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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a notoriously aggressive type of cancer
with a high metastasis rate. It is conventionally treated by surgical resection and neoadjuvant
chemotherapy. However, continuous chemotherapy leads to relapse in most PDAC patients due
to chemical resistance. Therefore, novel anticancer agents need to be identified and developed.
The antitumor activities of laminarin extracted from brown algae against hepatocarcinoma, lung,
and colon cancer have been established. However, its effects on pancreatic cancer have remained
obscure. Our study identified the anticancer effects of laminarin on pancreatic cancer cells and
tried to explain its intracellular mechanisms. We assessed the cell viability of PANC-1 and MIA
PaCa-2 cells using MTT assay. Hanging drop method was used for the spheroid formation. Flow
cytometry was conducted to evaluate the several intracellular alterations including apoptosis, ROS
production, mitochondrial membrane potential (MMP), and calcium concentration induced by
laminarin. An invasion test was performed to assess the inhibitory effect of laminarin on cell
migration and the invasive genes were evaluated by RT-qPCR. Signaling pathway related with
anticancer effects of laminarin was analyzed by western blot. We report that inhibiting laminarin
increased the proliferation and viability of the representative pancreatic cancer cell lines, MIA PaCa-
2 and PANC-1. Laminarin triggered apoptosis and mitochondrial impairment as evidenced by
depolarized mitochondrial membranes, disrupted calcium, and suppressed cell migration caused by
reactive oxygen species production and related intracellular signaling pathways. Moreover, laminarin
showed synergistic effects when combined with 5-FU, a standard anticancer agent for PDAC. The
present study is the first to report that laminarin exerts anticancer effect through ROS production in
pancreatic cancer cells. Laminarin shows potential to serve as a new anticancer agent for treating
PDAC.

Keywords: laminarin; pancreatic cancer; mitochondria dysfunction; migration; ROS

1. Introduction

Pancreatic cancer (PC) is one of the most lethal cancers, ranking third in fatalities
among men and women in the USA and fourth in Europe [1,2]. Pancreatic ductal adeno-
carcinoma (PDAC) derived from lined ductal epithelial cells is the most prevalent type of
PC [3]. The median survival of PDAC is only 4.6 months from diagnosis, as it is usually
identified at advanced stages owing to inadequate early detection methods and a highly
metastatic and aggressive profile [4–6]. Predictions indicate that PDAC will become the
second most prevalent cause of cancer-related mortality by 2030 [7]. Surgical resection
and neoadjuvant chemotherapy are the conventional approaches for treating PDAC [8].
The standard chemotherapeutic agents for PDAC, 5-fluorouracil (5-FU) and gemcitabine,
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can relieve symptoms and improve the performance status of patients. However, their
effects are limited by chemoresistance, which causes relapse in most patients [9–11]. The
combination of 5-FU, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) regimen is
effective against advanced PDAC, but the adverse effects are more severe than those of
gemcitabine [12]. Therefore, safer and novel anticancer drugs and effective combination
therapies with mild or no complications and better effects are required.

Laminarin extracted from brown algae serves as a storage glucan for their matu-
ration. It is a short glucan polymer that comprises (1,3)-β-D-glucan residues with a β-
(1,6)-intrachain linkage and is one of the most abundant polysaccharides in the aquatic
environment [13,14]. Laminarin possesses antioxidant [15], anticancer [16], and immunoreg-
ulatory [17] properties. The pharmacological properties of laminarin are more robust when
chemically modified [18]. Moreover, laminarin is a dietary modulator that affects the
gastrointestinal tract when ingested as a dietary fiber [19]. The role of laminarin in hepato-
carcinoma, lung, and colon cancer has been actively explored [20–22]. However, whether
laminarin has effective anticancer activity in PC has remained obscure.

The present study aimed to determine the anticancer effects of laminarin in terms
of reactive oxygen species (ROS) production, apoptosis, mitochondrial impairment, cal-
cium homeostasis, migration, and intracellular signaling pathways in the representative
pancreatic cancer cell lines, MIA PaCa-2 and PANC-1.

2. Materials and Methods
2.1. Reagents and Antibodies

Laminarin isolated from Laminaria digitata (brown algae; Cat. No. L9634), N-acetyl-
L-cysteine (NAC; Cat. No. A9165), and 5-fluorouracil (5-FU; Cat. No. F6627) (all from
Sigma-Aldrich Corp., St. Louis, MO, USA) were dissolved in warm ultra-pure water and
subsequently in dimethyl sulfoxide (DMSO). Table S1 shows the antibodies and their
sources.

2.2. Cells and Culture

The human PC cell lines originating from epithelioid carcinoma of the pancreatic
duct PANC-1 and MIA PaCa-2 (Korean Cell Line Bank Seoul, Korea) were cultured in
Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum and 1% penicillin-
streptomycin. Cultured PC cell monolayers were maintained at 37 ◦C under a humidified
5% CO2 atmosphere. Upon reaching 70% confluence, the cells were starved in serum-free
medium for 24 h, then incubated with various doses of laminarin with or without NAC or
5-FU. All experiments were repeated at least three times.

2.3. Cell Viability

We assessed cell viability using Cell Proliferation Kit I (Cat no: 11465007001; Roche
Holdings AG, Basel, Switzerland), which is a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) assay. The PC cells in 96-well culture plates were incubated
with various concentrations of laminarin and 10 µL of MTT tetrazolium salt at 37 ◦C for
4 h, followed by incubation in solubilization buffer at 37 ◦C overnight. Absorbance was
measured at 560 and 650 nm using a microplate reader.

2.4. Cell Aggregation

The hanging drop method was used to determine spheroid formation. The PC cells
were maintained for 3 days with laminarin (2 mg/mL) alone or with either the ROS inhibitor
NAC (0.5 mM) or the chemotherapeutic agent 5-FU (20 µM). Spheroid morphology was
assessed using a DM3000 microscope (Leica Microsystems GmbH, Wetzlar, Germany). The
total area and density of cell aggregation were calculated as described [23].
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2.5. Cell Migration

We assessed the migratory capacity of PC cells in 35-mm migration culture dishes
(Ibidi, Munich, Germany) as described by the manufacturer. Suspended PC cells were
seeded into each well and maintained for 16 h until they reached 90% confluence. The cells
were then gently rinsed with phosphate-buffered saline (PBS) and serum-starved overnight.
The partition was removed from the dish surface leaving a gap of 500 µm between the
cell patches. Laminarin (2 mg/mL) with or without NAC (0.5 mM) and 5-FU (20 µM) was
added to the dishes, and images of the gap were acquired using the DM3000 microscope.
The amount of cell migration was calculated as the gap distance.

2.6. Cell Invasion

Cells were seeded on SPLInsertTM Hanging membranes (Cat. No. 35224; SPL Life
Sciences, Pocheon, Korea); further, laminarin (2 mg/mL) with or without NAC and 5-FU
was added to the wells. After 16 h, the inserts were fixed with methanol for 10 min, air-
dried and stained with hematoxylin for 30 min. The membranes were washed several times
with PBS, and cells on the membrane inside the insert were removed using a cotton swab.
The membranes were detached from the inserts, placed on glass slides, and covered with
Permount solution. Invasive cells were counted using the DM3000 microscope.

2.7. Mitochondrial Membrane Potential (MMP)

We assessed the loss of mitochondrial function in PC cells using a mitochondrial
staining kit (Cat. no: CS0390; Sigma-Aldrich Corp.). The cells were incubated with various
concentrations of laminarin with or without NAC or 5-FU. The cells were stained with JC-1
and washed with JC-1 destaining solution; further, fluorescence emission was analyzed
using a flow cytometer (BD Biosciences, San Jose, CA, USA). We gated 10,000 cells in all
dot plots, and the assay was repeated in triplicate.

2.8. Reactive Oxygen Species

We evaluated the total ROS production, including that of hydroxyl radicals (•OH)
and peroxynitrite (ONOO−) [24], in PC cells stained with 2,7-dichlorofluorescin diacetate
(DCFH-DA; Cat. No.: D6883, Sigma-Aldrich Corp.) that ROS transform into fluorescent
2,7-dichlorofluorescin (DCF). The cells were incubated with 0, 0.5, 0.8, 1, or 2 mg/mL
laminarin, or 2 mg/mL laminarin plus NAC or 5-FU for 1 h and stained with DCFH-DA
for 30 min at 37 ◦C. The supernatants were collected and harvested cells were washed with
PBS. The fluorescence intensity of DCF based on 10,000 cells per gate was calculated using
the flow cytometer. The assay was repeated in triplicate.

2.9. Mitochondrial Ca2+

The PC cells were seeded into 6-well plates and incubated with 0, 0.5, 0.8, 1, and
2 mg/mL of laminarin alone or with 2 mg/mL of laminarin plus NAC or 5-FU. Mitochon-
drial calcium (Ca2+) levels in cells washed with Hank’s balanced salt solution (HBSS) were
evaluated by staining with Rhod-2 AM that accumulates in the mitochondria and binds to
Ca2+. The intensity of fluorescence emitted by Rhod-2 was assessed in 10,000 cells per gate
using the flow cytometer. The assay was repeated in triplicate.

2.10. Intracellular Ca2+ Level Analysis

We seeded PC cells into 6-well plates and incubated them with 0, 0.5, 0.8, 1, and
2 mg/mL of laminarin alone or with 2 mg/mL of laminarin plus NAC or 5-FU. The cells
were stained with Fluo-4 AM for 20 min, washed with PBS, and the fluorescence intensity
emitted by Fluo-4 AM bound to cytosolic calcium ions was assessed in 10,000 cells per gate
using the flow cytometer. The assay was repeated in triplicate.
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2.11. Apoptosis Quantitation in PC Cells

We investigated the apoptotic effects of laminarin on PC cells using Annexin V Apopto-
sis Detection Kit I (BD Bioscience). The cells were incubated with 0, 0.5, 0.8, 1, and 2 mg/mL
of laminarin alone or with 2 mg/mL of laminarin plus NAC or 5-FU and stained with
annexin V and PI at room temperature. Fluorescence intensity was measured in 10,000 cells
per gate using the flow cytometer (BD Biosciences). The assay was repeated in triplicate.

2.12. Western Blotting

Protein was extracted from PC cells using RIPA lysis buffer (Cat. No: R0278, Sigma-
Aldrich Corp.), quantified using the Bradford reagent (Bio-Rad Laboratories Inc., Hercules,
CA, USA) and resolved by SDS-PAGE. The proteins were blotted onto polyvinylidene
fluoride membranes and incubated with primary antibodies at 4 ◦C for 16 h, followed
by secondary antibodies for 1 h. Target proteins (Table S1) were detected using West-Q
Pico chemiluminescent substrate (GenDEPOT, Katy, TX, USA) and an Alliance Mini HD9
acquisition system (Alliance UVItec Ltd., Cambridge, UK).

2.13. Real-Time Quantitative PCR (RT-qPCR)

Total RNA was extracted from PC cells using TRIzol as described by the manufacturer
using a spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Comple-
mentary DNA was synthesized using AccuPower® RT PreMix (Bioneer, Daejeon, Korea),
and products of interest were amplified by RT-qPCR using SYBR green and the CFX
Connect Real-Time System (Bio-Rad Laboratories Inc.) under the following temperature
conditions: 95 ◦C for 3 min, followed by 40 cycles at 95 ◦C for 20 s, 64 ◦C for 40 s, and
72 ◦C for 1 min. We confirmed that only one product was amplified using a melting curve
from 55 to 95 ◦C. Table S2 shows the specific primers designed using Primer 3 software
(http://primer3.ut.ee accessed on 22 March 2022).

2.14. Statistical Analysis

All data were assessed by analysis of variance (ANOVA), followed by Dunnett’s post
hoc test using the Statistical Analysis System (SAS, Cary, NC, USA). All experiments were
performed in triplicate. Values with p < 0.05 were considered statistically significant. Data
are presented as means ± standard deviation.

3. Results
3.1. Laminarin Inhibited Cell Growth and Triggered Apoptosis in PC Cells

The viability of PC cells was reduced with increasing concentrations of laminarin. The
viability of PANC-1 and MIA PaCa-2 cells incubated with 2 mg/mL laminarin was 61%
and 64%, respectively (p < 0.01 for both; Figure 1A,B). We previously reported that this
concentration of laminarin exerted significant antiproliferative effects in ovarian cancer
cells and did not cause toxicity in zebrafish embryos with respect to viability [25]. Therefore,
we estimated that 2 mg/mL was the optimal dose and applied it herein. We assessed the
antiproliferative effects of laminarin on PC cells in a 3D environment by analyzing spheroid
formation using the hanging drop method. Laminarin (2 mg/mL) reduced the total area
of spheroids formed in PANC-1 and MIA PaCa-2 cells by 73% and 62%, respectively
(p < 0.001 for both; Figure 1C,D), and decreased the relative tumor density to 19% and 12%,
respectively (p < 0.001 for both; Figure 1C,D).

We investigated whether laminarin exerts apoptotic effects on PC cells. The proportion
of apoptotic PC cells gradually increased with increasing laminarin concentrations. At
laminarin (2 mg/mL), relative late apoptosis in PANC-1 and MIA PaCa-2 cells increased to
210% (p < 0.01) and 185% (p < 0.001), respectively (Figure 1E,F).

http://primer3.ut.ee
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Figure 1. Antitumor effects of laminarin on PC cells. (A,B) Relative cell proliferation decreases with
increasing laminarin concentrations of 0, 0.5, 0.8, 1, and 2 mg/mL. (C,D) Spheroid formation in cells
without and with laminarin. Scale bar: 100 µm. (E,F) Apoptotic cell death analyzed using Annexin V
and propidium iodide. Purple dots (upper right) in dot plots indicated late apoptotic cells. (* p < 0.05,
** p < 0.01, and *** p < 0.001; laminin vs. control). All experiments were conducted in triplicate.
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3.2. Effects of Laminarin on ROS Generation and MMP in PC Cells

We previously found that laminarin triggers apoptosis in PC cells. Here we investi-
gated the underlying mechanism by exploring whether laminarin leads to ROS generation
in PC cells. Figure 2A shows that laminarin concentration-dependently increased ROS
generation in PANC-1 and MIA PaCa-2 cells from 25.7% to 52.9% and from 31.5% to 59.0%,
respectively (p < 0.01 for both vs. positive control with hydrogen peroxide). We then
analyzed mitochondrial function by measuring MMP loss. Figure 2B shows increased
depolarization of the mitochondrial membrane in response to laminarin. The proportion of
JC-1 monomers significantly increased to 257% and 276% in PANC-1 and MIA PaCa-2 cells
(p < 0.001 for both vs. positive control). Collectively, laminarin elevated ROS production
and decreased MMP levels in PC cells.
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Figure 2. Dose-dependent anticancer effects of laminarin on ROS production, MMP, and calcium
homeostasis in PC cells. (A) Intracellular ROS evaluated as DCF fluorescence emission by flow
cytometry with H2O2 (100 µM) as the positive control. (B) JC-1 monomers in PC cells detected by
flow cytometry. Purple and green dots in plot represent JC-1 aggregates and monomers, respectively.
Valinomycin (1 µg/mL) was the positive control. (C) Calcium ion concentrations in mitochondria
analyzed using Rhod-2. (D) Changes in cytosolic calcium concentrations induced by laminarin
detected with Fluo-4. (* p < 0.05, ** p < 0.01, *** p < 0.001; laminin vs. control). All experiments were
conducted in triplicate.
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3.3. Effects of Laminarin on Calcium Ion Flow between Mitochondria and Cytoplasm in PC Cells

We verified the effect of laminarin on calcium ion regulation in PC by quantifying mito-
chondrial and cytosolic calcium levels, respectively, using Rhod-2 and Fluo-4 assays. Flow
cytometry data showed that decreased effect of laminarin (2 mg/mL) on mitochondrial
calcium level was 50% and 52% in PANC-1 and MIA PaCa-2 cells, respectively (p < 0.001
for both; Figure 2C) and significantly increased cytosolic calcium levels to 183% and 186%,
respectively (p < 0.001 for both; Figure 2D). These data suggested that laminarin can cause
cytosolic calcium overload in PC cells.

3.4. Signal Transduction Associated with Anticarcinogen Effects of Laminarin in PC Cells

We investigated signaling pathways in PC cells involved in the anti-cancer effects
of laminarin by quantifying mitogen-activated protein kinase (MAPK) and Ak strain
transforming (AKT) phosphorylation and Kirsten rat sarcoma viral oncogene homolog
(KRAS) activity. Laminarin (2 mg/mL) increased the abundance of phosphorylated AKT
and JNK in PANC-1 cells ~3- and >3.5-fold, respectively (p < 0.001 for both vs. control;
Figure 3A) and in MIA PaCa-2 cells by 1.8- and ~1.5-fold (p < 0.001 and p < 0.01, respectively;
Figure 3B). In contrast, laminarin (2 mg/mL) inhibited ERK1/2 phosphorylation to 0.1- and
0.2-fold in PANC-1 and MIA PaCa-2 cells (p < 0.001 and p < 0.01 vs. control, respectively;
Figure 3C), and phosphorylated P38 was 0.13- and 0.27-fold in PANC-1 and MIA PaCa-
2 cells, respectively (p < 0.001 for both vs. control; Figure 3D). Meanwhile, laminarin
minimally affected KRAS activity in both cell lines (Figure 3E). These results imply that
laminarin regulates MAPK and AKT signaling pathway.
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(* p < 0.05, ** p < 0.01, *** p < 0.001; laminin vs. control). Red arrows indicate each band of protein
which is quantified. All experiments were conducted in triplicate. PC, pancreatic cancer.

3.5. Laminarin Attenuated PC Cell Invasiveness

Transwell invasion and migration assays revealed that laminarin inhibited cell inva-
sion and migration, the two mechanisms responsible for PC metastasis and cell growth.
The results of the TranswellTM cell invasion assays showed that suppressive effect of lam-
inarin (2 mg/mL) in cell invasion was 16% and 21% in PANC-1 and MIA PaCa-2 cells,
respectively (p < 0.01 for both vs. untreated controls; Figure 4A,B). Consistent with these
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results, laminarin also inhibited PC cell migration (Figure 4C) and increased the interspace
gap between the cell populations up to ~150% (p < 0.001) and ~127% (p < 0.01) in PANC-1
and MIA PaCa-2 cells, respectively, compared with the control (Figure 4D). We then evalu-
ated the transcription of invasive genes by qRT-PCR (Figure 4E,F). Laminarin (2 mg/mL)
significantly and slightly, but non-significantly reduced the expression of the forkhead box
protein M1 (FOXM1) and vascular endothelial growth factor A (VEGFA) genes in PANC-1 and
MIA PaCa-2 cells, respectively. Laminarin (2 mg/mL) significantly increased the expression
of cadherin-1 (CDH1) and tissue inhibitor of metallopeptidase1 (TIMP1) genes. These findings
show that laminarin attenuated PC cell invasiveness.
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Figure 4. Inhibitory effects of laminarin on cell migration and invasion in PC cells. (A,B) Transwell
invasion assays of PC cell invasion. Graph shows relative numbers of cells that passed through
membrane. Scale bar: 150 µm. (C,D) Cell migration in Ibidi 35 mm culture dishes. Graph shows
relative gap between divided cell populations. Scale bar: 300 µm. (E,F) Invasive FOXM1, VEGFA,
CDH1, and TIMP1 gene expression in PC cells determined by qRT-PCR. (* p < 0.05, ** p < 0.01,
*** p < 0.001; laminin vs. control). All experiments were conducted in triplicate.
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3.6. Laminarin-Induced ROS Production Regulated PC Cell Proliferation

Because ROS are important intracellular signaling molecules that regulate the phys-
iological and pathological progression of various cells [26], we assessed PC cell viability
in response to laminarin using the ROS scavenger NAC. N-acetyl-L-cysteine significantly
increased the relative viability of cells incubated with laminarin from 64% to 76% (p < 0.001)
and from 63% to 88% (p < 0.05) in PANC-1 and MIA PaCa-2 cells, respectively (Figure 5A,B).
Spheroids formed in PC cells incubated with laminarin and NAC (Figure 5C,E). The de-
creased total area and density of spheroids induced by laminarin were considerably recov-
ered by NAC (Figure 5D,F). These results suggest that laminarin-induced ROS production
regulates PC cell progression.
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Figure 5. Effects of laminarin-induced ROS production and of laminarin combined with 5-FU on cell
proliferation. Viability (A,B) and spheroid formation (C–F) of PC cells incubated with laminarin alone
or with NAC or 5-FU. Relative spheroid density was calculated using ImageJ software. (* p < 0.05,
** p < 0.01, and *** p < 0.001). Scale bar: 100 µm. All experiments were conducted in triplicate. 5-FU,
5-fluorouracil; NAC, N-acetyl-L-lysine; PC, pancreatic cancer; ROS, reactive oxygen species.
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3.7. Laminarin-Mediated ROS Production Led to Apoptotic Cell Death and Regulated
Mitochondrial Function and Calcium Homeostasis in PC Cells

As it was observed that ROS production induced by laminarin influenced PC cell prolif-
eration, we postulated that laminarin-mediated ROS production causes apoptosis. Laminarin-
induced ROS were attenuated by NAC in PC cells (Figure 6A), whereas NAC significantly
attenuated the increase in late apoptotic cells induced by laminarin from 248% to 96% and from
229% to 128% in PANC-1 and MIA PaCa-2 cells, respectively (p < 0.01 for both; Figure 6B).
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We explored the effect of laminarin-mediated ROS production on mitochondrial
function by analyzing the loss of MMP in the presence of NAC. Mitochondrial membrane
depolarization increased by laminarin was recovered by NAC from 166% to 113% (p < 0.05)
and 224% to 140% (p < 0.01) in PANC-1 and MIA PaCa-2 cells, respectively (Figure 6C). We
then assessed whether ROS production induced by laminarin could influence mitochondrial
and cytoplasmic calcium ion levels in PC cells incubated with laminarin and NAC using
Rhod-2 and Fluo-4 assays, respectively. The reduced mitochondrial calcium levels induced
by laminarin were significantly increased by NAC from 63% to 90% (p < 0.01) and from
57% to 78% (p < 0.001) in PANC-1 and MIA PaCa-2 cells, respectively (Figure 6D). In
contrast, NAC attenuated cytosolic calcium overload induced by laminarin from 177% to
130% (p < 0.001) and from 166% to 138% in PANC-1 and MIA PaCa-2 cells, respectively
(Figure 6E). Collectively, laminarin-mediated ROS production triggered apoptosis and
regulated MMP and calcium homeostasis in PC cells.

3.8. Laminarin Regulated ROS-Induced Signaling Transduction and PC Cell Migration

We applied western blotting to examine the relationship between ROS production
and MAPK and AKT signaling pathways in cells incubated with NAC followed by lam-
inarin. The increased phosphorylation of AKT and JNK was inhibited in both the cell
lines (Figure 7A,B). The phosphorylation of ERK decreased by laminarin was restored by
NAC in PANC-1 cells, but its effects were limited in MIA PaCa-2 cells (Figure 7C). The
phosphorylation of P38 diminished by laminarin was significantly improved by NAC
(Figure 7D). We then assessed associations between cell invasiveness and ROS production
in PC cells using migration and TranswellTM (SPL Life Sciences, Pocheon, Korea) invasion
assays. The number of PC cells that passed through the membrane in the TranswellTM

assay was slightly increased by NAC followed by laminarin compared with laminarin
alone, but with no statistical significance (Figure 7E). In the migration assay, the interspace
gap between divided PANC-1 cell populations increased by laminarin was significantly
diminished by NAC from 220% to 200% (p < 0.05; Figure 7F). These findings indicate that
laminarin regulates ROS signal transduction and ROS-mediated cell migration in PC cells.

3.9. Effects of Laminarin and Standard Anticancer Drug Were Synergistic in PC Cells

We assessed the antitumor effects of laminarin combined with the standard anticancer
agent, 5-FU. Figure 5 shows that laminarin significantly attenuated cell viability and in-
hibited the formation of PC cell spheroids when combined with 5-FU. The combination
produced significant amounts of ROS (Figure 6A) that led to apoptosis (Figure 6B), de-
creased MMP (Figure 6C), and disrupted calcium homeostasis (Figure 6D,E) compared
with 5-FU alone. Moreover, the phosphorylation levels of AKT and JNK were bolstered and
those of ERK1/2 and p-P38 were conversely weakened by the combination of 5-FU and
laminarin vs. 5-FU alone (Figure 7A–D). Furthermore, the inhibitory effect on cell invasion
and migration was strengthened by the combination of 5-FU and laminarin vs. 5-FU alone
(Figure 7E,F).
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Figure 7. Synergistic ability of laminarin with 5-FU and effects of laminarin-induced ROS on cell
invasion. (A–D) Effects of laminarin (2 mg/mL) alone or with NAC (0.5 mM) or 5-FU (20 µM) on
phosphorylation (A) AKT, (B) JNK, (C) ERK1/2, and (D) P38. Red arrows indicate each band of
protein which is quantified. (E,F) Cell invasion and migration after incubation with laminarin alone
or with NAC or 5-FU. (* p < 0.05, ** p < 0.01, and *** p < 0.001). All experiments were conducted
in triplicate. 5-FU, 5-fluorouracil; NAC, N-acetyl-L-lysine; PC, pancreatic cancer; ROS, reactive
oxygen species.

4. Discussion

Our findings indicate that laminarin exerts anticancer activity in PC cells. The intracel-
lular mechanisms associated with the anticancer activity of laminarin and its synergistic
effects with conventional chemotherapeutic agents in PC have not been clearly explained
until now. We verified that laminarin inhibits the progression and proliferation of PC cells
and induces ROS-mediated apoptosis and mitochondrial dysfunction. Moreover, laminarin-
induced ROS production regulated signaling pathways associated with anticancer effects as
well as mitochondrial and cytoplasmic calcium ion concentrations. Furthermore, laminarin
attenuated cell migration and invasion by regulating genes associated with invasion and
exerted synergistic effects when combined with the standard anticancer adjuvant 5-FU.
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Therefore, our findings suggested that laminarin shows potential as a novel chemothera-
peutic agent against PC.

Although laminarin is an exogenous polysaccharide, previous reports have suggested
that it exerts anticancer effects in various types of cancers by activating apoptosis. For ex-
ample, laminarin suppresses proliferation and promotes apoptosis in Bel-7404 and HepG2
cells and in hepatocellular carcinoma [20]. The inhibition of lung cancer cell proliferation
and migration confirmed its antitumor activity [21]. Apoptotic effects of laminarin in
LOVO and HT-29 cells as well as in human colon cancer cells have been confirmed by
the expression of proteins associated with apoptosis and signaling pathways [22,27]. We
previously showed that laminarin also regulates cell progression via apoptosis induced
by mitochondrial dysfunction and endoplasmic reticulum (ER) stress in ovarian cancer
cells [25]. The present study confirmed that the suppression of cell proliferation and migra-
tion, the activation of apoptosis, and signaling transduction are associated with anticancer
effects and mitochondrial dysfunction. These findings suggest that laminarin triggers
apoptosis in PC by influencing diverse intracellular modes of action.

The aggressive profile of PDAC is attributed to its ability to metastasize to adjacent
organs, including the liver and gallbladder [28]. Laminarin significantly reduced the
metastatic potential of PC cells as per the TranswellTM cell invasion and migration assays.
The epithelial-mesenchymal transition (EMT) is considered the initial step for metastatic
dissemination. Cell dissociation from the epithelial surface leads to dysregulated cell-cell
communication and enhanced invasive ability [29]. Many factors that are closely associated
with the EMT in PDAC such as FOXM1, VEGFA, CDH1, and TIMP1, are interconnected
and involved in metastasis and progression [30,31]. Forkhead box protein M1 is a critical
factor for PDAC to acquire the EMT phenotype [32]. The expression of VEGFA is involved
in tumor proliferation and motility in PDAC, and a higher abundance is associated with
a worse prognosis [33,34]. Moreover, the expression of E-cadherin encoded by CDH1,
a marker of the epithelial cell phenotype, plays an important role in suppressing cell
invasion [35]. The depletion of E-cadherin is typical of the EMT and it can trigger PDAC
cell migration [36]. As a key gene involved in the EMT, TIMP1 participates in repressing
PANC-1 cell migration [37]. The present qRT-PCR findings confirmed expression of the
invasive genes FOXM1, VEGFA, CDH1, and TIMP1. Overall, the above results show that
laminarin suppressed cell migration through the regulation of invasive genes in PC cells.

Reactive oxygen species play important roles in cancer progression and growth. Com-
pared with normal cells, many types of cancer cells have increased basal levels of ROS
owing to disrupted redox homeostasis induced by oxidative stress [38]. However, excessive
ROS production is as toxic to cancer as it is to normal counterpart cells and this can be
enhanced using exogenous agents that induce further ROS production [39]. Therefore,
regulating redox status has been considered an effective strategy for eradicating cancer
cells [38]. The elimination of PDAC via ROS regulation has been addressed in various ways.
Synthetic triterpenoids derived from oleanolic acid exert ROS-dependent antiproliferative
and apoptotic effects on PC cells [40]. Some therapeutic agents such as resveratrol, spiclo-
mazine, and SKLB316 decrease MMP through ROS accumulation in PC [41–43]. Moreover,
longikaurin E triggers PC cell apoptosis by regulating P38 and PI3K/AKT pathways driven
by ROS. The present findings are in line with the fact that the ROS scavenger NAC reverses
these effects [44]. Furthermore, mahanine elevates the intracellular calcium concentrations
induced by ROS, which leads to ER stress in pancreatic adenocarcinoma cells, and pre-
treatment with NAC diminishes such elevation [45]. Upregulated ROS can be involved in
PC tumor progression and migration. For example, ROS-driven programmed cell death
attenuates PC migration independently of the Hippo pathway [46]. Anthocyanins also
inhibit PC cell migration through ROS production [47]. The present findings also suggest
that ROS inhibit cell proliferation, drive mitochondrial dysfunction, regulate MAPK and
AKT signaling pathways, disrupt calcium homeostasis, and suppress PC cell migration.
The effects induced by laminarin were reversed by treatment with NAC. Therefore, the
anticancer effects of laminarin are accomplished via ROS production.
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Permanent activation of the KRAS oncogene is closely involved in the maintenance
of cell proliferation, migration, transformation, and survival of PDAC [48]. Efforts to
directly apply point mutations of KRAS as clinical therapy have failed [49]. Currently,
the rapidly accelerated fibrosarcoma-mitogen activated protein kinase kinase-extracellular
signal-regulated kinase (RAF-MEK-ERK) pathway and molecules downstream of KRAS
or PI3K-AKT-mammalian target of rapamycin (mTOR) signaling are targeted to eliminate
PDAC. Inhibitors of the RAF-MEK-ERK pathway exert synergistic anticarcinogenic effects
with a PI3K pathway inhibitor in mouse models [48]. Here, we investigated whether
laminarin attenuated activated KRAS in PDAC. We found that laminarin influenced the
MAPK signaling pathway and AKT but not KRAS protein levels. That is, laminarin
increased the phosphorylation of JNK and AKT and inhibited that of ERK1/2 and P38.
These results suggested that the anticancer effects of laminarin are KRAS-independent.

Colon, breast, and pancreatic cancers are generally treated with 5-FU [50,51]. Although
5-FU is potent against several types of cancer, chemoresistance and adverse effects have
become a concern [9]. The present findings of cell viability, MMP, apoptosis, mitochondrial
and cytoplasmic calcium content, and cell migration support the hypothesis that laminarin
exerts synergistic ability with 5-FU in PC. Therefore, we concluded that the effects of
laminarin are synergistic when combined with conventional anticancer drugs for PDAC.
Finally, these findings can support further studies in vivo, with respect to determining the
optimal doses of laminarin and evaluating synergistic effect with anticancer agents to treat
PDAC. However, we were unable to identify which factors correlated with the synergistic
effects. Further studies are required to determine the associated proteins and genes.

5. Conclusions

The present study revealed the underlying mechanisms through which laminarin
causes apoptotic cell death and suppresses PC cell migration. We confirmed that laminarin-
inhibited cell proliferation and migration, triggered mitochondrial dysfunction, and dis-
rupted calcium homeostasis via ROS production. Furthermore, these effects were enhanced
when laminarin was combined with 5-FU. Therefore, laminarin could be a potential thera-
peutic agent and supplementary chemotherapy for PDAC, considering these synergetic
effects. Although our findings in vitro are limited, they might serve as the basis for further
studies in vivo and the development of an innovative agent for treating PDAC.
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