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Sequencing data from different types of cancers including melanomas demonstrate that
tumors with high mutational loads are more likely to respond to immune checkpoint
blockade (ICB) therapies. We have previously shown that low-dose intratumoral injection
of the chemotherapeutic DNA damaging drug cisplatin activates intrinsic mutagenic DNA
damage tolerance pathway, and when combined with ICB regimen leads to tumor
regression in the mouse YUMM1.7 melanoma model. We now report that tumors
generated with an in vitro cisplatin-mutagenized YUMM1.7 clone (YUMM1.7-CM)
regress in response to ICB, while an identical ICB regimen alone fails to suppress
growth of tumors generated with the parental YUMM1.7 cells. Regressing YUMM1.7-
CM tumors show greater infiltration of CD8 T lymphocytes, higher granzyme B
expression, and higher tumoral cell death. Similarly, ex-vivo, immune cells isolated from
YUMM1.7-CM tumors-draining lymph nodes (TDLNs) co-incubated with cultured
YUMM1.7-CM cells, eliminate the tumor cells more efficiently than immune cells
isolated from TDLNs of YUMM1.7 tumor-bearing mice. Collectively, our findings show
that in vitro induced cisplatin mutations potentiate the antitumor immune response and
ICB efficacy, akin to tumor regression achieved in the parental YUMM1.7 model by ICB
administered in conjunction with intratumoral cisplatin injection. Hence, our data uphold
the role of tumoral mutation burden in improving immune surveillance and response to
ICB, suggesting a path for expanding the range of patients benefiting from ICB therapy.
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INTRODUCTION

Differences in tumoral mutational burden have emerged as
predictors of clinical outcomes of immune checkpoint blockade
(ICB) therapies across different cancers (1, 2). This notion has been
informed by large data sets which demonstrated that mutations
acquired during tumorigenesis can be translated into neoantigens
that elicit antitumor immune responses, which subsequently are
bolstered by ICB (3, 4). In view of these findings we reasoned that
intratumoral delivery of low-dose DNA damaging agent calibrated
to activate the tumoralmutagenic DNA damage tolerance pathway
(5, 6), without causing extensive tumoral cell death, might be a
productive route to increase tumoral neoantigen formation and
reinvigorate the antitumor immune response (2, 7–10). Activation
of the DNA damage tolerance pathway involves recruitment of
error-prone translesion synthesis (TLS) DNA polymerases (6, 11).
Using the YUMM1.7 melanoma mouse model (12), we have
previously demonstrated that tumoral TLS polymerases are
transiently elevated following intratumoral delivery of the DNA
damaging chemotherapeutic drug, cisplatin (13) and that the anti-
CTLA-4/anti-PD-1 ICB regimen(14, 15), given inconjunctionwith
intratumoral cisplatin, leads to complete tumor regression in the
mouse (13). These findings are consistent with the notion that low-
dose chemotherapeutic treatments that increase tumoral mutation
burden contribute to formation of immunogenic neoantigens and
thereby provide a plausible path for enhancing the host’s antitumor
immune response and improving immunotherapy outcomes.
Notably, this targeted approach affords an important advantage
over conventional chemotherapy, because tightly calibrated
intratumoral delivery of a chemotherapeutic drug allows for
significant dose reduction limiting debilitating generalized
toxicity, while achieving durable desired antitumor effect via
revitalized immune response.

To probe further the involvement of cisplatin-induced
mutagenesis in achieving the desired outcomes of combination
treatments, we asked in the current study whether this scenario
could be recapitulated with the in vitro cisplatin-mutagenized
YUMM1.7-CM clone-generated tumors. We found that
the YUMM1.7-CM clone produced by in vitro exposure of
YUMM1.7 cells to low concentration of cisplatin, acquired non-
synonymous mutations, as well as phenotypic changes, including
increased cell dimensions and reduced doubling time. Notably,
compared to parental YUMM1.7 cells, the mutagenized
YUMM1.7-CM cells were more efficiently eliminated when co-
cultured ex-vivo with immune cells isolated from the YUMM1.7-
CMtumors draining lymphnodes.We also detectedhigher levels of
infiltrating CD8T lymphocyteswith higher granzyme B expression
in the YUMM1.7-CM generated tumors and most importantly,
suppression of tumor growth in response to anti-CTLA-4/anti-PD-
1 checkpoint blockade regimen. Considered together, our findings
show that the in vitro cisplatin-mutagenized YUMM1.7-CM
melanoma clone-generated tumors respond to ICB regimen
similarly to the parental YUMM1.7-generated tumors, subjected
in vivo to intratumoral cisplatin injection, supporting a pivotal role
for increases in tumoral mutational loads in augmentation of the
host’s antitumor immune response.
Frontiers in Oncology | www.frontiersin.org 2
METHODS

Cell Culture and Cisplatin Exposure
YUMM1.7mousemelanomacells (12)werepurchased fromATCC
(ATCC CRL-3362) and cultured in DMEM/F12 (Invitrogen
#11320033) with 10% FBS (ATCC #30-2020), 1% non-essential
amino acid (Gibco #11440-076), and 1% penicillin/streptomycin.
Cells were maintained at confluence below 85% and were routinely
inspected forMycoplasma (LonzaMycoAlert Kit #LT07-118) as we
described (16). YUMM1.7 cells exposure to 0.2 µM cisplatin was
initiated 24 h post seeding; cells were cultured in the presence of
cisplatin for 5 weeks with routine refeeding by replacement of half
mediumvolume twice/weekandsplittingat 1:2asneeded.Extended
cisplatin exposure caused cell flatteningwith progressive slowing of
proliferation that came to near halt by 5 weeks. At that time, cells
were harvested, seeded in cisplatin-free medium at ~1 cell/well in
96-well plates and cultured for 12 days. Wells with single clones
were identified, collected, and expanded. Selected clones were
passaged, and doubling times determined. A single YUMM1.7-
Cisplatin Mutagenized (YUMM1.7-CM) clone was chosen for
subsequent studies.

Whole Exome Sequencing
and Mutation Mapping
Library construction and sequencing: Genomic DNA was
isolated from YUMM1.7 and YUMM1.7-CM melanoma cells
using the Easy-DNA™ kit (K1800-01, Invitrogen). DNA was
fragmented to less than 500 base pairs with a Covaris S220
instrument. Approximately 50 ng was used to prepare
sequencing libraries with the NEBNext Ultra II DNA library
kit (NEB #E7103, New England BioLabs) following the
manufacturer’s protocol. Exome capture was performed with
the Twist Biosciences (San Francisco, CA, USA) Mouse
Exome Panel kit (#102035) following the suggested protocol.
Briefly, ~400 ng of each library was pooled, dried in a vacuum
concentrator, and dissolved in hybridization mix including the
biotinylated exome capture probes, denatured, and incubated at
70°C for 16 h. Paramagnetic streptavidin beads were used to
capture the hybridized material, the beads were then washed and
placed directly into a PCR reaction to amplify the libraries.
Following purification, the libraries were quantified and
sequenced on NextSeq 550 Illumina System with the High
Output flow cell and a 40-base paired-end protocol. Reads
were demultiplexed and converted to FASTQ format with
Illumina’s bcl2fast2 software. YUMM1.7 DNA had 242 million
read pairs and YUMM1.7-CE 184 million (data are available at
NCBI Bioproject PRJNA734588). Variant analysis: The Broad
Institute Best Practices protocols for variant discovery using the
tumor-normal methods, with the mutated cell line taking the
place of the tumor sample, were followed (17). Reads were
aligned to the mouse mm10 reference genome with the
Burrows-Wheeler Aligner (BWA) alignment program (18),
version 0.7.17, with the BWA-backtrack algorithm commands.
The resulting BAM format files were pre-processed for variant
discovery with the MarkDuplicates and BaseRecalibrator
functions of GATK, version 4.1.9.0, with default parameters.
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The processed BAM files were input into the Mutect2 software
with YUMM1.7 as the normal sample. The output variant call
format (VCF) file was filtered with the FilterMutectCalls
function with parameters –min-allele-fraction 0.15 and –
unique-alt-read-count 3. Variants found in exon coding
regions were inspected for amino acid changes.

In Vivo Mouse Experiments
All mouse handling procedures were approved by Institutional
Animal Care and Use Committee of the University of Texas
Medical Branch, Galveston, Texas. Female 8–10-week-old
C57BL/6 mice were purchased from Envigo (USA) and
acclimated for 2 weeks. YUMM1.7 or YUMM1.7-CM tumors
were generated by subcutaneous inoculation of 5 × 104 cells
suspended in a 2:1 PBS/solubilized Matrigel Membrane Matrix
(#354234 Corning) into upper left hindlimb as we described (13).
Tumor dimensions were recorded 3×/week using vernier calipers
and the formula: volume = ([length] × [width]2)/2 to calculate
the volume (19). Mice were IP injected with anti-PD-1 (clone
RMP1-14, BE0146) and anti-CTLA-4 (clone 9H10 BE0131)
antibodies (9 mg/kg) or with the corresponding isotype sera
(BioXCell, Lebanon, NH, USA) 3×/week starting on day 10 post
inoculation (20).

Lymph Node Collection and Immune Cell
Isolation for Co-Cultures
Inguinal lymph nodes (LNs) were excised, weighed, and
processed on ice for cell isolation: LNs were placed in 70 µm
nylon mesh cell strainers propped over collection tubes. Cells
were released by applying gentle pressure with the flat end of a
syringe plunger, passed through the mesh, and rinsed with 3 ml
ice-cold PBS. The dispersed cells were counted based on trypan
blue exclusion and typically yielded 106 intact cells/mg LN tissue.
Isolated cells were collected by 300 g/8 min centrifugation at 4°C,
mixed with freshly collected Yumm1.7 or YUMM1.7-CM cells at
a ratio of 1:32 (target:effector) and seeded in black-wall 96-well
plates. Typically, 104 YUMM1.7 or YUMM1.7-CM cells were
mixed with 3.2 × 10500 lymph node cells and seeded in triplicate
in 50 µg/ml Poly-L-lysine coated wells for 18-h co-incubation.

Immunofluorescent Staining of Cultured
Cells and Tumoral Cryosections
YUMM1.7 and YUMM1.7-CM cells were cultured in black-wall
96-well plates. After treatments, cells were fixed with 50 µl 4%
PFA (20 min at 25°C), permeabilized/blocked for 30 min in 50 µl
5% goat serum/0.1% Triton X-100 in PBS, and incubated 2 h
with primary antibodies (listed below). Following three washes
with PBS/0.1% Tween-20, respective secondary antibodies
(1:1,500 Alexa-488/594, Life Technologies) were applied for
30 min. For immunofluorescent analyses of tumoral sections,
tumors were excised, snap frozen, embedded in Tissue-Tek
OCT (#4583, Sakura Finetek), and cryo-sectioned at 10 mm.
Cryosections were permeabilized by heat in citrate buffer (Dako
S1699) for 18 min, blocked in PBS with 10% goat serum/0.3M
glycine 45 min, and incubated 2 h with primary antibodies in PBS/
1.5% goat serum: rat anti-CD8a (1:100, #100702, Biolegend), rat
Granzyme B (1:100, ##488898-82, Invitrogen), rabbit Ki-67 (1:200,
Frontiers in Oncology | www.frontiersin.org 3
D3B5, #12202S, Cell Signaling), or rabbit Pfkfb3 (1:300, ab135820,
Abcam). After washes with PBS/0.3% Tween-20, sections were
incubated 45 min with anti-rabbit or anti-rat IgG dye conjugated
antibodies Alexa-488/594 (Life Technologies), mounted with anti-
fade reagent with DAPI, and observed with 10 or 40× objective
using Olympus IX71 microscope equipped with QIC-F-M-12-C
cooled digital camera (QImaging, Surrey, BC) with QCapture Pro
(QImaging) software.
EdU Incorporation and Detection
Tumoral cell proliferation was visualized by incorporation of the
thymidine analog, 5-ethynyl-2’-deoxyuridine (EdU) (#146186,
Abcam) into newly synthesized DNA. EdU was prepared in 0.9%
NaCl and given IP at 50 mg/kg, 24 h prior to euthanasia. Tumors
were excised and cryosections prepared as described above. For
EdU fluorescence detection, the Click-IT™ EdU Alexa Fluor™-
azide 594 Imaging Kit (Invitrogen, #C10339) was used per
manufacturer’s protocol (21) and as we described (22). For
double fluorescence detection, immunostaining was done
ahead of applying the EdU detection solution (1:2,000) for
30 min/25°C in the dark. The number of positive cells/mm2

was quantified for four randomly selected fields in each section
using ImageJ and mean value was calculated from four
non-consecutive sections per mouse (n = 3); data are reported
as mean ± SEM. Fluorescence was captured on Olympus IX71
fluorescent with QIC-F-M-12-C cooled digital camera. For
in vitro studies, prior to co-culturing, YUMM1.7 and
YUMM1.7-CM cells were pre-incubated with 10 µM EdU for
24 h to allow for EdU incorporation. After incubation cells were
harvested, washed, mixed with LNs cells at 1:32 ratio, and plated
in 96-well black wall plates for 18-h co-incubation. To visualize
EdU positive cells, the Click-IT™ EdU Alexa Fluor™-azide 594
detection Kit (Invitrogen, #C10339) was used (as described
above). Following three washes, in-well EdU fluorescence was
read using the Tecan FL200 plate reader with Magellan™

software (Tecan, San Jose, CA, USA). Bright field/fluorescence
images of co-cultures were captured and EdU positive nuclei
were counted as we previously described (22). EdU positive
nuclei were counted in randomly selected four fields per well for
three co-incubation experiments; data are reported as mean ± SEM.
TUNEL Assay
Tumoral cell death was detected in situ using the terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
kit (#11684795910, Roche). Briefly, cryopreserved tissue sections
were permeabilized with 0.1% TritonX-100 in 0.1% sodium citrate
solution for 8 min, washed with PBS, and incubated with reaction
solution in humidified chamber for 1 h in the dark and mounted
with Prolong Diamond anti-fade with DAPI; images were captured
with Olympus IX71 fluorescent microscope.
Real-Time (RT) qPCR Determination
of mRNA Levels
The RNeasy plus mini kit (#74 134 Qiagen, Valencia, CA, USA)
was used. Reverse transcription was with iScript RT supermix
July 2021 | Volume 11 | Article 701968
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(#1708840 Bio-Rad) and RT-qPCR analyses with the CFX96
Real-Time System (Bio-Rad, USA). 18s mRNA was used as
reference and relative expression levels were calculated using
the formula: Relative expression = 2 [-(CT gene of interest − CT internal

control)] according to Schmittigen & Litvak (23). PCR reactions
were done in triplicate with SSO FAST EvaGreen® supermix
(#1725201 Bio-Rad). Cycling program was 95°C for 2 min,
40 cycles of two-step incubation, initially at 95°C 5 s then 15 s
at 55°C followed by melting curve analysis. Primers are listed in
Supplemental Table S1.

Statistical Analysis
Data are provided as mean ± SEM calculated from three to four
independent biological experiments, as stated. Unpaired two-
tailed Student’s t-test was used to compare the means between
groups. P value <0.05 was considered statistically significant.
MegaStat® software for Excel was used.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Features of YUMM1.7-CM Clone
Generated by In Vitro Exposure
to Cisplatin
Phenotypic changes observed in cultured cisplatin-mutagenized
YUMM1.7-CM cells included increased cell size and reduced
doubling time (Figure 1A and Table 1). The changes
were visualized by nuclear DAPI stain and cytosolic
immunofluorescence of the ubiquitous glycolytic enzyme,
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3)
(Figure 1A). An approximately 25% reduction in cell doubling
time was detected (Table 1). Interestingly, higher baseline
expression of DNA repair proteins, including the base excision
repair DNA polymerase beta, which is involved in oxidative DNA
damage repair (24), the DNA damage recognition protein Xpa (25,
26), as well as the transcriptionally regulated error-prone
A
B

C

FIGURE 1 | Properties of the cisplatin-mutagenized YUMM1.7-CM clone. (A) Representative micrographs show increased cellular dimensions of YUMM1.7-CM
compared to parental YUMM1.7 cells. Cells are observed by immunofluorescence of the cytosolic glycolytic enzyme Pfkfb3 (green); nuclei stain blue with DAPI; scale
bar, 10 µm. (B) Comparison of baseline expression of genes involved in DNA replication and repair. RNA isolated from three independent cultures of YUMM1.7 and
YUMM1.7-CM cells was used to obtain mean ± SEM values; unpaired Student’s two-tailed t-test; *p < 0.05. (C) Cisplatin mutational signature: graphical
representation of cisplatin-induced point mutations categorized by the type of base substitutions and synonymous and non-synonymous mutations.
TABLE 1 | Distinctive features of mutagenized YUMM1.7-CM cells.

YUMM1.7 YUMM1.7-CM

Nuclear metrics mean ± SD (median) mean ± SD (median) P value
Radius (µm) 8.03 ± 1.9 (7.8) 9.92 ± 1.5* (9.8) 0.0015
Perimeter (µm) 50.1 ± 11.8 (49) 62.3 ± 9.3* (61) 0.0015
Surface Area (µm2) 212 ± 44 (189) 316 ± 58* (298) 0.0038

Doubling time (h) 18.2 ± 1.4 22.6 ± 1.6* 0.035
July 2021 | Volume 11 | Article
Measurements were obtained from four independent YUMM1.7 or Yumm1.7-CM cultures; *different from YUMM1.7; Student’s two-tailed unpaired t-test. Radius measurement = (short
radius + long radius)/2.
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translesion synthesis (TLS) DNA polymerase kappa (27), was
observed (Figure 1B). The mutational signature of in vitro
cisplatin exposure was determined from whole exome sequencing
of parental YUMM1.7 melanoma cells and the mutagenized
YUMM1.7-CM clone (Figure 1C). Comparison of the
YUMM1.7-CM clone to parental cells revealed 599 cisplatin
induced base substitutions (Supplemental Table S2), including
81 non-synonymous exonic mutations (Supplemental Table S3).
Mutational signatures of cisplatin have been widely documented in
different cancer cell lines and human tumors post cisplatin
chemotherapy (28, 29).

Augmented Ex-Vivo Cytotoxicity of
Immune Cells Isolated From the
YUMM1.7-CM Tumor-Draining Lymph
Nodes (TDLNs)
In co-cultures, clustering of immune cells isolated from the
tumor draining lymph nodes, was observed around YUMM1.7
or YUMM1.7-CM cells. In contrast, clustering was not seen with
immune cells isolated from lymph nodes of naïve non-tumor
bearing mice. Bright field images of co-cultures seeded at a 1:32
ratio of target:effector cells show clustering of TDLN-derived
immune cells around cultured YUMM1.7 and YUMM1.7-CM
cells (Figure 2A, examples demarcated in red). The immune
system engagement was also reflected in three-fold weight
increases of TDLNs compared to non-DLNs or to LNs
collected from naïve non-tumor bearing mice (Figure 2B).
This is consistent with TDLN enlargement reported in patients
(30) and recapitulated in mouse models (31, 32). Interestingly,
dependence of anti-PD-1/PD-L1 therapy success on extant
tumor draining lymph nodes, was recently reported, suggestive
of clinical benefits while performing ICB prior to TDLN
resection (33, 34). Here, we observed that immune cells
isolated from the YUMM1.7-CM tumor-bearing mice TDLNs,
Frontiers in Oncology | www.frontiersin.org 5
were more effective at eliminating co-cultured target cells
compared to cells from TDLNs of YUMM1.7 tumor-bearing
mice. For quantitative assessments, prior to co-culturing, tumor
cells were pre-incubated in the presence of the thymidine analog,
EdU (10 µM) to allow for EdU incorporation into nuclear DNA
and subsequent florescent detection of tumor cells. After 24-h
incubation, cells were harvested and re-plated in EdU-free
growth medium, either alone (control), or after mixing with
TDLN derived cells for 18-h co-incubation (Figure 3A). Next,
the extent of EdU-positive cells elimination from co-cultures was
assessed using two methods: 1) measurement of in-well EdU
fluorescence and 2) counting EdU positive cells (Figure 3B).
While cell counting was slightly more sensitive than in-well
fluorescence readings, results obtained with both methods,
revealed greater elimination of YUMM1.7-CM compared to
YUMM1.7 cells following co-incubation with the respective
TDLNs-derived immune cells (44 ± 4% for YUMM1.7-CM
cells versus 35 ± 3% for YUMM1.7 cells). These findings agree
with immunofluorescent imaging that revealed greater presence
of CD8+ T cells among lymphocytes surrounding the YUMM1.7-
CM cells (Figure 3C). Higher levels of granzyme B positivity in
co-cultures with cells isolated from TDLNs of YUMM1.7-CM
tumors-bearing mice were also observed (Figure 4). Granzyme B
protease is a key mediator of target cell elimination by cytotoxic
CD8 T lymphocytes (35).

Curtailed Tumoral Cell Proliferation
in YUMM1.7-CM- Compared to
YUMM1.7-Generated Tumors
In vivo proliferation of tumoral cells was assessed by
immunodetection of the proliferation biomarker Ki-67, which
is expressed in cycling cells and identifies the proliferating
fraction in a given cell population (36), and by detection of
tumor cells that incorporate EdU into nascent DNA. Analyses of
A B

FIGURE 2 | Ex-vivo cytotoxicity of immune cells isolated from lymph nodes (LNs). (A) Representative bright field images of YUMM1.7 and YUMM1.7-CM cells co-
cultured with immune cells isolated from naïve non-tumor bearing mice (top) or from TDLNs of tumor-bearing mice (bottom). Examples of areas with immune cell
clustering around tumor cells are delineated (red). Scale bar, 20 µm. (B) Graphical representation of mean weight of LNs excised from naïve and tumor-bearing mice
(n = 6–10). Data are means ± SEM; unpaired Student’s two-tailed t-test; **p < 0.01; NS, not significant.
July 2021 | Volume 11 | Article 701968
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FIGURE 4 | Higher Granzyme B (GrB) expression in co-cultures of TDLN cells with YUMM1.7-CM compared to YUMM1.7 cells. Representative micrographs of co-
cultured YUMM1.7-CM and YUMM1.7 cells; GrB expression is visualized by immunofluorescence (green); nuclei stain blue with DAPI; scale bar, 10 µm. The
difference in the number of GrB positive cells between YUMM1.7-CM and YUMM1.7 TDLNs was calculated from means ± SEM from four independent co-cultures;
unpaired Student’s two-tailed t-test; *p < 0.05. Bottom: High magnification images of GrB expressing immune cells co-cultured with YUMM1.7 (left) and YUMM1.7-
CM (right) tumor cells.
A
B

C

FIGURE 3 | Enhanced ex-vivo cytotoxicity of cells isolated from TDLNs of YUMM1.7-CM compared to YUMM1.7 tumor-bearing mice. (A) Representative bright field
(BF)/fluorescence micrographs of EdU-prelabeled YUMM1.7 and YUMM1.7-CM cells cultured alone (top) or co-cultured with immune cells isolated from respective
TDLNs (bottom). EdU positive nuclei are observed in green. (B) Quantitation of YUMM1.7 and YUMM1.7-CM cells elimination following co-incubation with TDLNs
cells measured by in-well EdU fluorescence readings or by EdU positive cell counts, as indicated. Data are presented as mean ± SEM obtained from four
independent YUMM1.7-CM or YUMM1.7 cultures. Unpaired Student’s two-tailed t-test; *indicates different from YUMM1.7 co-cultures p < 0.05. (C) Representative
micrographs of immune cells surrounding a tumor cell visualized by merged CD8 immunofluorescence (red)/BF images. EdU positive nuclei of YUMM1.7 or
YUMM1.7-CM cells are observed in green; nuclei of TDLNs derived effector cells stain blue with DAPI. Scale bars, 10 µm.
Frontiers in Oncology | www.frontiersin.org July 2021 | Volume 11 | Article 7019686
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tumoral cryosections revealed higher numbers of Ki-67 positive
cells in the YUMM1.7 when compared to YUMM1.7-CM
generated tumors (Figures 5A, B). Similarly, the number of
EdU incorporating tumoral cells was higher in YUMM1.7
compared to YUMM1.7-CM tumors (Figures 5A, B). The
complex nuclear patterns of Ki-67 expression and EdU
incorporation were observed at high magnification in merged
images (Figure 5C), reflecting heterogeneity of tumoral cells
transitioning through the different stages of the cell cycle.

Higher Levels of Tumor Infiltrating CD8
T Lymphocytes and Granzyme B
Expression in YUMM1.7-CM Compared
to YUMM1.7-Generated Tumors
Mice inoculated with either parental YUMM1.7 or mutagenized
YUMM1.7-CM melanoma cells according to our standard
protocol (13), were randomly assigned to receive IP, isogenic
or anti-CTLA-4/anti-PD-1 sera 3×/week (n = 6–10). Tumors and
lymph nodes were collected 20 days post inoculation. Analyses of
tumoral cryosections revealed ~3-fold higher baseline levels of
infiltrating CD8+ T lymphocyte (Figure 6) and granzyme B
expression (Figure 7) in YUMM1.7-CM when compared to
YUMM1.7-generated tumors. Interestingly, ICB treatment of
mice bearing the YUMM1.7 tumors, resulted in marked
increases in tumor infiltrating CD8 lymphocytes and granzyme
B expression, nearing the baseline observed in YUMM1.7-CM
Frontiers in Oncology | www.frontiersin.org 7
generated tumors (Figures 6 and 7, bottom panels). In contrast,
when ICB was administered to the mutagenized YUMM1.7-CM
tumors-bearing mice, the treatment resulted in only marginal
changes in the number of infiltrating CD8 T lymphocytes
(Figure 6) and granzyme B expression levels (Figure 7).

YUMM1. 7-CM and YUMM1.7-Generated
Tumors Differ in Growth Profiles, the
Extent of Tumoral Cell Death, and
Responses to ICB Regimen
The extent of tumoral cell death assessed by TUNEL assay,
revealed significantly higher baseline levels of TUNEL positive
cells in YUMM1.7-CM compared to YUMM1.7-generated
tumors, as well as marked increases in TUNEL positivity
following ICB regimen (Figure 8A). Individual tumor growth
curves for the different groups revealed slower growth rates of
YUMM1.7-CM compared to YUMM1.7 tumors (Figure 8B). In
the fast-growing YUMM1.7 cohort, all tumors were collected for
analyses 20 days post inoculation when tumor volumes reached
about 500 mm3. For comparative analyses, half of the
YUMM1.7-CM cohort, was similarly processed at 20 days post
inoculation for tumor and lymph node collection, while for the
remining mice, tumor growth rates continued to be monitored
(n = 6). Importantly, in the YUMM1.7-CM tumor-bearing mice/
ICB treatment group, nearly all tumors regressed, while growth
of YUMM1.7 tumors was not suppressed by the ICB regimen
A B

C

FIGURE 5 | Proliferating tumoral cells are detected by Ki-67 immunofluorescence and EdU incorporation into nascent tumoral DNA. (A) Representative micrographs
of tumoral cryosections show Ki-67 positive nuclei (top, red) and EdU incorporating-nuclei (center, green); bottom, double stained images merged with DAPI (blue).
Ki-67 and EdU positivity is greater in YUMM1.7 than in YUMM1.7-CM tumors. (B) Bar graphs represent Ki-67 and EdU positive nuclei/mm2 in four non-consecutive
cryosections/tumor analyzed for three mice/group presented as mean ± SEM, unpaired Student’s two-tailed t-test; **p < 0.01; scale bar, 50 µm. (C) Merged Ki-67/
EdU/DAPI high magnification image; scale bar, 10 µm.
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A B

C

FIGURE 6 | Markedly higher levels of tumor infiltrating CD8 T lymphocytes in YUMM1.7-CM compared to YUMM1.7 generated tumors. (A) Red
immunofluorescence identifies CD8+ T cells in tumor cryosections; nuclei stain blue with DAPI; scale bar, 50 µm. (B) Quantification of infiltrating CD8+ T cells in the
indicated groups. Bars represent mean ± SEM number of CD8 cells derived from four non-consecutive sections/tumor analyzed for three mice/group. Unpaired
Student’s two-tailed t-test; **p < 0.01; NS, not significant. (C) High magnification; scale bar, 10 µm.
A B

C

FIGURE 7 | Greater expression of Granzyme B in YUMM1.7-CM compared to YUMM1.7 generated tumors. (A) Representative micrographs show GrB
immunofluorescence (green) in tumoral cryosections. More GrB positive cells with intensified diffuse staining patterns are detected in YUMM1.7-CM when
compared to YUMM1.7 tumors and in YUMM1.7 tumors following ICB regimen compared to untreated YUMM1.7 tumors. (B) Fields from four nonconsecutive
sections/tumor (n = 3) per group were evaluated; scale bar, 50 µm. Data are presented as mean ± SEM and compared using unpaired Student’s two-tailed
t test, **p < 0.01, NS, not significant. (C) High magnification shows diffuse pattern of GrB immunofluorescence; scale bar, 10 µm.
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(Figure 8B). This is consistent with our earlier findings, that
demonstrated that a combination protocol that includes ICB in
conjunction with intratumoral cisplatin delivery is required for
eradication of YUMM1.7 melanoma tumors (13).
DISCUSSION

Our study demonstrates that tumors generated with in vitro
mutagenized YUMM1.7-CM cells elicit a productive antitumor
immune response in vivo, in the mouse (Figure 9). Consistent
with enhanced immune surveillance in immunocompetent mice,
growth rates of the cisplatin-mutagenized YUMM1.7-CM-
generated tumors are reduced. Furthermore, immune cells
isolated from YUMM1.7-CM tumors draining lymph nodes are
more potent ex-vivo at eliminating co-cultured tumor cells, when
compared to cells isolated from lymph nodes draining the parental
YUMM1.7 tumors. Importantly, we show that the YUMM1.7-CM
tumors readily regress in response to immune checkpoint blockade
(ICB) regimen, similarly to complete response to ICB achieved in
YUMM1.7 tumor bearing mice when ICB is administered in
conjunction with low-dose intratumoral cisplatin delivery, as we
previously reported (13). In the current study, we characterized the
mutational signature of cisplatin and described phenotypic changes
detected in cultured YUMM1.7-CM cells, and in the YUMM1.7-
CM-generated tumors. Whole exome sequencing of the
mutagenized YUMM1.7-CM clone revealed that nearly 15% of
Frontiers in Oncology | www.frontiersin.org 9
the acquired base substitutions, cause amino acid changes that are
likely to contribute to neoantigen formation and improved
engagement of immune system.

The notion that neoantigen formation enhances antitumor
immunogenicity and improves responses to ICB therapy is
supported by clinical outcomes demonstrating that tumors with
high mutational loads are more likely to respond to ICB therapies
(2, 37), rendering the mutational burden an important, albeit
imperfect predictor of response to ICB (3, 4, 38, 39). Examples
from the clinic include subpopulations of colon cancer patients
with DNA mismatch repair deficiency characterized by high
tumoral mutation burden and elevated neoantigens, which have
shown high response rates to anti-PD-1 checkpoint blockade (7,
40, 41). Similar observations were made in melanomas (8, 42, 43)
and lung cancers (44, 45). These encouraging clinical outcomes
were recapitulated in animal studies that sought to investigate the
links between mutational loads and efficacy of responses to ICB.
One approach included the use of CRISPR-Cas9 to inactivate
different components of the DNA mismatch repair pathway in
several mouse cancer models, which led to significant increases in
mutational loads and neoantigen formation in the modified cells,
resulting in augmented immune surveillance and restricted growth
of subsequently formed tumors (46). Other experimental
approaches involved the use of a cyclin-dependent kinase 7
inhibitor to induce replication stress and genomic instability,
which resulted in enhanced response to ICB in mouse
lung cancer (47), and in mouse melanoma model, the use of
A

B

FIGURE 8 | Higher rate of cell death and growth suppression in YUMM1.7-CM compared to YUMM1.7-generated tumors. (A) Tumoral cell death detected by
TUNEL assay (green); nuclei stain blue with DAPI; scale bar, 50 µm. Right, graphic representation of TUNEL positivity levels. Values are derived from four non-
consecutive sections/tumor for three mice/group and presented as mean ± SEM; unpaired Student’s two-tailed t-test; **p < 0.01. (B) Individual growth curves of
tumors in the indicated groups (n = 5–6). Left, in YUMM1.7-generated tumors growth rates are not restricted by ICB (bottom). Right, YUMM1.7-CM generated
tumors have slower growth rates with occasional spontaneous regression. YUMM1.7-CM tumors growth is suppressed by ICB regimen (bottom). Arrowheads mark
the start day of ICB regimen.
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UVB-mutagenized YUMM1.7 cells to generate tumors, resulted in
favorable response to ICB treatment (20).

We previously developed a mouse melanoma combination
treatment protocol that entails ICB regimen given in conjunction
with low-dose intratumoral cisplatin delivery designed to block
high fidelity replicative DNA synthesis in tumoral cells, while
activating the mutagenic DNA damage tolerance pathway (13).
The DNA damage tolerance pathway involves a shift to TLS
DNA polymerases-catalyzed mutagenic synthesis, which is
critical for averting the replication forks collapse following
formation of DNA synthesis-blocking cisplatin:DNA crosslinks
(6, 11, 48). The error prone TLS polymerases eta (49–51) and
kappa (52, 53) have been specifically implicated in bypass
synthesis of cisplatin crosslinks (54–57), and we detected
upregulation of these polymerases in melanoma tumors
following intratumoral cisplatin delivery (13). Consistent with
the premise that mutagenic DNA synthesis increases mutational
loads (58, 59) and neoantigen formation, thereby augmenting
tumor immunogenicity and antitumor surveillance (7, 60),
tumor eradication was achieved with the intratumoral cisplatin
delivery/ICB combination protocol that we developed (13).

Here we demonstrate that durable tumor regression is achieved
with the in vitro mutagenized YUMM1.7-CM cell-generated
tumors in mice subjected to the ICB regimen (Figure 9, left).
Involvement of TDLNs in the antitumor immune response is
manifested ex-vivo, as augmented potency of the YUMM1.7-CM
TDLN derived immune cells at eliminating the co-cultured tumor
cells. The corresponding in vivo experiments reveal a markedly
greater infiltration of CD8 T lymphocytes and higher granzyme B
expression in the TME of YUMM1.7-CM tumors compared to
TME of YUMM1.7-generated tumors. Interestingly, while ICB
regimen leads to marked increases in the levels of infiltrating CD8
T lymphocytes and granzyme B expression in the YUMM1.7-
generated tumors, similar increases are not observed in
YUMM1.7-CM tumors. Although speculative, it is plausible that
as previously suggested (33, 61), the ICB treatment may not only
reinvigorates extant immune cells in the TME but also potentiates
trafficking of T lymphocytes to the TME, which might be the case
Frontiers in Oncology | www.frontiersin.org 10
with the less immunogenic YUMM1.7 tumors. Conversely, in the
YUMM1.7-CM tumors, ICBmight function chiefly to reinvigorate
cytotoxic T lymphocytes, which had been already recruited to the
TME due to augmented immunogenicity of the YUMM1.7-CM
tumors, facilitating regression of YUMM1.7-CM tumors in
response to ICB regimen. Collectively, our findings support the
premise that buildup of tumoral mutations driven by an activation
of intrinsic tumoral DNA damage tolerance pathway enhances
immunogenicity and immune surveillance of solid tumors, charting
a path to improve success rates of chemotherapy/ICB combination
protocols in the clinic. Since the proposed new protocol relies on
low-dose intratumoral delivery of a common chemotherapeutic
drug combinedwith checkpoint blockade, which is currently one of
the most successful modes of anticancer therapy, potential
translatability of this combination protocol to the clinic warrants
thorough investigation.
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FIGURE 9 | Outline of two different mutagenesis-based protocols that exert ICB-mediated tumor regression in mouse model of melanoma: Tumors generated with
in vitro mutagenized YUMM1.7-CM melanoma cells (left, red), as well as parental YUMM1.7-generated tumors, which are intratumorally injected with cisplatin (right,
red) regress in response to ICB treatment (ICB regimen alone fails to suppress growth of YUMM1.7 tumors).
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Supplementary Table 2 | Cisplatin mutations identified by the GATK pipeline and
Mutect2. Mutations were identified and filtered as described in the methods. All
mutations, including those in the exon flanking regions that passed the Mutect2 filter
are included. Chromosomes and base numbering are based on the mouse mm10
reference genome.

Supplementary Table 3 | Effects of cisplatin induced exonic mutations.
Mutations were identified as described in the methods. The chromosome (chr),
position (base), and gene for each change is indicated. The effect of the change at
the codon level is shown in the codon change column and may be a codon change,
insertion, deletion, or a change at the splice site. Two mutations were identified in
the 3’ untranslated part of the last exon. The effect at the protein level is indicated in
the effect column. A synonymous codon change is indicated by nc (no change), and
changes creating a stop codon are indicated by amber or ochre.
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