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Abstract

Background: The genetic diversity and gene pool characteristics must be clarified for efficient genome-wide
association studies, genomic selection, and hybrid breeding. The aim of this study was to evaluate the genetic
structure of 509 wheat accessions representing registered varieties and advanced breeding lines via the high-
density genotyping-by-sequencing approach.

Results: More than 30% of 13,499 SNP markers representing 2162 clusters were mapped to genes, whereas 22.50%
of 26,369 silicoDArT markers overlapped with coding sequences and were linked in 3527 blocks. Regarding
hexaploidy, perfect sequence matches following BLAST searches were not sufficient for the unequivocal mapping
to unique loci. Moreover, allelic variations in homeologous loci interfered with heterozygosity calculations for some
markers. Analyses of the major genetic changes over the last 27 years revealed the selection pressure on orthologs
of the gibberellin biosynthesis-related GA2 gene and the senescence-associated SAG12 gene. A core collection
representing the wheat population was generated for preserving germplasm and optimizing breeding programs.
Conclusions: Our results confirmed considerable differences among wheat subgenomes A, B and D, with D

characterized by the lowest diversity but the highest LD. They revealed genomic regions that have been targeted
by breeding.
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Background

Common wheat (Triticum aestivum L.), which is an
important cereal crop grown worldwide on 220
million ha, accounts for 20% of the total calories con-
sumed by the global population. In Europe, wheat is
cultivated on 62 million ha, including 2.3 million ha in
Poland [1]. Various approaches are currently being
used to increase wheat yields to satisfy the expected
demand for food sources. Doubling the wheat yield by
2050 [2] is a challenging goal and will require the ap-
plication of the increased genetic diversity of landraces
well adapted to different stresses [3], synthetic wheat
varieties [4], and wild relatives [2]. One of the mile-
stones toward the development of high-yielding and
climate-smart ‘next generation varieties’ was the se-
quencing of the 17 Gb allohexaploid wheat (AABBDD)
genome [5, 6]. The wheat reference sequence was an-
notated with various genetic markers that were histor-
ically used for evaluating genetic resources to enhance
wheat production.

The genetic diversity of breeding materials is critical
for increasing wheat nutritional quality, yield, and yield
stability. Evaluating the extent of the genetic diversity
among adapted, elite germplasm may be useful for esti-
mating the genetic variability among segregating pro-
geny [7]. Elite varieties are recurrently used for the
subsequent breeding aimed at accumulating the optimal
combination of alleles. Thus, genetic variability may de-
crease, which may hinder efforts to further increase the
yield potential of wheat varieties.

Although hybrid breeding may be a viable option
for increasing wheat yields, it requires technological
advances that can modulate floral development and
architecture to enable outcrossing, the regulation of
male sterility, and fertility restoration [8, 9]. Previous
studies revealed that hybrids may increase yields by
10% across diverse environments and improve the
yield stability [10, 11]. Various strategies have been
developed for hybrid wheat production [9, 12], includ-
ing chemically induced male sterility [13], seed pro-
duction technology [9], and the application of the
tight linkage between the dominant dwarfism gene
Rht-DIc and Ms2 [12]. The Msl and Ms2 genes,
which were recently sequenced, are useful for the
large-scale, low-cost production of male-sterile female
lines necessary for hybrid wheat seed production [9,
12, 14]. Among the various hybridization systems
available for producing hybrid cultivar seeds, the most
promising seems to involve cytoplasmic male sterility
(CMS), which is based on the interaction between nu-
clear and mitochondrial genes, and has been widely
used for breeding various crops [15]. Irrespective of
the final system used for hybrid seed production, the
components should represent separate gene pools to
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ensure good combining ability. Information related to
the genetic diversity among adapted lines helps
breeders select suitable parents for hybridizations that
maximize heterosis and combine useful genes in an
adapted genetic background [16].

Different marker systems have been employed to
study the genetic diversity of wheat and to generate
information useful for wheat breeding and improve-
ment in national and international programs. Geno-
typing methods that evolved from various types of
PCR and hybridization-based markers as well as
methods for detecting single nucleotide polymor-
phisms (SNP) have exploited microarray genotyping
platforms and genotyping-by-sequencing (GBS). The
genetic diversity in wheat accessions was previously
assessed with single-locus markers, including simple
sequence repeats (SSR), or competitive allele-specific
PCR (KASP) [17-23].

On the basis of sample barcoding, next-generation
sequencing technology was adapted for the simultan-
eous discovery of SNPs and presence—absence varia-
tions (PAV) in multiple genotypes. Additionally, the
application of GBS technologies (e.g., DArTseq) is
considered to be the most cost-efficient method [24]
for genomics-based breeding [25-27]. Different collec-
tions of wheat landraces have been genotyped based
on GBS [28], lllumina 9K and 90K SNP arrays [29,
30], DArTseq [3, 31], exome capture [32], Illumina
GoldenGate [33], and the 35K Axiom WhtBrd-1
Array [34]. The high map density obtained with SNP
markers is particularly useful for assessing gene pool
variations and marker—trait associations as well as for
genomic selection, determining population structures,
and QTL mapping [35-38]. It is also relevant for ac-
curately selecting accessions for a core collection,
which is a limited set of accessions representing the
genetic diversity of a crop species and its wild rela-
tives, with minimal repetitiveness [39-42].

The mining of genetic diversity in modern cultivars
adapted to local climatic conditions is a continuous
process [20], and is a prerequisite for discerning pools of
genotypes and diverse parents for effective breeding
programs and the subsequent production of hybrid
seeds. In the present study, 509 European wheat culti-
vars and advanced breeding lines (Table S1) were exam-
ined regarding their genetic diversity and population
structure. The objectives of this study were to: a) assess
the genetic diversity in pre-breeding programs involving
modern genotypes from Europe and advanced breeding
lines; b) compare the distribution of SNPs among wheat
chromosomes; c) generate genotyping data for a
genome-wide association study (GWAS); and d) define a
core collection representative of the European gene pool
currently used for breeding.
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Results

Marker mapping and selection

Raw SNP and silicoDArT datasets contained 33,135 and
50,929 markers, respectively (Table 1). The mean
trimmed sequence used for mapping to the reference
genome was longer for SNP markers (Table 1). The frac-
tion of marker sequences mapped to the reference gen-
ome (under the given BLAST threshold criteria) was
greater for SNPs (86.4%) than for silicoDArTs (70.1%).
However, the mapping quality assessed according to the
number of BLAST hits per marker and the maximum
similarity score was lower for SNPs (Table 1, Fig. 1).
Additionally, 86.3 and 88.9% of the SNP and silicoDArT
markers were mapped uniquely (i.e., the maximum score
was recorded for a single location), respectively. A com-
parative analysis of the distribution of trimmed se-
quences classified by the sequence length and maximum
BLAST score indicated that most of the SNP and silico-
DArT markers between 20 and 50 bp had a maximum
score below 95%, which corresponded to decreased
specificity.

Only uniquely mapped markers were selected for add-
itional analyses. For filtering, the “MVF > 0.1” criterion
was applied to both marker sets, whereas the “call rate >
0.6” criterion was applied only to SNP markers. Regard-
ing the silicoDArTs, the minimum call rate was 0.76.
Following the filtering, 13,499 (40.7%) of the SNP
markers and 26,369 (51.8%) of the silicoDArT markers
were retained.

Characteristics of filtered datasets

The physical locations of 13,499 SNP and 26,369 silico-
DArT markers (Table 1) on wheat chromosomes (Fig. 2,
Table S2) indicate that they were not homogeneously
distributed among chromosomes, with distal chromo-
somal fragments covered more than internal, pericentro-
meric regions. However, silicoDArT markers were more
equally distributed than the SNPs, and the median dis-
tance between markers was more that 2-times greater
for SNP markers (171 kb) than for silicoDArT markers
(67 kb). The median distances between SNP markers
were 140, 220, and 420 kb in subgenomes A, B, and D,
respectively. The corresponding distances between sili-
coDArT markers were 66, 87, and 187 kb. Chromosomes
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from homeologous group 2 and chromosome 4D most
often had the lowest and highest median distances be-
tween markers, respectively (Table S2). The highest
quality markers mapped at a single position, with a score
of 100, constituted 25.7 and 38.8% of the SNP and silico-
DArT markers, respectively (Table S3).

The distributions of call rates for SNPs and silico-
DArTs (Fig. 3a) indicate that the minimum call rate was
lower for SNPs, but the mode of its distribution was
higher (0.99) than that for silicoDArTs (0.97). The aver-
age call rate for SNPs was significantly (p < 0.001) higher
in subgenome D (0.91) than in subgenomes A or B
(0.88, Fig. 3b). No accession was removed from the ana-
lysis because of a high fraction of missing genotypic
data. The distributions of PIC values for SNP and silico-
DArT markers were similar. Additionally, the mean PIC
values for both SNPs and silicoDArTs were significantly
higher in subgenomes A and B (0.37-0.38) than in sub-
genome D (0.35-0.36, p < 0.001; Fig. 3b). The PIC values
were especially low for chromosome 3D (Fig. S1A). The
heterozygosity of the SNP markers did not exceed 0.75,
with 10,310 markers exhibiting a heterozygosity of less
than 0.1 (Fig. 3a). Moreover, heterozygosity was not
equally distributed among wheat subgenomes. Specific-
ally, compared with subgenomes A and B, the heterozy-
gosity (0.19) was 2-times higher in subgenome D (Fig.
3b), especially in chromosome 4D (Fig. S1A).

Additional analyses were performed to clarify the in-
creased heterozygosity of the markers in subgenome D.
By analyzing the raw marker data (i.e., before selection),
we determined that the heterozygosity of hemizygous
markers was as high as 0.19-0.20 (Fig. 4a). Further ana-
lyses of the total number of hits for the sequences with
one best hit indicated that the SNPs from subgenome D
(ascribed based on the best hit) were mapped more fre-
quently in alternative loci than the SNPs from subge-
nomes A or B (chi-square test, p <0.001, Fig. 4b). For all
subgenomes, the heterozygosity of markers in the breed-
ing lines was slightly higher than that in the cultivars
(Fig. 4c).

Linkage disequilibrium
The relationship between LD values and physical dis-
tances between markers is presented in Fig. 5a. For both

Table 1 Marker dataset characteristics and differences in distributions (Mann-Whitney rank test)

Marker Number of markers Trimmed Maximum
type total mapped in reference genome selected (% sequerrce score per
- of total) length: marker,
mapped (% of total) mapped uniquely (% of mapped) mean, range

range (nt)

SNP 33,135 28,615 (86.4%) 24,691 (86.3%) 13,499 (40.7%) 60.79, 15-69 85.0-100

silicoDArT 50,929 35,719 (70.1%) 31,770 (88.9%) 26,369 (51.8%) 57.20, 15-69 83.3-100
p <0.001 p = 0.036

Significance level for difference between SNP and silicoDArT
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datasets, the expected LD (estimated by smoothing
splines) was greater than the 95th percentile of LD for
unlinked markers (random markers from different chro-
mosomes) for pairs of markers located at a distance of
up to approximately 5Mb. Therefore, for wheat ge-
nomes, 4.1% of loci collocated in a 5Mb region are in
LD. However, the mean LD in the 5 Mb region based on
both marker systems differed among the three wheat
subgenomes, and was lowest for subgenome D (Fig. 5b),
especially for chromosomes 4D and 6D (Fig. S1B).

The grouping of markers according to the LD (per-
formed to analyze the population structure) resulted in
clusters with more markers and longer clusters (in Mb)

in subgenomes A and B than in subgenome D (Fig. 5b,
Fig. S1B). A total of 2162 and 3527 clusters (i.e., groups
of markers assumed to be unlinked) were detected for
the SNP and silicoDArT markers, respectively. An ex-
ample of the SNP marker clusters for chromosome 1A is
presented in Fig. S2. Analyses of the LD between inter-
secting SNP and silicoDArT markers revealed some
pairs with a low LD resulting from non-unique mapping
or genotyping errors.

Annotation of markers
Of 13,499 SNP markers, 4389 (32.51%) were located in
genes. Of 26,369 silicoDArT markers, 5934 (22.50%) had
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trimmed sequences that overlapped with coding se-
quences. The frequencies of transitions (A > G, G > A,
C > T,and T > C) and transversions (other variants)
among SNPs were 63.17 and 36.83%, respectively. There
were significantly more transitions in subgenome A
(64.64%) than in subgenome D (61.08%) (Pearson chi-
square test, p = 0.013). A prediction of the effects of
3060 SNPs (23.27%) located in protein-coding regions
uncovered 33 (1.08%) variants with “HIGH” effects, 1493
(48.79%) with “LOW” (synonymous) effects, and 1534
(50.13%) with “MODERATE” (nonsynonymous) effects.
The corresponding frequencies of divisions between sub-
genomes A, B, and D are listed in Table S4. The SNPs
with LOW or MODERATE effects were more frequent
in subgenome D than in subgenomes A or B, whereas
the intergenic and intron variants (MODIFIERS) were
less frequent.

The computed kinship matrices were processed via a
PCoA, and the relationship between the polymorphism
of SNP markers and the variability represented by PCO1
and PCO2 was assessed by ANOVA. The computed F-
statistic values are visualized for SNPs located in coding
sequences (with predicted HIGH, LOW, or MODERATE
coding effects) in Fig. S3. The SNPs most related to
PCO1 were located predominantly in regions 2A: 702,
956,966-726,296,256 (four SNPs), 2B: 666,654,689-719,

453,838 (32 SNPs), and 2D: 563,009,137-595,508,041
(10 SNPs). The SNPs related to PCO2 were mainly in
regions 3A: 692,987,178-734,790,501 (three SNPs), 3D:
597,923,720-615,474,140 (nine SNPs), and 4A: 713,605,
603-742,585,853 (26 SNPs). There were no SNPs with
HIGH effects in these regions. The GO annotation and
overrepresentation analysis of the 48 genes harboring
SNPs related to PCO1 revealed several overrepresented
processes (i.e., response to auxin stimulus, response to
hormone stimulus, response to endogenous stimulus,
and response to organic substance) (genes: TraesCS2
D02G494600, TraesCS2B02G522500, TraesCS2A02G49
4300, and TraesCS2B02G522200). There were no over-
represented GO terms among the 55 genes harboring
SNPs related to PCO2.

The three SNPs with the largest F-statistic values for
PCO1 were identified in homeologous genes TraesC-
S2A02G463000, TraesCS2B02G484700, and TraesCS2D
02G463600 located on chromosomes 2A, 2B, and 2D,
respectively, according to the best hit method. However,
the presence of six allelic variants in three SNPs located
in a 53 bp marker sequence resulted in five haplotypes.
High heterozygosity (0.61%) in chromosome 2A and 2D
loci was identified because the same allelic variants over-
lapped between subgenomes, and in fact exhibited a
hemizygous nature (Table S5). This example indicates
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that regarding hexaploidy, exact matches between se-
quences in BLAST analyses are not sufficient for the un-
equivocal mapping to unique loci.

Population structure

The population structure visualized by a PCoA of the
kinship (coancestry coefficients) matrix of accessions de-
rived from SNP and silicoDArT markers revealed similar
features (Fig. 6). A bootstrap analysis uncovered six
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stable groups comprising 112 accessions and 397 geno-
types that were not grouped. The largest and most dis-
tinct group was group no. 5, which included 12 varieties
and 24 STH accessions, all originating from eastern
(Ukraine and Belarus), central (Hungary), and parts of
southern Europe (Table S1). The kinship coefficients
based on SNP and silicoDArT data were highly corre-
lated (r = 0.89), but the silicoDArT coefficients were
lower (Fig. 7a). The distribution of kinship coefficients
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revealed a higher mean internal kinship within varieties
(0.75) and PHR accessions (0.76) than within STH acces-
sions (0.74) (Mann-Whitney U test, p < 0.01; Fig. 7b).

To identify major genetic changes over the last 27
years, the available information regarding the year of
first registration for 263 varieties (Table S1) was treated
as a quantitative trait and used for a GWAS (Fig. S4).
The six most significant markers (Benjamini-Hochberg
corrected p value <0.002) associated with the registra-
tion year were identified from a set of 13,499 SNP
markers (Table 2). Two of the genes with polymor-
phisms related to the registration year were orthologs of
the GA2 gene involved in gibberellin biosynthesis, and a
third gene was identified as an ortholog of the SAGI2
senescence-associated gene of Arabidopsis thaliana. A
clear difference between the oldest (1992-1998) and
newest (2018-2019) varieties was observed regarding the
genotype at these six loci (Table 3). Functional KASP
markers have been proposed for four out of six SNPs
related to the registration year (Table S6). High GC
content and high hairpin stability prevented from
conversion of 1134008|F|0-29|CA and 1237275|F|0-
14|AG SNPs, respectively, into KASP markers.

Core collection

To create the core collection for a wheat variety subpop-
ulation, we split the varieties into 1, 2, ..., 277 clusters
via kinship-based hierarchical clustering. For each parti-
tion, we calculated the average within-group kinship
values assuming that a single-element group has a

similarity equal to 0. The maximum average kinship
value obtained for 47 clusters was considered to be the
optimal number of clusters (Fig. 8a). A core collection
was formed by taking one entry from each cluster,
resulting in a collection comprising 47 accessions (ap-
proximately 17% of the whole collection).

To select the representative variety from each cluster,
we analyzed the yield data for winter wheat varieties
generated in post-registration trials performed in years
2015-2018 at two levels of protection, A1 and A2 (Table
S7; data obtained from Research Center for Cultivar
Testing COBORU [43]). Among the wheat varieties
tested in these trials, 75 varieties were from the HYBRE
collection. The first level of protection, Al, corresponds
to common agricultural practices, whereas the second
one, A2, corresponds to intense agricultural practices
(e.g., increased nitrogen fertilization, foliar multi-
component preparations, and protection against lodging
and diseases). Accordingly, we formed two core collec-
tions corresponding to both agricultural practices. From
each cluster, we selected the accession with the highest
mean yield or a random accession if yield data were un-
available for the group. The results are presented in den-
drograms (Fig. S5) and as a list of the selected accessions
(Fig. S6A). In both core collections, the representative
variety was chosen based on the yield data for 30 clus-
ters. Additionally, 29 selections were common to Al and
A2. In one case, the difference between the data for Al
and A2 was due to cultivars Florus and Franz, with
mean yields differing in Al by 0.33% (of the yield of
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Table 2 Six SNP markers with polymorphisms associated with the year of first registration for varieties
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Marker ID

Chromosome Position Corrected

p value

Frequency Frequency Gene ID

REF

ALT

Translation

effect

GO annotation

A.
thaliana
ortholog

1134008[F|0- 2A
29CA

997149|F0-  2A
32[TC

1002630|F|0- 2D
15/GA

1204154F|o- Un
olcT

1015908|F|0- Un
35/GC

1237275[F/0- Un
14AG

6,420,
426

8,142,
744

12,332,
115

12,441,
675

236,255,
714

248,331,
142

0.001445

0.001036

0.001036

0.001036

0.001036

0.001464

042

040

073

047

0,30

0,59

0,58

0,60

027

053

0,70

041

TraesCS2A02G017300 MODIFIER

TraesC52D02G030100 LOW

TraesCSU02G008700

TraesCSU02G163600

TraesCSU02G169100

LOW

MODIFIER

LOW

GO:0016829 lyase
activity
G0:0000287
magnesium ion
binding
GO:0010333
terpene synthase
activity
GO:0046872 metal
jon binding
GO0:0000287
magnesium ion
binding
GO:0010333
terpene synthase
activity
GO:0016102
diterpenoid
biosynthetic
process

GO:0016829 lyase
activity
G0:0000287
magnesium ion
binding
GO:0010333
terpene synthase
activity
GO:0009686
gibberellin
biosynthetic
process
GO:0009570
chloroplast
stroma
GO:0046872 metal
ion binding
GO:0009899 ent-
kaurene synthase
activity
G0:0000287
magnesium ion
binding
GO:0010333
terpene synthase
activity
G0:0016102
diterpenoid
biosynthetic
process

GO:0008234
cysteine-type pep-
tidase activity
GO:0006508
proteolysis

GO:0016788
hydrolase activity,
acting on ester
bonds

GA2

GA2

SAG12
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Table 3 Genotypes of the oldest and newest varieties at six loci associated with the registration year

Variety Registration Marker ID

year 1134008|F|0- 997149|F|0- 1002630|F|0- 1204154[F|0-  1015908|F|0- 1237275|F|0-

29|CA 32|TC 15|GA o|cT 35|GC 14|AG

Kobra Plus 1992 c/c c/C G/A T G/C A/A
Roma 1992 /A c/C G/A T G/C A/A
Rysa 1998 cc c/C G/A /T G/C A/A
Plejada 2018 -/~ /T G/G c/C c/c G/G
Euforia 2018 A/A T G/G c/C c/C G/G
RGT 2018 -/~ T G/G c/C c/c G/G
Treffer
sY 2018 -/~ T G/G c/C c/c -/~
Orofino
Comandor 2018 A/A /T G/G c/C c/c G/G
Venega 2019 -/~ T G/G c/C c/C G/G

standards) and in A2 by -1.33%. Differences between
the distributions of kinship coefficients in the whole col-
lection and in the two core collections were not signifi-
cant (chi-square test, p = 0.298 and 0.303, Fig. S6B).

We also used yield data from post-registration trials
2015-2018 to assess the differences of yield potential be-
tween the old and the new varieties (Fig. 8b). The in-
creasing trend is disturbed by the presence of some
relatively low-yielding varieties, especially those regis-
tered in the years 2010 and 2015.

Discussion

Marker mapping and selection

In this study, GBS technology (DArTseq) was applied to
evaluate the genetic diversity and population structure
of 509 wheat accessions. This system represents a cost-
effective alternative to gene-based array platforms [24,

44]. Previous studies demonstrated that arrays adapted
for high-throughput genotyping of bread wheat offer res-
olutions ranging from 8 K to 550 K [29, 45-51].

The DArT system enables the detection of two
types of markers, namely SNPs and silicoDArT
markers representing PAVs. In the panel of 509
wheat accessions, we selected 37,868 markers com-
prising 13,499 (40.7% of all identified) and 26,369
(51.8% of all identified) non-redundant, high quality
SNPs and PAVs, respectively. The shift to PAV
markers in the SNP method may be due to the sensi-
tivity of the applied restriction enzymes (Pstl, Hpall,
and Hhal) to cytosine methylation and the destruc-
tion of some fragments by excess Taql endonuclease.
In the newly synthesized allopolyploid wheat, alter-
ations in methylation patterns affected about 13% of a
random set of genomic loci [52]. As a consequence of
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filtering, our SNP map was less dense and less spe-
cific than the PAV map.

For wheat, which has a large and complex genome, an
analysis of the LD decay enabling the evaluation of
marker density is especially important for high-quality
association mapping and marker-assisted selection [53—
55]. The map density is considered to be sufficient for
these purposes if the distance between markers is less
than the LD decay [36]. In the current study, the LD for
the SNP and silicoDArT markers decayed for about 5
Mb and the mean distance between markers ranged
from 66 kB (silicoDArTs in subgenome A) to 420 kB
(SNPs in subgenome D), indicating the map density was
sufficient. The 5 Mb LD decay means that 3400 equally
dispersed, non-redundant markers should be sufficient
to scan 17 Gb of the wheat genome. Nevertheless, 13,
499 and 26,369 SNPs and silicoDArTs were selected,
respectively.

Differences between subgenomes

The markers were unequally distributed among three
subgenomes, with fewer markers in subgenome D (16.1
and 19.7% of the SNPs and silicoDArTs, respectively).
An uneven distribution of markers among wheat subge-
nomes A, B, and D is a phenomenon that has been
previously reported. For example, in several studies, a
smaller proportion of markers was mapped to the “youn-
gest” subgenome (i.e., subgenome D) than to subge-
nomes A and B [22, 29, 56, 57]. An analysis of the
whole-genome resequencing data for eight wheat lines
identified 3.3 million SNPs, with 41% located in subge-
nome A, 49% in subgenome B, and 10% in subgenome
D [48]. A very similar marker distribution in homoeolo-
gous genomes (40% in subgenome A, 48% in subgenome
B, and 12% in subgenome D) was determined with the
280 K Affymetrix Axiom SNP array [51] as well as for
2114 wheat genes (41, 43, and 16% in subgenomes A, B,
and D, respectively) [58]. As suggested by Wirschum
et al. [59], these observations were because the array was
biased regarding polymorphic SNPs from different
genomes.

Relatively high variability in diversity among wheat
chromosomes and uneven diversity patterns along large
chromosomal segments may result from the synergy of
genetic drift and selection under limited gene flow, self-
pollination, and low effective recombination [46, 58, 60,
61]. The presence of structural rearrangements may also
shape chromosome-specific changes in genetic diversity.
An examination of evenly distributed KASP markers re-
sulted in the detection of 44 types of translocations in
42 of 58 wheat nested association mapping populations.
An earlier investigation uncovered more translocations
on the chromosomes of subgenome B than on the sub-
genome A chromosomes [22]. This is consistent with
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the finding that the proportions of loci in deletion-bin
maps that are incongruent with the linkage map loca-
tions are higher for subgenomes A and B (10.8 and
12.4%, respectively) than for subgenome D (8.8%) [58].
In the current study, the calculated median distances be-
tween silicoDArT markers were 66.4, 87.2, and 187.2 kb
in subgenomes A, B, and D, respectively, which corre-
sponded with the low saturation of chromosomes 4D
and 4B, thereby confirming the results described above.

The PIC values differed among subgenomes, with the
lowest values for subgenome D, for both the SNP and
silicoDArT markers mapped to the subgenome. This
may have resulted from the relatively few markers
mapped to subgenome D and their low polymorphism
due to the targeted selection of this subgenome. Rosyara
et al. [92] suggested that the current bread wheat subge-
nome D has limited genetic diversity resulting from a
few hybridization events involving Aegilops tauschii dur-
ing hexaploid wheat genome evolution, limited gene flow
from Ae. tauschii to bread wheat, and the intensive hu-
man selection of bread wheat, which further decreased
the diversity. The same relationships among the PIC
values for SNP markers mapped to wheat subgenomes
A, B, and D revealed in this study were detected in other
studies, including those by Chao et al. [62], Lopes et al.
[63], Liu et al. [64], and Eltaher et al. [57] as well as in a
study by Mir et al. [65] regarding SSRs.

The heterozygosity of SNP markers in the studied
population did not exceed 0.75. Moreover, the heterozy-
gosity of nearly a third of the markers was lower than
0.1. Similar values, expected for self-pollinating hexa-
ploid wheat, were reported by other researchers [48, 57,
66, 67]. The heterozygosity was not equally distributed
among three subgenomes, and substantially higher
values were calculated for subgenome D (2-fold higher
than the values for subgenomes A and B), especially for
chromosome 4D. Similarly, Liu et al. [55] described the
heterozygosity differences in subgenomes A, B, and D
among four populations (Chinese landraces, modern
Chinese cultivars, Pakistani landraces, and modern Paki-
stani cultivars), but the highest heterozygosity of
markers in subgenome D was observed only for modern
Chinese cultivars. In contrast, Bhatta et al. [66] did not
detect any significant differences among subgenomes A,
B, and D in terms of marker heterozygosity, both in bred
and synthetic hexaploid wheat lines. A case study involv-
ing three markers presented herein (Table S5) suggest
that increased heterozygosity is generally due to the fix-
ation of different alleles in homoeologous genomes,
resulting in hemizygosity. During mapping, marker se-
quences were compared with the reference genome
sequence of the primitive ‘Chinese Spring’ variety.
Therefore, the shift in the heterozygous markers anno-
tated with the best hit method to subgenome D suggests
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that most of the primitive alleles in modern wheat var-
ieties and lines are from subgenome D rather than from
subgenomes A and B.

In the present study, subgenome D was characterized
by the lowest LD, especially for silicoDArT markers on
chromosomes 4D and 6D, which, except for chromo-
some 1D, corresponded to marker saturation. Subge-
nome D reportedly exhibits high LD despite having the
fewest mapped markers [29, 60, 68, 69]. Thus, many
traits are inherited together in blocks (for a review, see
[61]). In an earlier study by Wang et al. [46], the LD
decayed 2- to 3-times more slowly in subgenome D than
in subgenomes A and B. Additionally, Akhunov et al.
[58] proved that in subgenome D, the average Wall's B
value, which is a measure of LD, is 0.81 and is signifi-
cantly higher than that in subgenomes A and B, indica-
tive of a greater LD among the subgenome D genes.
Furthermore, no significant differences in intra-locus LD
were detected among the chromosomes from subge-
nomes A and B. Chao et al. [60] explained that the
greater LD in wheat subgenome D than in subgenomes
A and B was due to the recent introgression and popula-
tion bottleneck accompanying the origin of hexaploid
wheat, which does not fully reflect our observations. The
low LD in subgenome D in our population may have
been a consequence of a relatively high heterozygosity in
this subgenome reflecting the actual hemizygous state of
some of the markers.

Annotation
In wheat, the three distinct subgenomes and an inter-
chromosomal gene duplication rate of 20 to 30%
strongly influence the annotation of markers [70, 71].
Thus, genotyping is complicated by the presence of
homoeologous and paralogous loci [29, 46, 48, 72]. In
terms of functional categorizations (GO slim terms),
there is no biased gene loss in any of the subgenomes,
and functional copies of genes encoding transcription
factors have been retained in all three subgenomes [73].
The exclusion of markers targeting homeoloci was pro-
posed to reliably allocate individual haplotypes into their
respective genomes [58]. However, some classes of genes
involved in energy harvesting, metabolism, and growth
may be associated with crop productivity [73]. Moreover,
the expression of all homeoalleles encoding the same or
similar functional proteins leads to the formation of
novel “hybrid” enzymes, resulting in greater physio-
logical versatility and wider adaptability [74]. Therefore,
markers based on homeoloci are important for a GWAS
and should be accepted after they are annotated based
on stringent threshold levels.

In the current study, only 23.1% of the SNPs (3129)
were located in coding regions. Although the percentage
of markers located within genes encoding proteins was
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smaller for silicoDArTs than for SNPs (22.50 and
32.51%, respectively), the total number of silicoDArT
markers was higher by as much as 1545. Only a few (ap-
proximately 1%) of the polymorphic SNPs detected in
coding regions were classified as highly affecting protein
functions. Most of the polymorphic SNP loci had low or
moderate effects. In an earlier study by Wang et al. [46]
involving a high-density genotyping array, the percent-
age of SNPs located in coding regions was 57.78%, which
is more than double the percentage determined in our
study. This discrepancy resulted from the selection of
gene-related sequences for the array. However, stringent
locus-specific annotations seem to be easier for GBS
technologies than for arrays because a simple cut-off for
eliminating markers with mismatches exceeding a single
nucleotide can be used. In the current study, the transi-
tions and transversions respectively accounted for 63
and 37% of the SNPs, which were consistent with the
corresponding percentages calculated by Wang et al.
[46] (72% transitions and 28% transversions), but the
proportion of synonymous mutations was lower (48.87%
vs 62.54%). Different panels of markers were most likely
targeted in these two assays.

Genetic diversity and population structure
The heterozygosity in the studied population was rela-
tively low, with a mean value of 0.11 and nearly 73% of
accessions with a heterozygosity value less than 0.1.
Generally, such values are typical for self-pollinated spe-
cies. However, the previously reported heterozygosity
values for hexaploid wheat (i.e., means for the whole
populations and individual subpopulations) are slightly
higher. In a study by Wang et al. [46], the mean hetero-
zygosity of a population comprising six common wheat
subpopulations representing different regions of origin
was slightly higher at 0.19, ranging from 0.15 to 0.24
among individual subpopulations. Similar results were
obtained by other researchers, including Eltaher et al
[57] and Kumar et al. [75]. The comparison between
subpopulations revealed differences. The heterozygosity
of advanced breeding lines was higher than that of culti-
vars. Theoretically, advanced breeding materials should
be highly homozygotic. A higher share of heterozygotes
may be due to their origin because they were usually de-
rived from interbreeding programs involving unrelated
parental components. Beneficial heterozygotic loci can
be preferentially selected, leading to their overrepresen-
tation, as suggested by Charlesworth and Willis [76].
The recorded differences may reflect some variability in
the breeding strategies applied by the two companies
that provided the study materials.

Among six subpopulations, group no. 5 was the most
distinct and consisted of accessions from eastern, cen-
tral, and southern Europe. Phenotypically, they are early,
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winter cold-hardy forms, with relatively long straw and
lower yield potentials, and are well adapted to the con-
tinental climate conditions. Despite the weak yield po-
tential, some of the group no. 5 accessions, distinct from
most of the contemporary wheat Polish breeding mate-
rials, may be valuable resources for agronomically desir-
able traits.

Population structure versus variety age

Of 13,499 SNPs included in a GWAS, six markers
clearly distinguished the oldest (1992-1998) and newest
(2018-2019) varieties. Two of these markers were lo-
cated in GA2 genes, whereas a third marker was de-
tected in the SAG2 gene, with the annotation being
based on orthology to A. thaliana genes. The GA2 gene
affects the gibberellin biosynthesis pathway by mediating
the conversion of ent-copalyl diphosphate to the gibber-
ellin precursor ent-kaur-16-ene [77]. Gibberellins are
plant growth-promoting hormones that influence vari-
ous developmental processes, including stem elongation,
lodging tendency, seed germination, floral induction
[78], and dormancy via ABA-GA crosstalk [79], ultim-
ately affecting yield [80]. The senescence-associated gene
SAG2, which encodes a cysteine protease, is responsible
for developmental senescence-specific cell death during
apoptosis, heavy metal detoxification, and the hypersen-
sitive response [77]. Delays in leaf senescence have re-
cently been reported to impact wheat growth and yield
[81]. Because of their multiple functions, both genes
were likely unintentionally subjected to selection in the
process of breeding for yield improvement. The differ-
ences in yielding of the oldest and newest varieties were
visible in the studied population, although they were not
as large as the differences demonstrated in [82], primar-
ily because we used data from contemporary experi-
ments, whereas in [82] historical data, obtained under
different management, were used. Notably, the two
groups of old and new varieties included in this study
differ inter alia regarding plant height and lodging, with
values in the oldest and the newest varieties of 86.7 and
7.6 and 102.2 and 6.5, respectively [83]. Moreover, the
oldest varieties were heterozygotes when the newest
ones — homozygotes, in one out of two markers located
in the GA2 genes (1002630|F|0-15| GA) and the marker
located in the SAG2 gene (1015908|F|0-35|GC). Due to
application of pooling of plant material for genotyping,
this may be the effect of heterogeneity of individuals.
However, homozygosity can be of great help when creat-
ing markers for MAS.

Core collection

An important objective of this study was to construct a
core collection representative of the structure of the
whole collection. Core collections are crucial for gene
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bank management and they are useful for elucidating
the diversity within a population [84]. As described by
Odong et al. [42], three types of core collections may be
formed. First, the whole collection is represented by the
most similar accessions, whereas the second type charac-
terizes the extreme accessions of the whole collection
and the third type represents the distribution of the ac-
cessions in the original set. The first core collection type
is ideally a uniform representation of the original genetic
content, unlike the second type, which includes entries
that are as diverse as possible, and the third type, which
provides an overview of the composition of the whole
collection. We decided to generate the third type of core
collection. It consisted of 47 accessions, representing ap-
proximately 17% of the whole collection. Thus, our col-
lection satisfies the condition set by van Hintum [85]
that the core collection should comprise between 5 and
20% of the base collection. Additionally, a comparison of
the distributions of kinship coefficients in the whole col-
lection and in the core collections confirmed that our re-
sults satisfy the requirements for the third core
collection type described by Odong et al. [42]. The final
step for creating a core collection was performed based
on the available yield data. The two versions of the core
collection corresponding to two agricultural practices
were very similar, implying that the genotype x environ-
ment interaction minimally influenced our approach.
Our core collection may be applied as a testing panel
(e.g., to evaluate newly developed genetic markers).

Conclusions

In this study, a GBS method was used to analyze the
genetic diversity and population structure of various
European winter wheat cultivars and advanced breeding
lines. Because of their quality and regardless of the rela-
tively few markers located in coding sequences, the
mapped populations may be used for association map-
ping, which will serve as the basis for the marker-
assisted genomic selection of agronomically important
traits. Our results are consistent with those of previous
investigations that revealed considerable differences
among subgenomes, especially subgenome D, which is
characterized by the lowest diversity but the highest LD
among the three wheat subgenomes. To the best of our
knowledge, this is the first study to identify wheat genes
with polymorphisms significantly associated with the
year of variety registration. The presented data may be
useful for revealing the specific genomic regions that
have been targeted during breeding.

The core collection of wheat cultivars representative of
the genetic diversity of the currently grown European
wheat germplasm described herein may help breeders to
increase the genetic diversity of wheat and develop het-
erotic pools to more efficiently exploit heterosis. It may
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also serve as a testing panel for developing new marker
systems and support the management of wheat genetic
resources.

Methods

Plant materials

This study was completed with a modern wheat gene
pool comprising 277 European varieties that were regis-
tered mainly in Germany, Poland, and the United King-
dom during the last 27 years. These varieties were
reproduced and delivered by the company Poznan Plant
Breeding. Advanced breeding lines were represented by
232 accessions from the ongoing programs of the Plant
Breeding Strzelce (STH) and Poznan Plant Breeding
(PHR) companies (Table S1). Information regarding cul-
tivars was obtained from the EU database of registered
plant varieties.

Genotyping

For each genotype, DNA was isolated from 15 to 20
bulked 2-week-old seedlings as described by Milligan
[86]. The DNA concentration and purity were deter-
mined with a NanoDrop spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA), whereas DNA
quality was assessed by 1.5% agarose gel electrophoresis.
The DNA was stored at — 20 °C and diluted to a working
concentration of 50ng/uL for the subsequent wheat
DArTseq 1.0 genotyping, which was completed by Di-
versity Arrays Technology (Bruce, Australia).

Data analysis

The processing of the DArTseq data produced two data-
sets. First, the SNPs were recorded as codominant
markers and were coded as X/Y (ie., A, C, G, or T) to
denote variant alleles at specific loci in homologous
chromosomes. The second dataset contained dominant
silicoDArT markers resulting from genetic and epigen-
etic variations at restriction sites during the preparation
of libraries. The silicoDArT data represented PAVs and
were coded as variants O or 1, with 1 representing the
homozygous variant present/present or the heterozygous
variant present/absent. This enabled the application of
the same principles for determining marker parameters,
including the variant frequency, minor variant frequency
(MVEF), and polymorphism information content (PIC),
for the SNPs and silicoDArTs.

The BLAST algorithm (version ncbi-blast 2.7.1.) was
used to map the trimmed marker sequences to the
IWGSC RefSeq (version 1.0) reference genome (Ensembl
Plants), with an e-value of 10~°. The linkage disequilib-
rium (LD) for marker pairs was estimated as r* values
for fitting a linear regression, with one marker used as
the response and another one used as the regressor, and
principal component scores used to represent the
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genetic relatedness of accessions. The hierarchical clus-
tering of markers was based on the LD matrix with a
group average (UPGMA) agglomerative method (in R
software). Kinship (coancestry) between accessions was
estimated with the Dice similarity coefficients computed
from marker data. The kinship coefficient matrix was
processed via a principal coordinate analysis (PCoA) and
used for the hierarchical clustering (complete link
method) to visualize the population structure. The
Mann-Whitney rank test was used to compare distribu-
tions of kinship coefficients between subpopulations.
The Ensembl Plants Variant Effect Predictor [87] was
applied to annotate SNPs with possible protein transla-
tion effects. The association between variety registration
year and SNPs was analyzed based on the mixed linear
model with the population structure estimated by an
eigenanalysis (principal component analysis, PCO) of the
matrix of coancestry coefficients estimated from SNP
data [88]. The enrichment of Gene Ontology (GO) terms
was analyzed with an online tool at Geneontology.org.
All analyses not attributed above to R were completed
with Genstat 19 [89].

Marker conversion

Extended sequences adjacent to SNPs selected for con-
version to functional markers were retrieved from URGI
database [90] and KASP markers were designed with
PolyMarker [91].
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