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The ability of plants to accumulate specific metabolites in concentrations beyond their
solubility in both aqueous and lipid environments remains a key question in plant biology.
Natural Deep Eutectic Solvents (NADES) are mixtures of natural compounds in specific
molar ratios, which interact through hydrogen bonding. This results in a viscous liquid that
can solubilize high amounts of natural products while maintaining a negligible vapor
pressure to prevent release of volatile compounds. While all the components are
presents in plant cells, identifying experimental evidence for the occurrence of NADES
phases remains a challenging quest. Accumulation of anthocyanin flavonoids in highly
concentrated inclusions have been speculated to involve NADES as an inert solvent. The
inherent pigment properties of anthocyanins provide an ideal system for studying the
formation of NADES in a cellular environment. In this mini-review we discuss the
biosynthesis of modified anthocyanins that facilitate their organization in condensates,
their transport and storage as a specific type of phase separated inclusions in the vacuole,
and the presence of NADES constituents as a natural solution for storing high amounts of
flavonoids and other natural products. Finally, we highlight how the knowledge gathered
from studying the discussed processes could be used for specific applications within
synthetic biology to utilize NADES derived compartments for the production of valuable
compounds where the production is challenged by poor solubility, toxic intermediates or
unstable and volatile products.

Keywords: anthocyanic vacuolar inclusions, anthocyanins, natural deep eutectic solvents, anthocyanin transport,
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1 INTRODUCTION

Flavonoids are aromatic specialized metabolites derived from the phenylpropanoid pathway present
in plants. Anthocyanins are a subclass of flavonoids accumulating in the vacuole, giving rise to the
color of most fruits, vegetables and flowers, ranging from red to purple and blue, in order to attract
pollinators and seed dispersers to ensure plant reproduction (Winkel-Shirley, 2001). Additionally,
anthocyanins accumulate in plant vegetative tissue, acting as photo-protection, absorbing UV light,
and scavenging free radicals from PSII (Guo et al., 2008). Hence, anthocyanins and other flavonoids
are of high interest as food supplements due to their antioxidant qualities promoting numerous
health benefits (Konczak and Zhang, 2004; Davis et al., 2009). While their biosynthesis is well-
characterized, the cellular circumstances enabling accumulation of high concentrations of
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anthocyanins and specialized metabolites in general remain
elusive. Examples of high accumulation of specialized
metabolites in plants are dhurrin in Sorghum bicolor (30% of
dry mass) (Kojima et al., 1979; Halkier and Møller, 1989),
vanillin-glucoside in Vanilla planifolia (Brillouet et al., 2014;
Gallage et al., 2018) and anthocyanins in Lisianthus nigrescens
(up to 24% of dry mass) (Markham et al., 2004). In Catharanthus
roseus, flowers with Anthocyanic Vacuolar Inclusions (AVIs)
have an increased concentration of anthocyanin accumulation,
and exhibit a darker flower color (Markham et al., 2000; Deguchi
et al., 2020). The term AVI was coined by Markham et al.
(Markham et al., 2000) investigating the storage of acylated
anthocyanins as inclusions in Lisianthus (Eustoma
grandiflorum) and cyanidin and delphinidin 3,5-O-diglucosides
in carnation (Dyanthus caryophillus). Following this study,
presence and characteristics of AVIs were reported of in Vitis
vinifera (Conn et al., 2003; Mizuno et al., 2006; Conn et al., 2010),
rose (Gonnet, 2003), maize (Irani and Grotewold, 2005), apple
(Bae et al., 2006), morning glory (Morita et al., 2005), eggplant
(Umeda et al., 2006), lisianthus (Zhang et al., 2006; Chanoca et al.,
2015; Kallam et al., 2017), carnation (Okamura et al., 2013),
Rhabdothamnus solandri (Zhang H. et al., 2014), Catharanthus
roseus (Deguchi et al., 2020), sweet potato (Zhu et al., 2018),
petunia (van der Krol et al., 1993; Qi et al., 2013) and black rice
(Mackon et al., 2021). Despite of the unifying AVI term, their
morphology differs dramatically per plant species. The unified
nature of AVIs is further challenged by the variety of
experimental setups using different types of microscopy,
presence of membranes around AVIs in some species, and the
specific types of anthocyanin-modifications accumulating in
AVIs being investigated. Moreover, few of these studies
propose an extensive mechanism for the aggregation process
resulting in AVIs. In this review, we summarize previously
identified factors involved in AVI formation and address how
the vacuolar environment and solvent characteristics have
remained underexposed in studies of AVIs. Additionally, we
propose a link between the formation of certain types of AVIs
and the existence of a NADES phase as third intracellular phase
facilitating accumulation of natural products in concentrations
beyond their solubility in water and oil. The existence of such a
NADES phase provides a plausible explanation for the
condensation of natural products. Finally, we explore how
findings on AVI formation and NADES mixtures could
provide an entire new engineering avenue for improved
heterologous production of flavonoids.

1.1 Biosynthesis of Decorated
Anthocyanins Involved in Formation of
Anthocyanic Vacuolar Inclusions
The sequential steps leading to the biosynthesis of anthocyanins
have been well described in the last 3 decades, and several studies
indicate that this pathway is well conserved among plant species
(Holton and Cornish, 1995; Winkel-Shirley, 2001; Liu et al., 2018;
Yonekura-Sakakibara et al., 2019). Anthocyanins are part of the
flavonoid branch derived from the core phenylpropanoid
pathway where the amino acid phenylalanine is the only

precursor. A key branching point toward the flavonoid
pathway occurs in the conversion of coumaroyl-CoA into
chalcone and naringenin, mediated by chalcone synthase
(CHS) and chalcone isomerase (CHI Alternatively to
anthocyanins, naringenin can be converted into flavonols by
flavonol synthase (FLS) resulting in compounds such as
quercetin and kaempferol, which can function as co-pigments
of anthocyanins, or as floral UV-absorbing molecules attracting
nocturnal pollinators (Sheehan et al., 2016). Branching out
towards the anthocyanin biosynthetic pathway, flavanone-3-
hydroxylase (F3H) converts naringenin to dihydrokaempferol,
which is further hydroxylated in the B-ring by the action of
cytochrome P450s flavonoid 3′-hydroxylase (F3′H) and
flavonoid 3′,5′-hydroxylase (F3′5′H) to yield dihydroquercetin
and dihydromyricetin. These three dihydroflavonols constitute
the precursors that enter the final steps for anthocyanin
biosynthesis. They are converted into anthocyanidins by
consequently dihydroflavonol 4-reductase (DFR) and
anthocyanidin synthase (ANS) yielding pelargonidin, cyanidin
and delphinidin, depending on the hydroxylation of the B-ring,
which affects the color significantly (Figure 1). All naturally
synthesized anthocyanidins are glycosylated on the 3-position by
a cytosolic glycosyltransferase to increase stability, solubility and
facilitate transport to the vacuole (Zhang Y. et al., 2014; Alseekh
et al., 2020). Consequently, the compounds can be subjected to
various modifications on the hydroxyl groups of the backbone
structure (Figure 1), such as methylation, glycosylation, and
acylation. The complexity of anthocyanin decorations differs
widely among plant species from simple monoglucosides to
multiple substitutions of different sugars and acylations
(Provenzano et al., 2014). Additionally, the color of
anthocyanins is also influenced by post-biosynthetic factors.
These include the pH of the vacuole (Quattrocchio et al.,
2006), molecular stacking through self-association or of other
co-pigments (rev. in (Zhang Y. et al., 2014; Houghton et al.,
2021)), and interactions with metal ions and flavonoids or other
metabolites to form metal complexes, resulting in a blue color
(Yoshida et al., 2009; Schreiber et al., 2010; Schreiber et al., 2011;
Ito et al., 2019). There are no studies indicating that metal-
anthocyanin complexing is involved in the formation of AVIs.

Several studies have suggested a few decorations to be critical
for the condensation of anthocyanins in the vacuole. A pivotal
study proposed a model for molecular stacking of anthocyanins
by the folding of aromatic acyl groups over the C-ring of the
anthocyanin, favoring color stability and AVI formation (Kallam
et al., 2017; Houghton et al., 2021). This highlighted the role of
aromatic acylation in AVI formation. Constitutive expression of
two transcription factors from snapdragon in tobacco for
production of cyanidin 3-O-rutinoside, while consequent
expression of a p-coumaroyl coenzyme A (CoA)
acyltransferase from Arabidopsis (At3AT) resulted in AVI
formation. In-vitro, the extracted acylated anthocyanins
condensed into aggregated structures with solubility decreasing
under an increasing pH. The role of aromatic acylation was
supported by accumulation of AVIs in Delphinium Morning
Skies, containing anthocyanins with four benzoyl groups,
compared to the less-acylated anthocyanins in Delphinium
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King Arthur which displayed a uniform vacuolar anthocyanin
distribution (Kallam et al., 2017). The importance of acylation is
further supported in grape, where enrichment of acylated
anthocyanins correlates with presence of AVIs (Conn et al.,
2003; Mizuno et al., 2006), and p-coumaroylated anthocyanins
in vesicle-like AVIs in Arabidopsis. However, AVIs do not only
accumulate when anthocyanins are aromatically acylated, as in
Carnation AVIs accumulate in mutants unable to malonylate
(Okamura et al., 2013), and in Rhabdothamnus solandri AVIs
contain simpler anthocyanin-3-O-glucoside species (Zhang H.
et al., 2014). Additionally, a 5gt mutant unable to glycosylate at
the 5-position exhibited an increased accumulation of AVIs
(Pourcel et al., 2010). An NMR study showed that purified
anthocyanin-3-O-glucosides and coumaroylated 3-O-glucoside
anthocyanins self-associate in-vitro (Fernandes et al., 2015)
which could be an indication why in different plant species
AVIs are enriched in these type of anthocyanins. Based on
thermodynamic analysis both methylation and hydroxylation
of the anthocyanin B-ring was suggested to favor condensation
(Leydet et al., 2012). However, overexpression of a F3′5′H from
petunia in the tobacco cells accumulating cyanidin 3-O-
rutinoside resulted in production of delphinidin 3-O-

rutinoside but no AVI formation (Kallam et al., 2017). In
contrast, hydroxylation of the anthocyanin B-ring in Petunia
by constitutive expression of F3′5′H from Phalaenopsis (orchid)
resulted in accumulation of delphinidin and formation of visible
AVIs (Qi et al., 2013). There is clear indication of aromatic
acylation playing an important role in AVI formation. However,
not in all AVIs, which allows for speculation on other factors
involved in AVI formation.

1.2 Molecular Environment Facilitating
Anthocyanic Vacuolar Inclusions Formation
When comparing the morphology of AVIs from different species
(Figure 2), it is remarkable to see that they tend to group into a
limited subset of structural determinants. Most AVIs are
described as vesicle-like structures, where others have a round
but more granular morphology. In Arabidopsis and Lisianthus,
vesicle-shaped AVIs were enveloped by a membrane (Figure 2
(Chanoca et al., 2015)), making it likely similarly shaped AVIs
have a membrane as well. The absence of a membrane around
granular AVIs in Lisianthus and Tobacco indicates it may be
common for similarly shaped AVIs to be membrane-less

FIGURE 1 | From anthocyanin biosynthesis to storage as AVIs. Biosynthesis of anthocyanins occurs in the Endoplasmatic Reticulum (ER), where anthocyanidins
are later glycosylated to generate anthocyanins which are translocated to the vacuole. Anthocyanins are transported into the vacuole by tonoplast localized transport
proteins (MATE, ABC-transporters) potentially mediated by Glutathione-S-Transferase. Alternatively, anthocyanins are transported into the vacuole via vesicles from the
ER, Golgi or autophagy. Anthocyanin modification can occur in the cytosol or inside the vacuole. Formation of Anthocyanin Vacuolar Inclusions (AVIs) might be
mediated by the presence of Natural Deep Eutectic Solvents (NADES) composed by primary metabolites translocated to the vacuole. Box: Anthocyanidin backbone with
A, B and C ring, and six common sites for anthocyanin modifications marked with R.
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(Markham et al., 2000; Kallam et al., 2017). Interestingly, the
morphology of AVIs in Delphinium grandiflorum is radically
different (Figure 2 (Kallam et al., 2017)), as they form a type of
filamentous crystalline shape. Moreover, confocal micrographs of
the AVIs and FM1-43 stained tissue seem to indicate an
additional membrane-less separation of the region containing
the AVI from the rest of the vacuole (Kallam et al., 2017). Besides
the actual flavonoid composition inside the vacuole, the
molecular environment facilitating anthocyanin condensation
remains unexplored.

1.2.1 Proteinaceous Membraneless Compartments
Protein guided liquid-liquid phase separation is known from a
variety of molecular processes providing membraneless sub-
compartments preventing bulk equilibria (Banani et al., 2017;
Zheng et al., 2021). The presence of disordered regions or entirely
unstructured peptides facilitate such phase separation processes
and may be a key driver for AVI formation. The presence of
proteins in or around AVIs has been reported in Lisianthus
(Markham et al., 2000) and sweet potato (Nozue et al., 1995;
Nozue et al., 1997; Xu et al., 2001; Nozue et al., 2003). Markham
et al. describe finding “proteinaceous” material in Lisianthus
inclusions, however, there have not been any follow-up
publications on the exact type of protein present in AVIs in
these flowers (Markham et al., 2000). In sweet potato, expression

of a vacuolar protein (VP24) correlated with the accumulation of
anthocyanins in vacuoles, and immunocytochemical detection
showed the protein co-localized with AVIs (Nozue et al., 1995). A
proteomics study underlined accumulation of VP24 in purple
sweet potato, and proposed the protein could be involved in the
degradation of anthocyanin-glutathione, although anthocyanin-
glutathione conjugates have never been observed. The authors
also propose that VCaB42 and VP24 together mediate
microautophagy resulting in anthocyanin transport and
membrane-bound AVI formation (Wang S. et al., 2016).

1.2.2 Natural Deep Eutectics Solvents and the
Vacuolar Environment of Anthocyanic Vacuolar
Inclusions
Beyond oil and water, Natural Deep Eutectic Solvents (NADES)
may provide a third intracellular phase composed of
stoichiometric mixtures of common general metabolites, such
as amino acids, organic acids, sugars, and choline (Choi et al.,
2011). Inspired by nature, the high solubility of specialized
metabolites in NADES is being promoted as a “green”
alternative to commonly used organic solvents for extraction
of a broad diversity of specialized metabolites including the
flavonols quercetin and kaempferol, and anthocyanins (Dai
et al., 2013a; Dai et al., 2013b; Vanda et al., 2018). Moreover,
enzymes of the biosynthetic pathway of dhurrin were able to

FIGURE 2 |Diversity of AVI morphology across plant species. (A)Confocal micrographs of membrane bound AVIs in Arabidopsis (top, tt4) and Lisianthus (bottom),
membrane fluorescently marked with FM1-43 dye. (Chanoca et al., 2015). (B) AVIs found in Delphinium grandiflorium sepal cells (Kallam et al., 2017). (C) AVIs in
carnation (Markham et al., 2000) (D) AVIs in Lisianthus (Markham et al., 2000). (E) granular AVIs in Catharanthus roseus (Deguchi et al., 2020). (F) Vesicle-shaped AVIs
enriched in acylated anthocyanins visible in grapevine cells (Mizuno et al., 2006). (G) AVIs formation in tobacco after aromatic acylation of anthocyanins: top left and
right, AVIs visible in tobacco callus expressing Anthocyanin inducing transcription factors and acyl transferases from Arabidopsis and tomato (AT3AT and Sl3AT). Bottom
left, tobacco callus expressing anthocyanin inducing transcription factores and Petunia Flavonoid-3′5′-Hydroxylase and shows no AVIs. Bottom right, tobacco callus
expressing anthocyanin inducing transcription factors, Arabidopsis acyl transferase and Petunia Flavonoid-3′5′-Hydroxylase accumulates AVIs (Kallam et al., 2017).
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retain activity after incubation at various temperatures when
incubated in a NADES mixture of glucose and tartrate, as
opposed to glycerol or water (Knudsen et al., 2020).
Additionally, enzymes in NADES mixtures have shown
increased activity (Milano et al., 2017; Elgharbawy et al., 2018;
Elgharbawy et al., 2020; Panić et al., 2021; Thomas and Kayser,
2022). The increased stability and activity of enzymes, high
solubility of specialized metabolites, and omnipresence of the
constituents of NADES mixtures in all types of organisms are
indications that these types of mixtures could constitute an
important aspect of the natural environment in cells. However,
in-vivo proof of NADES mediated liquid-liquid phase-separation
is still lacking. Although experimental proof is missing, the
tonoplast membrane surrounding the vacuole contains a
plethora of general metabolite transporters involved in the
homeostasis of the cytosol (rev. in (Martinoia et al., 2012)),
allowing vacuolar accumulation of general metabolites (Davies
et al., 2006). Therefore, common NADES constituents such as
organic acids and sugars can accumulate in high concentrations
in the vacuole (Schulze et al., 2002; Lecourieux et al., 2014). The
pioneering work proposing a biological function of a NADES
phase in plant cells was based on analyses of general metabolites
and the interaction between sucrose and malic acid into liquid
crystals using NMR (Kim et al., 2010; Choi et al., 2011). Similar
NMR methods could be applied on species accumulating high
concentrations of specialized metabolites to identify NADES
mixtures involved in their solubilization. The development of
mass spectrometry imaging with subcellular resolution (Cornett
et al., 2007; Bjarnholt et al., 2014) can provide a key approach to
experimentally validate the existence of NADES sub-
compartments. Such compartments could easily be co-
localized with anthocyanins based on the inherent pigment
properties. Additionally, micro-syringe or laser dissection to
harvest sub-compartments facilitated by NADES mixtures
could be an option to isolate and identify the metabolites
involved in the solubilization, as has been proposed in a
previous review on NADES and natural products (Møller and
Laursen, 2021).

1.3 The Anthocyanin Traffic Routes From
Biosynthesis to Anthocyanic Vacuolar
Inclusions
Although biosynthesis occurs at the ER, the last decorations of
anthocyanins and other specialized metabolites such as
glycosylation and acylation may actually occur in the vacuole,
using different types of acyl-sugars as donors (Matsuba et al.,
2010; Sasaki et al., 2014; Orme et al., 2019; Yonekura-Sakakibara
et al., 2019). This indicates that specific “mature” anthocyanins
are selectively transported from the ER to the vacuole where the
final decorations may result in their condensation into AVIs.
Furthermore, this would provide a means to prevent aggregation
in the cytosol. Multiple studies have been published on
anthocyanin transport, yet still there is no consensus on the
exact mode of transport (Braidot et al., 2008; Grotewold and
Davies, 2008; Petrussa et al., 2013; Biała and Jasiński, 2018;
Pečenková et al., 2018; Kaur et al., 2021). Most likely,

anthocyanin transport may involve multiple routes depending
on the plant, tissue and developmental stage, and perhaps the
type of structural anthocyanin modification. One model proposes
anthocyanins to be transported in vesicles from the ER to the
vacuole, whereas the other model proposes a combined effort of
cytoplasmic and tonoplast localized transporter proteins
(Figure 1) (Zhao and Dixon, 2010). These models are not
mutually exclusive.

1.3.1 Selective Vacuolar Loading of Anthocyanins
Governed by Transport Mechanism
Two key transporters are involved in active transport of mature
anthocyanins across the tonoplast membrane. MATE-
transporter proteins belong to the multidrug/oligosaccharidyl-
lipid/polysaccharide (MOP) superfamily. These transporters
have been shown to transport acylated anthocyanins in grape
(Gomez et al., 2011), and malonylated anthocyanins in legume
(Zhao et al., 2011). MATE-transporters use the electrochemical
gradient of protons formed by tonoplast localized V-ATPases and
a H+-pyrophosphatase for secondary active transport (Gaxiola
et al., 2007; Gomez et al., 2009). ABC-transporters are involved in
the transportation of glycosylated anthocyanins to the vacuole
(Goodman et al., 2004; Francisco et al., 2013; Behrens et al., 2019).
These transporters are dependent on reduced glutathione (GSH)
provided by a glutathione-S-transferase (GST). Genes encoding
GSTs have been frequently linked to anthocyanin transport and
have been identified in many different plants such as Petunia
(AN9), Arabidopsis (TT19), and grape (VvGST1 and VvGST4)
(Alfenito et al., 1998; Mueller et al., 2000; Kitamura et al., 2004;
Conn et al., 2010). Usually, GSTs form conjugates with their
substrate, to facilitate transport across the tonoplast; however,
anthocyanin-GSH conjugates have never been found (Mueller
et al., 2000). The GST is therefore hypothesized to simply bind the
anthocyanin and “escort” it to the transporter localized in the
tonoplast with GSH. However, in Arabidopsis grown under
conditions to induce anthocyanin accumulation (Poustka
et al., 2007; Pourcel et al., 2010; Chanoca et al., 2015), the
prevalence of AVIs increased when ABC-transporters were
inhibited, as well as under glutathione depletion (Poustka
et al., 2007). Additionally, tt19 knock-out plants exhibited
cytoplasmic anthocyanin aggregates, as well as AVIs, but little
soluble vacuolar anthocyanins (Chanoca et al., 2015).

Alternative to active transport mediated by tonoplast localized
transporters, anthocyanins may enter the vacuole via vesicle
mediated transport (Zhang et al., 2006; Sun et al., 2012). In
this route, flavonoids synthesized on the cytosolic site of the ER
are transported to the lumen of the ER where they accumulate
into vesicle-like structures (Figure 1). These structures have been
observed to be associated with the formation of AVIs in the
vacuole (Zhang et al., 2006; Conn et al., 2010). While these
vesicles are visible by microscopy techniques, the evidence of
canonical vesicle transport proteins such as cargo, GTPases, VSRs
and SNAREs are still lacking (Conn et al., 2010; Zhao and Dixon,
2010). Therefore, it is hypothesized the anthocyanin vesicles are
engulfed by autophagosomes and delivered to the vacuole by
autophagy (macro andmicroautophagy) and stored asmembrane
surrounded AVIs (Figure 2) (Pourcel et al., 2010; Chanoca et al.,
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2015). An extensive study on AVI formation and trafficking
showed that AVIs formed after microautophagy, and that
anthocyanins in the ER did not aggregate (Chanoca et al.,
2015). This may imply the importance of vacuole-localised
modifications of anthocyanins and their transport to the
vacuole for the formation of anthocyanin biocondensates,
which could be of value for successful heterologous synthesis
of flavonoids.

2 DISCUSSION

Like many biological systems, the formation of AVIs is highly
complex andmay involve multiple processes ultimately leading to
a variety of morphological distinct anthocyanin condensates in
the vacuole. Here we highlight that hydroxylation of the B-ring, 3-
O-glycosylation and aromatic acylation may be key for molecular
stacking and condensation. The condensation process appears to
happen in the vacuole potentially driven by further modifications
catalyzed by vacuolar transferases. Some AVIs are membrane-less
and typically appear grainy in structure whereas a membrane
surrounds others, which display liquid droplet-like behavior such
as fusion and homogeneous distribution of the anthocyanins
(Figure 2). This morphology may be linked to the type of
transport (Figure 1). In previous studies on AVI formation,
the nature of the vacuolar environment of AVIs, and its role
in AVI formation has remained underexposed. Experimental
investigation of the vacuolar environment of AVIs is required
to characterize the molecular environment governing formation
of AVIs. Based on the in vitro effect of NADES mixture on
enzyme stability and productivity, and the extraordinary solvent
properties, we propose that NADES could provide the molecular
environment in (plant) cells allowing high catalytic efficiency of
enzymes, and high accumulation of specialized metabolites.

2.1 Synthetic Vacuolar Inclusions for
Heterologous Production of Complex
Flavonoids
Several flavonoids are in clinical trials as a potential treatment
against life-style and aging induced chronic inflammation
(Ginwala et al., 2019) and they are of interest as natural food
colorants to replace synthetic dyes (Oplatowska-Stachowiak
and Elliott, 2017). The bioactivity of these molecules depends
on highly specific decorations and they are typically present in
minute amounts in the natural plant sources. Synthesizing
flavonoids in a sustainable and cost-efficient way fits in an
agenda promoting a switch to sustainable circular synthesis of
natural products (Sørensen et al., 2022), harnessing the ability of
plants, as exhibited in apple calli (Wang N. et al., 2016) and
tobacco cell culture (Appelhagen et al., 2018), and scaling it to a
larger scale. Plant cell culture (Appelhagen et al., 2018) or
microbial micro-factories both constitute promising
sustainable ways of anthocyanin synthesis for commercial
purposes. Plant cell culture benefits from the native presence
of flavonoid and anthocyanin biosynthetic pathways in plants,
where the overexpression of specific transcription factors would

lead to the activation of these pathways. (Appelhagen et al.,
2018). However, biosynthesis of more specific and modified
anthocyanins would require many more steps to be introduced,
which minimizes the initial benefit of a system activated by
transcription factors. On the other hand, while heterologous
synthesis of anthocyanins in microbes would require the
introduction of entire pathways, they are cheaper to use, and
have been heavily optimized for heterologous production of
highly complex plant natural products (Luo et al., 2019;
Srinivasan and Smolke, 2020) and therefore offer a system,
that is, easier to scale-up. Within the last decades, studies have
reported heterologous production of anthocyanins in both
Escherichia coli and Saccharomyces cerevisiae [rev. in (Sunil
and Shetty, 2022)]. A recurring problem during heterologous
expression of biosynthetic pathways in microbial cells is
secretion into the growth-media before the finalized product
is synthesized, resulting in a mixture of intermediates and
products. The knowledge gathered on biosynthesis, transport
and storage of anthocyanins in plants could prove essential for
the quest to engineer the next generation of micro factories for
heterologous production of flavonoids in the vacuole of, e.g.,
yeast cells. Condensation into Synthetic Vacuolar Inclusions
(SVIs) by targeted modifications in combination with directed
transport within the yeast cells would prevent auto-toxicity and
enable accumulation of molar concentrations of metabolites, as
demonstrated in plant cells for storage of vanillin (Brillouet
et al., 2014; Gallage et al., 2018), dhurrin (Kojima et al., 1979;
Halkier and Møller, 1989), and anthocyanins (Markham et al.,
2004). Like organisms from other kingdoms, yeast accumulates
general metabolites required for formation of a NADES phase
(Choi et al., 2011). Therefore, the in-vivo application of NADES
derived SVIs in yeast cells might simply be achieved by
introducing a transport system designed by plants for
selective transport of anthocyanins with proper decorations
required for condensation. Overall, this could present an
entirely new approach to avoid auto-toxicity, leakage of non-
decorated compounds and prevent cross-talk with native
pathways. In summary, the importance of NADES in AVI
formation remains a topic in need of further research which
may become an essential stepping stone for future production of
flavonoids in heterologous systems.
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