but we return to the

Cholesky decomposition in the discussion.

As an illustration, we consider general intelligence or

g (Spearman 1904). According to g theory, a single pheno-

typic latent construct underlies all scores of a given intelli-

gence test. That is, in both the twin 1 and 2 samples, we

postulate one common factor. Given four observed cognitive

variables, we have the following factor loading matrix:

K ¼

1 0

k1 0

k2 0

k3 0

0 1

0 k1

0 k2

0 k3

2
66666666664

3
77777777775

ð20Þ

where the factor loadings of the first variables of each twin

are fixed to 1 for identification purposes.

In the biometric model, the 2 9 2 covariance matrix of

the phenotypic constructs, Rg, is decomposed as follows

Rg ¼ RA þ RC þ RE ð21Þ

i.e. the covariance matrix of the general intelligence factor

underlying the twin 1 and 2 subtest data is modeled as a

function of the A, C, and E factors.

To model A 9 C and A 9 E interactions, we can apply

the univariate method from Eqs. 7 and 8 to the matrices RC,

and RE, i.e.

REjA1;A2 ¼
expðb0 þ b1A1Þ

0 expðb0 þ b1A2Þ

� �
ð22Þ

and

RCjA1;A2

¼
expðc0 þ c1A1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

expðc0 þ c1A1Þ expðc0 þ c1A2Þ
p

expðc0 þ c1A2Þ

� �

ð23Þ

where ‘|A1, A2’ means that the corresponding covariance

matrix is conditional on both A1 and A2. The term on the

off-diagonal of RC|A1, A2 ensures that the correlation

between factor C1 and factor C2 remains equal to 1. For the

general intelligence factor, we thus have two heterosced-

asticity parameters, b1 and c1 for the A 9 E and A 9 C

interaction, respectively. Note that when there are multiple

factors (e.g. in applications to Big Five personality data),

each factor is associated with it’s own b1 and c1

parameters.

Now, in the measurement model, we introduce het-

eroscedastic residual variances in Rh to account for heter-

oscedasticity that is specific to the observed phenotypic

variables and not due to heteroscedasticity of E or C on the

level of the latent phenotypic construct, thus:

RhjA1;A2 ¼

expðd01 þ d11A1Þ

0 . .
.

0 . .
.

expðd04 þ d14A1Þ

rh1jA1;A2
. .

.
0 expðd01 þ d11A2Þ

0 . .
.

0 0 . .
.

0 � � � rh4jA1;A2 0 � � � expðd04 þ d11A2Þ

2
66666666664

3
77777777775

ð24Þ
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In this equation, d01 is the baseline parameter for pheno-

typic variable 1, d04 is the baseline parameter for phenotypic

variable 4, d11 is the heteroscedasticity parameter for phe-

notypic variable 1, etc. In addition, rh1|A1,A2 is the condi-

tional residual covariance between the scores of twin 1 and 2

on phenotypic variable 1, and rh4|A1, A2 is the conditional

residual covariance between the scores of twin 1 and 2 on

phenotypic variable 4. These conditional covariances account

for possible genetic and environment influences on the level

of the residuals. These covariances could in principle be

submitted to an ACE-decomposition, including A 9 E and/or

A 9 C effects on the level of the individual variable. This

would enable a test on whether G 9 E occurs at the level of

the phenotypic construct or at the level of the individual

variable. However, these G 9 E tests on the level of the

variable are vulnerable to problems like poor scaling. For

present purposes (testing G 9 E on the level of the pheno-

typic construct to avoid problems like poor scaling) we do not

distinguish between ACE-components on the level of the

variable. Instead, we account for similarities between twins of

the same twin pair by conditional covariances between the

residuals as introduced in Eq. 24. The conditional covari-

ances are calculated as follows, e.g. for variable 1,

rh1jA1;A2 ¼
q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

expðd01 þ d11A1Þexpðd01 þ d11A2Þ
p ð25Þ

where q1 is the residual correlation between the twin 1 and 2

scores on variable 1 after the phenotypic construct is taken into

account. Note that this correlation is constant across A1 and

A2. Thus, to conclude, in the measurement model 15 param-

eters are estimated: k1–k3, and d01–d04, d11–d14, and q1–q4.

In the model above, we introduced heteroscedasticity in

the biometric model to model A 9 E and A 9 C and we

introduced heteroscedasticity in the measurement model to

model heteroscedastic residuals. As the G 9 E effects are

modeled on the factor that is common to all phenotypic

variables (i.e. the phenotypic construct), the A 9 E and

A 9 C effects capture the heteroscedasticity that is common

to all variables of the construct. Variable specific hetero-

scedasticity (i.e. not shared among all variables) is captured

by the heteroscedastic residuals. In doing so, confounds

specific to the variables-like poor scaling are absorbed by the

heteroscedastic residuals. The G 9 E effects that arise on

the level of the construct can therefore be more confidently

interpreted as such. However, as Eaves (2006) pointed out,

the same artifacts of scale could be present in all variables in

a G 9 E study. In the present approach, this may give rise to

spurious G 9 E on the level of the construct.

Testing for spurious G 9 E due to non-linearity

The measurement model in Eq. 19 is based on the premise

that the observed phenotypic scores are linearly predicted

from the latent phenotypic construct. Tucker-Drob et al.

(2009) showed that when the relation between the observed

phenotypic variables and the latent phenotypic construct is

non-linear, this can result in spurious G 9 E. To exclude

possible spurious G 9 E we can test the factor loadings on

non-linearity. Note that we test for non-linearity in the

measurement model, but still retain the ACE decomposi-

tion in the biometric model. Testing for non-linearity of the

factor loadings is straightforward in Mx (Neale et al. 2006;

see Molenaar et al. 2010 for an Mx example) and Mplus

(Muthén and Muthén 2007; see Tucker-Drob et al. 2009 for

an Mplus example).

Application

Data

We analyzed the Osborne data (Osborne 1980), which

include the scores of 328 Caucasian twin pairs and 149

Afro–American twin pairs on various tests of cognitive

abilities. As sample size within both groups is insufficient,

we analyzed both groups together for illustrational pur-

poses. The 477 twin pairs included 247 MZ twins (110

males, 137 females), and 230 DZ twins, of which 180 were

same sex twins (65 male–male, 115 female–female) and 50

were opposite sex twins. Mean age was 15.30 (sd: 1.55;

min: 12; max: 20).

From the Osborne data, we selected four subtests, the

Mazes test, Object apeture test, Simple arithmetic test, and

New castle spatial test that fitted a one-factor model well.

To the scores of the twin 1 and 2 samples on these subtests,

we fitted a one-factor model representing the general

intelligence factor. The variance of this latent phenotypic

factor was decomposed into an A, C, and E component,

with A 9 E and A 9 C interactions, as in Eqs. 22, 23. In

the full sample (i.e. MZs and DZs together), the scores

were standardized to have variances equal to 4 to facilitate

parameter estimation. See Table 5 for the correlation

matrices in the MZ and DZ samples. The baseline model

without A 9 E and A 9 C interaction fitted adequately

compared to the saturated model [v2(66) = 51.57]. In this

model, the phenotypic factors correlated 0.76 (SE = 0.04)

between the members of the DZ twins, and 0.95

(SE = 0.01) between the members of the MZ twins.

Results

First, we tested the factor loadings in the measurement

model for non-linearity. We did this using Mplus (Muthén

and Muthén 2007). Parameter estimates and model fit

statistics are in Table 6. According to the AIC, BIC, and

LRT, the model with non-linear factor loadings fitted best.
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However, only subtest OA is associated with a non-linear

factor loading. As the effect concerns only a single vari-

able, we continue our analysis assuming linearity for all

variables for illustrational purposes. However, we stress

that in practice one should be cautious drawing conclusion

on G 9 E in the presence of unmodeled non-linearity. We

return to this point in the discussion.

In Table 7, the results of the multivariate analyses are

summarized. We started with the full model, the ACE–

A 9 E–A 9 C–het, where ‘het’ denotes that heterosced-

astic residuals are present (d11–d14 are estimated). In this

model, the A 9 E and A 9 C effects are on the level of the

general intelligence factor. From the model we dropped the

A 9 C interaction. All model fit indices indicated that

the model fit improved, indicating that an A 9 C interac-

tion was absent [v2(1) = 1.50]. Next, we dropped the

A 9 E interaction from the model (resulting in an ACE–

het model). All fit statistics indicated that the model fit

deteriorated [v2(1) = 9.23]. We thus concluded that the

ACE–AxE–het model was a better fitting model. Parameter

estimates of this model are in Table 8. As can be seen, the

heteroscedasticity parameters of the residuals (d11–d14) did

not differ significantly form 0, as judged by their confi-

dence intervals. We therefore dropped these parameters,

resulting in an ACE–A 9 E model. According to a likeli-

hood ratio test, this model fitted better than a model with

heteroscedastic residuals [v2(4) = 6.158], this was con-

firmed by the AIC and BIC (see Table 7). Parameter esti-

mates of the ACE–A 9 E, are in Table 8. It appears that

dropping the heteroscedastic residuals (parameter d11–d14)

hardly affected the A 9 E parameter, b1. The estimate of

b1 changed from 1.40 to 1.38. As the estimate of b1 was

larger than zero, the variance of factor E increases with

increasing levels of factor A. Thus, for increasing genetic

levels (i.e. for an increasing position on the additive genetic

factor, A), differences between twins in phenotypes are

larger because differences in environments increase. Note

that this is consistent with the notion of ability differenti-

ation in which the general intelligence factor is hypothe-

sized to be a weaker source of individual differences at

higher levels of this factor (Deary et al. 1996). This is

Table 5 MZ (below the diagonal) and DZ twin correlations for the twin 1 and 2 samples

MT1 OA1 AR1 NS1 MT2 OA2 AR2 NS2

MT1 1 0.38 0.38 0.50 0.42 0.31 0.3 0.39

OA1 0.34 1 0.49 0.72 0.26 0.47 0.4 0.57

AR1 0.24 0.46 1 0.65 0.28 0.34 0.63 0.46

NS1 0.36 0.7 0.56 1 0.37 0.49 0.46 0.67

MT2 0.59 0.43 0.33 0.45 1 0.43 0.35 0.46

OA2 0.28 0.66 0.48 0.68 0.44 1 0.49 0.72

AR2 0.21 0.45 0.85 0.57 0.32 0.52 1 0.54

NS2 0.33 0.67 0.52 0.86 0.51 0.73 0.57 1

The number after the abbreviation denotes the twin member. (e.g. MT1 scores of the twin 1 sample on the Mazes test, MT2 scores of his/her co

twin on this test)

CT Calendar test, CC cube comparison test, WV wide range vocabulary test, SD surface development test, AR simple arithmetic test, FB form

board, SV self-judging vocabulary test, PF paper folding test, OA object aperture test, IP identical pictures test, NS newcastle spatial test, SA
spelling achievement test, MT Mazes Test

Table 6 Parameter estimates of the non-linear multivariate ACE

model

Parameter Variable Model

Quadratic k Linear k

klin MT 1.00 1.00

OA 1.57 (0.12) 1.56 (0.12)

AR 1.25 (0.11) 1.25 (0.11)

NS 1.83 (0.14) 1.82 (0.14)

kquad MT 0.01 (0.07) –

OA 0.15 (0.05) –

AR 0.06 (0.07) –

NS 0.18 (0.05) –

rA
2 g 0.40 (0.09) 0.39 (0.09)

rC
2 g 0.56 (0.12) 0.56 (0.12)

rE
2 g 0.05 (0.02) 0.05 (0.02)

Model fit statistics

v2(4) – 15.33

AIC 14395.86 14402.42

BIC 14508.38 14498.27

klin is the baseline factor loading which models the linear relation

between the phenotypic construct and the observed variables. kquad is

the non-linearity parameter which accounts for the non-linearity in the

relation between the phenotypic construct and the observed variable.

v2(4) is a Satorra–Bentler corrected likelihood ratio test between the

model with non-linear and linear factor loadings

MT Mazes test, OA object aperture test, NS newcastle spatial test,

AR simple arithmetic test
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similar to what we found in the univariate application

where we used PC1 scores (as described shortly above).

However, the advantage of the multivariate approach is

that it enables us to show that the A 9 E effect involves the

common phenotypic factor and is not due to heterosced-

astic residuals.

Conclusion

In this paper we identified four challenges to the detection

of G 9 E using the existing univariate heteroscedastic

approaches of Jinks and Fulker (1970) and van der Sluis

et al. (2006); non-normality, conflation of A 9 E and

C 9 E, heteroscedastic measurement error, and gene by

environment correlation. We presented an extension of the

heteroscedasticity approach meant to overcome these

problems. Specifically, we presented a univariate method

suitable to study the presence of A 9 C and A 9 E inter-

actions using both MZ and DZ twin data. In this approach,

we explicitly distinguished between the A and C component

so as to avoid the conflation of A and C. We showed that

A 9 E and A 9 C interactions are well separable, but it

turned out that A 9 E analyses are still influenced by the

presence of C 9 E. One might argue that this problem

could be solved by constructing a model that incorporates

both A 9 E and C 9 E interaction simultaneously, so that

the effects can be disentangled. We considered such a

model, in which the variance of E was modeled as a func-

tion of both A and C. (Note that this simultaneous modeling

of A 9 E and C 9 E requires an extension of the ACE-

model that is not covered by the equations in the present

paper). Simulations demonstrated that, although the exten-

ded model could be specified and fit without problems,

A 9 E and C 9 E could not be distinguished. Specifically,

when the simulated effect, e.g. A 9 E, was dropped, the

likelihood hardly changed because the effect was almost

fully absorbed by the C 9 E effect. Details about this

extended model and the simulations are in the Appendix.

The difficulty of distinguishing A 9 E and C 9 E is

related to the well known problem that A and C are less

well resolvable compared to A and E, or C and E (Martin

et al. 1978). The simulations that we presented show that

the presence of C 9 E will bias tests of A 9 E, depending

on the strength of C as a source of individual differences.

For some phenotypic measures, it is known that the

strength of C is negligibly small, specifically in cognitive

abilities from adolescence onwards (see Boomsma et al.

2002). In these cases, A 9 E interactions may arguably be

interpreted as such. In cases that C is substantial (i.e. sit-

uations comparable to scenario II and III from the simu-

lations), one should be more careful in interpreting a

significant A 9 E interaction, as the effect could indicate

the presence of C 9 E rather than A 9 E. In such cases, it

seems wise to interpret A 9 E as the interaction between

familiarity factors and environmental factors, as in the

Table 7 Model fit statistics for the different models in the multivariate illustration

Model Fit indeces

AIC BIC LRT

1. ACE–A 9 E–A 9 C–het 6224.81 -4649.59 –

2. ACE–A 9 E–het 6224.32 -4651.93 2 vs. 1: v2(1) = 1.50

3. ACE–het 6231.55 -4650.40 3 vs. 2: v2(1) = 9.23

4. ACE–A 9 E 6222.475 -4661.181 4 vs. 2: v2(4) = 6.158

For the AIC and BIC, best values are underlined. ‘A 9 E-A 9 E-A 9 C–het’ is the ACE–A 9 E-A 9 C model with heteroscedastic residual

variances. The LRT concerns a likelihood ratio test between the models mentioned

Table 8 Parameter estimates

and confidence intervals for the

ACE–A 9 E–het and the

ACE–A 9 E model in the

multivariate illustration

CI Confidence interval

Source ACE–A 9 E–het ACE–A 9 E

Value 95% CI Value 95% CI

Residuals d11 -0.07 -0.25; 0.38 – –

d12 0.14 -0.11; 0.34 – –

d13 0.08 -0.06; 0.21 – –

d14 0.28 -0.02; 0.58 – –

Factor E b0 -4.03 -7.14; -2.94 -3.97 -6.48; -2.92

b1 1.40 0.53; 2.91 1.38 0.53; 2.63

Factor C c0 -0.56 -1.02; -0.09 -0.54 -0.98; -0.16

Factor A rA
2 0.41 0.25; 0.62 0.39 0.23; 0.60
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analysis of MZ twin data only (as in Jinks and Fulker 1970;

van der Sluis et al. 2006). That is, one leaves unresolved

the exact dimension across which the strength of the

environmental factor increase, i.e. A or C. A possible

solution proposed by Jinks and Fulker (1970) is to consider

twin data that includes MZ twins who are reared apart. In

theory this improves the distinction of A and C. However,

in practice such data are scarce. Nevertheless, the model

could be useful as an explorative tool to screen phenotypic

variables on G 9 E when no ideas exist (yet) on what

measures to include in a Purcell (2002) type of analysis.

Extending the univariate approach of van der Sluis et al.

(2006) to include DZ twins did not solve the conflation of

A 9 E with C 9 E. However, this does not disqualify our

new model as an approach of testing G 9 E. We think that

the new method has some clear advantages over existing

approaches. First, in our new method we can distinguish

between A 9 E and A 9 C (although large samples or

large effect sizes are needed to detect A 9 C). Second,

because of the increased sample size due to the addition of

the DZ twin data, power to detect A 9 E is increased as

compared to the van der Sluis et al. and Jinks and Fulker

model. Third, in both the simulation and application we

showed that taking into account A 9 C interaction which

is possible due to the DZ twin data, may be beneficial in

terms of the power to detect the A 9 E effect.
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Appendix

Distinction between C 9 E and A 9 E within

an ACE–A 9 E–C 9 E model

In this appendix we show that within an ACE–A 9

E–C 9 E model the A 9 E and C 9 E effects are empir-

ically unidentified. The results below are obtained under

circumstances similar to scenario I from the paper. Table 9

depicts the power of an ACE–A 9 E–C 9 E model to

detect C 9 E and A 9 E.

The Table 9 shows that when an A 9 E is in the data,

the effect is not detected as A 9 E and not as C 9 E within

the ACE–A 9 E–C 9 E model. This is because the A 9 E

effect can arise as both C 9 E and as A 9 E in the model.

Thus, consider the case that A 9 E is in the data, and the

ACE–A 9 E–C 9 E is fitted. Dropping the A 9 E effect

from the model shows no deterioration in model fit (while

the A 9 E effect is in the data) as the A 9 E effect is fully

absorbed in the C 9 E parameter. When the A 9 E

parameter is freed, and the C 9 E parameter is dropped,

model fit again shows no deterioration as the A 9 E effect

is now be absorbed by the A 9 E parameter. Same holds

for the case when a C 9 E effect is in the data.

When the ACE–A 9 E and the ACE–C 9 E models are

considered, power is always large irrespective of the exact

effect that is in the data. For instance, power of ACE–

A 9 E is large when an A 9 E is in the data and when an

A 9 C is in the data. From the above we conclude that the

A 9 E parameter can not be distinguished from the C 9 E

parameter (the parameters are highly correlated) under

reasonable circumstances (i.e. the chosen effect and sample

sizes).
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