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Abstract
Rare diseases affect 10% of the first- world population, yet over 95% lack even a single 
pharmaceutical treatment. In the present age of information, we need ways to leverage 
our vast data and knowledge to streamline therapeutic development and lessen this 
gap. Here, we develop and implement an innovative informatic approach to identify 
therapeutic molecules, using the Connectivity Map and LINCS L1000 databases and 
disease- associated transcriptional signatures and pathways. We apply this to cystic fi-
brosis (CF), the most common genetic disease in people of northern European ancestry 
leading to chronic lung disease and reduced lifespan. We selected and tested 120 small 
molecules in a CF cell line, finding 8 with activity, and confirmed 3 in primary CF air-
way epithelia. Although chemically diverse, the transcriptional profiles of the hits sug-
gest a common mechanism associated with the unfolded protein response and/or TNFα 
signaling. This study highlights the power of informatics to help identify new therapies 
and reveal mechanistic insights while moving beyond target- centric drug discovery.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Current therapeutic options to treat the basic cystic fibrosis (CF) defect for the most 
common mutation, ΔF508, have limited efficacy and do not benefit all individuals. 
Whereas the gold standard elexacaftor- tezacaftor- ivacaftor treatment increases FEV1 
by 13.8 points, the corrected function is still well below even carrier levels and ~ 30% 
of patients experience less than a 5% increase. Likewise, CF- related lung disease 
still persists in individuals taking ivacaftor alone. Therefore, a substantial treatment 
gap remains and improved correctors are needed to maximize pulmonary health. 
Although many in vitro strategies have been identified that can partially ameliorate 
the CF defect, the challenge remains to translate these into therapies and to under-
stand the mechanisms of such strategies.
WHAT QUESTION DID THIS STUDY ADDRESS?
Integrating gene expression and pathway information from a variety of sources, we 
aimed to identify novel molecules to rescue the trafficking defect of ΔF508- CFTR.
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mailto:
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INTRODUCTION

Cystic fibrosis (CF) is a recessive Mendelian disease affect-
ing roughly 1 in 2000 people of European ancestry, causing 
a severe and progressive lung disease characterized by per-
sistent bacterial infection, inflammation, and bronchiectasis. 
Although the genetic basis of the disease, mutations in the 
cystic fibrosis transmembrane conductance regulator (CFTR) 
gene, was identified in 1989,1 few new therapeutic options 
have advanced to the clinic based on this discovery. The most 
common mutation, ΔF508, results in a misfolded protein 
that is degraded before trafficking to the plasma membrane 
where it normally functions as an anion channel. However, 
if ΔF508- CFTR is able to reach the plasma membrane, it 
can retain channel function.2 Hence, one goal in CF research 
is to rescue the trafficking and function of this mutant pro-
tein. Toward this end, several drug combinations (identified 
by high throughput screening) have recently been approved 
by the US Food and Drug Administration (FDA) for ΔF508 
homozygous patients but show only modest efficacy.3,4 
Although elexacaftor- tezacaftor- ivacaftor treatment in pa-
tients with one ΔF508 allele and a minimal- function muta-
tion on the second allele resulted in an increased percentage 
of predicted forced expiratory volume in 1 s (FEV1) of 13.8 
points, the improved lung function was still well below even 
carrier levels.4,5 Furthermore, ~ 30% of ΔF508 homozygotes 
receiving elexacaftor- tezacaftor- ivacaftor experienced less 
than a 5% increase in FEV1 and some patients do not tolerate 
the medications.6 Likewise, although ivacaftor alone has been 
shown to improve FEV1 and decrease the rate of pulmonary 
exacerbations in patients with gating mutations, CF- related 
lung disease still persists in these patients.7– 9 Whereas other 
related drugs are being developed, a treatment gap remains 
and improved correction is required to maximize the pul-
monary health of patients. Many in vitro interventions have 
also been identified that partially rescue function of ΔF508- 
CFTR, such as low- temperature treatment2; knockdown of 
AHSA1,10 SYVN1,11 NEDD8,11 or SIN3A12; and overexpres-
sion of miR- 13812 or miR- 16.13 In parallel, since the 1989 
discovery of CFTR’s role in CF, much biological knowledge 

has accumulated about its protein structure, biosynthesis, and 
trafficking. However, the challenge remains to translate these 
interventions and insights into effective therapies and under-
stand their mechanisms of activity.

One strategy that offers promise to help bridge this gap 
is called connectivity mapping.14 Connectivity mapping 
compares disease- relevant gene expression signatures with 
a database of small molecule- induced signatures to identify 
small molecules that either mimic an established rescue in-
tervention or reverse a disease signature. To support such 
work, large public compendia of chemogenomic data have 
been assembled (namely, the Connectivity Map or “CMap”14 
and the L1000 chemical perturbation data from the Library 
of Integrated Network- based Cellular Signatures, herein 
“LINCS L1000”15) that catalog transcriptional responses 
of human cell lines treated with thousands of drugs and 
other small molecule compounds. In this work, we develop 
an integrative computational pipeline to select small mole-
cules for experimental evaluation, extending the principle 
of connectivity mapping to include both transcriptomic and 
pathway- based information. Similar approaches have been 
reported (e.g., applying connectivity mapping in the context 
of signaling pathways to identify candidate small molecules 
to treat idiopathic pulmonary fibrosis16,17 or integrating mul-
tiple disease signatures characterizing lung cancer to priori-
tize and study small molecules with common mechanisms).18 
The pipeline described herein builds on our recent work19 by 
integrating three core gene expression signatures associated 
with CF disease and in vitro rescue along with expert- curated 
pathways20 relevant to CFTR biosynthesis and trafficking.

This work is not the first to apply a connectivity map-
ping strategy to identify novel CFTR correctors, and, impor-
tantly, prior work has provided evidence to support such a 
strategy. For example, our group previously applied a con-
nectivity mapping approach using transcriptional signatures 
of miR- 138 overexpression and SIN3A knockdown in Calu- 3 
epithelial cells to query the CMap database.21 We tested 27 
small molecules and identified 4 that partially restore the 
trafficking and function of ΔF508- CFTR. In another study, 
Pesce et al. queried CMap using a signature characterizing 

the Cystic Fibrosis Foundation. We 
acknowledge the support of the In Vitro 
Models and Cell Culture Core, the Roy 
J. Carver Charitable Trust (P.B.M.) and 
Training Grant T32GM008629 (M.D.S.).

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We identified a number of novel molecules with efficacy to rescue ΔF508- CFTR in 
a CF cell line and primary cells. Post hoc analysis of the small molecule- associated 
expression profiles suggests a common mechanism across our set of chemically di-
verse molecules, involving TNFα signaling and/or induction of the unfolded protein 
response.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
This work provides a positive example of an integrative connectivity mapping ap-
proach to identify novel compounds with relevant biological activity.
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low- temperature incubation, again seeking small molecules 
that mimic this rescue signature.22 They identified several 
glucocorticoids that demonstrated rescue in CFBE cells, 
a widely used human airway epithelial cell line expressing 
ΔF508- CFTR,23 but not in primary CF airway epithelial cells. 
Malcomson et al. also used connectivity mapping to identify 
licensed drugs with TNFAIP3- induced anti- inflammatory ef-
fects. Ikarugamycin and quercetin were shown to normalize 
the inflammatory response in CF airway epithelial cells.24 
Finally, a study by Zhang et al. found that a number of cardiac 
glycosides (previously identified to rescue ΔF508- CFTR via 
high- throughput screening) induce highly similar transcrip-
tional patterns to that of low- temperature rescue of CFTR. 
Hence, although their work does not apply connectivity map-
ping, it further supports the notion that transcriptional con-
nectivity among cellular perturbations can be associated with 
CFTR rescue.25

The present study expands on such work in several ways. 
First, we cast a wider net by querying signatures from 13,000 
molecules from the LINCS L1000 dataset in addition to the 
1309 from CMap used in past studies. Second, the CF tran-
scriptional signatures that we use are derived from meta- 
analyses of multiple studies, and hence are expected to be 
of higher quality than signatures derived from individual, 
smaller- scale studies.19 Third, we develop an integrative scor-
ing approach to rank small molecules for predicted efficacy 
using multiple CF- relevant queries, including both pathways 
and transcriptional signatures and show that our integrative 
approach outperforms comparable approaches based on a 
single data source. Finally, we present an approach to com-
putationally validate our scoring strategy using previously 
identified small molecules as a validation set.

We start by briefly describing our small molecule priori-
tization pipeline and then present some in silico validation of 
the resulting rankings based on a set of 15 molecules previ-
ously identified to partially rescue ΔF508- CFTR. Then, we 
present results of selected molecules assayed in CFBE cells 
and subsequent evaluation in primary cultures of CF airway 
epithelia. Finally, we describe post hoc chemogenomic anal-
ysis to shed insight on potential mechanisms.

METHODS

Small molecule scoring and selection

Chemogenomic signature processing

Chemogenomic profiles from both CMap and LINCS L1000 
were downloaded and processed for connectivity mapping. 
First, raw data from CMap were downloaded from https://
porta ls.broad insti tute.org/cmap/ and log- transformed fold 

changes (FCs) were computed for each of the 6100 signa-
tures representing 1309 molecules profiled in 5 human can-
cer cell lines (MCF7, PC3, HL60, SKMEL5, and ssMCF7). 
Additionally, LINCS L1000 z- scores15 were downloaded 
using the lincscloud API. Only signatures labeled as “gold” 
(indicating signal strength and consistency between rep-
licates) were used, covering 13,000 unique molecules. We 
further processed the signatures in both databases to generate 
a consensus signature per small molecule/cell line combina-
tion, using the Prototype Ranked List method, as described in 
Iorio et al.,26 which combines gene rankings via the geomet-
ric mean. Quantile- normalized z- scores (for LINCS L1000) 
and FCs (for CMap) corresponding to each gene rank were 
also computed for use in the XSum score, as described in File 
S1.27

Preparation of CF signature-  and pathway- based 
gene sets

Three meta- analyses of CF disease and rescue datasets 
were performed as described in ref. 19. This resulted in 
three core signatures, namely: (1) disease, characterizing 
CF versus wild type (WT) samples from both human nasal 
and bronchial brushings, as well as tissues dissected from 
newborn pig airways; (2) low- temperature, capturing tran-
scriptional changes associated with incubating CFBE41o- 
cells at 27°C for 24 h compared with cells kept at 37°C; 
and (3) RNAi, a meta- analysis from signatures associated 
with RNAi- based interventions, including knockdown of 
SIN3A, SYVN1, and NEDD8, and overexpression of miR- 
138. From each of these 3 signatures, the top and bottom 
K differentially expressed genes (DEGs; ranked by FC) 
were extracted, where K was 50, 100, or 150 for the dis-
ease signature, and 100, 200, or 300 for both the low tem-
perature and RNAi rescue signatures (multiple values of K 
were used in order to avoid being overly dependent on a 
single choice of K, and the smaller number of DEGs se-
lected for the disease signature is due to the limited number 
of significant DEGs in this signature). DEGs were called 
based on two filters: (1) adjusted p < 0.10, 0.01, and 0.01, 
respectively, for the disease, low temperature, and RNAi 
signatures; and (2) gene representation in all or most exper-
iments that informed each meta- analysis (6, 3, and 6experi-
ments, respectively). This resulted in nine signature- based 
gene sets, corresponding to three values of K for each of the 
three signatures (see Figure 1a). To provide an additional 
input to the scoring pipeline, a set of nine expert- curated 
pathways related to CFTR processing, trafficking, and deg-
radation were selected from the CF MetaMiner platform.20 
All signature-  and pathway- based gene sets used in this 
work are listed in Table S3.

https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
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F I G U R E  1  (a) Integrative small molecule prioritization pipeline for CF therapeutic discovery. Molecules were prioritized using an aggregate 
score derived from three signatures from a prior meta- analysis19 (and using three numbers of DEGs for each signature, denoted by Ki for i in 1– 3), 
in combination with nine pathways related to CFTR processing and trafficking (denoted by Pi for i in 1– 9). Scores for each cell- specific signature 
are first collapsed across the 18 CF query gene sets, and then collapsed across cell lines tested per small molecule. Two different connectivity 
mapping metrics and two different methods for combining across cell lines, yields four distinct overall scores for each molecule. (b) Small 
molecule selection strategy. Eight small molecule rankings were generated (i.e., the 4 summary scores applied to each of the 2 databases) and are 
represented by the eight colored circles in the left half of the figure. The top 1.5% of molecules were identified from each of the 8 rankings, where 
the number of molecules in the overlap between the corresponding KS-  and XSum- based rankings are shown in the figure. All molecules in these 
overlaps were selected. Molecules that were only identified by one of KS or XSum were further filtered to only keep the top 15% (resulting in the 
numbers on the righthand side). Altogether this yielded 150 molecules, of which we tested 120 (see text). CF, cystic fibrosis; CMap, Connectivity 
Map; DEG, differentially expressed gene; LINCS, Library of Integrated Network- based Cellular Signatures
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Small molecule scoring strategy

A brief summary of our small molecule scoring approach 
is presented here; for further details see File S1. First, for 
each of the signature-  and pathway- based gene sets, con-
nectivity scores were computed to quantify the degree and 
the direction in which each small molecule alters the ex-
pression of the genes in the query gene set. In the case 
of the two rescue signatures (RNAi and low temperature), 
molecules with high, positive connectivity scores were 
sought, aiming to mimic these rescue phenotypes. For the 
disease signature, small molecules were sought that either 
mimic or reverse the signature by taking the absolute value 
of the connectivity score. Finally, in the case of the nine 
CFTR pathways, we allowed either positive or negative 
pathway regulation by taking the absolute value of these 
connectivity scores, as we did not want to impose naïve 
biases about directionality in the case of complex pathway 
modulation.

As mentioned in the results, scores were then summarized 
across the 18 CF query gene sets and then across cell lines to 
yield a unified score per small molecule predicting its rele-
vance to CFTR rescue. Based on two different connectivity 
score metrics (KS and XSum) and two different ways to sum-
marize across cell lines (CellSpecific and CellConsensus), 
this resulted in four distinct summary scores (i.e., KS- 
CellSpecific, KS- CellConsensus, XSum- CellSpecific, and 
XSum- CellConsensus) for each of the two databases, LINCS 
and CMap.

In silico validation of small molecule scores

To test the validity of the various scores generated, we 
compiled a list of 15 molecules represented in the CMap 
and/or LINCS L1000 chemogenomic databases with prior 
evidence for their ability to partially restore the traffick-
ing and/or function of ΔF508- CFTR,21,25,28– 32 although the 
“gold standard” correctors lumacaftor and elexacaftor are 
not cataloged in CMap or LINCS. We evaluated whether 
this validation set (call it C) was ranked more highly than 
a random selection of molecules of the same size. This 
was computed using the GSEA- based enrichment score 
ES(R, C) where R is the corresponding molecule ranking. 
Significance of scores was estimated using 100,000 per-
mutations of the rankings to a null distribution of scores. 
Further details are included in File S1.

Small molecule selection

We derived a scheme for selecting small molecules for ex-
perimental validation among these eight rankings (4 scores 

times 2 databases). First, the top- scoring 1.5% of small mol-
ecules were identified for each of the eight rankings (the 
specific percentile threshold was chosen so that the final list 
would yield our predefined capacity of 100– 150 small mol-
ecules.) We found that KS-  and Xsum- based rankings yielded 
substantial overlap, and we decided to keep these and further 
filter the remaining molecules to only keep the top 15% from 
each individual category (see Figure 1b). This resulted in a 
set of 150 unique molecules, from which 120 were tested (see 
File S4 for the list of molecules tested). The remaining 30 
small molecules were either not available for purchase or had 
been previously tested.

Functional screen of small molecule activity by 
conductance assay

Effects of selected small molecules were tested using 
a robotic Transepithelial Current Clamp (TECC)- 24 
assay33 with either CFBE41o- 23 or primary human CF air-
way epithelial cells grown on permeable membranes of 
Transwell plates (Corning), representing a planar array of 
24 Ussing chambers with a 6  mm diameter insert of the 
epithelial monolayer. Cells were pretreated 24 h before 
experiments with log- titrated and 0.2% DMSO- normalized 
small molecules with and without 3  μM C18, used as a 
positive control (1, 3, and 10  μM final concentration in 
250 µl top +750 µl bottom solution, at 37°C). The 10 μM 
C18 and 0.2% DMS0 were used as positive and negative 
controls, respectively. C18 is a structural analog of the 
FDA- approved Lumacaftor. Small molecules are tested 
alone to measure independent efficacy and in combination 
with C18 to test for synergy or additive effects between 
the two small molecules. For primary human CF airway 
epithelia, baseline sodium conductance was suppressed 
by addition of 3 µM benzamil apically at the 7 min mark 
of the experiment. Chloride conductance was stimulated 
with the addition of 10  µM forskolin and 1  µM VX- 770 
apically and basolaterally at the 20 min mark. Chloride 
conductance was then inhibited by the basolateral addi-
tion of 20 µM bumetanide at 80 min. A similar protocol is 
used in CFBE41o-  cells, with the only differences being 
the addition of benzamil occurs before the experiment and 
20  µM inhibitor, Inh- 172, is substituted for bumetanide. 
For primary human CF airway epithelia, the efficacy was 
quantified by the ratio of area under the curve (AUC) of 
chloride current calculated for the 60 min interval between 
additions of 10 μM forskolin and 1 µM VX- 770 (20 min) 
and 20 μM bumetanide (80 min). For CFBE41o-  cells, the 
efficacy was quantified by the AUC ratio of chloride con-
ductance calculated for the 60 min interval between addi-
tions of 10 μM forskolin and 1 µM VX- 770 (20 min) and 
20 μM Inh- 172 (80 min).
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Statistical analysis of functional screen results

AUC ratios were computed for small molecule- treated rep-
licates relative to the mean AUC of control experiments 
performed on the same plate. Experiments with evidence of 
toxicity were removed by thresholding baseline transepithe-
lial resistance less than 400 G⋅cm.2 One- sample, two- sided 
t- tests were then performed to evaluate whether AUC ratios 
were different from 1. Benjamini- Hochberg34 multiple hy-
pothesis adjustment was applied to the results of each small 
molecule. The AUC thresholds were established based on 
experience from other small molecules screened for rescue 
of ΔF508- CFTR and validated positive control small mol-
ecules. The more stringent threshold of AUC greater than 1.3 
was used for the initial screen because significance could not 
be estimated. For post hoc analysis, “inactive” was defined as 
follows: (1) the mean AUC was in the range (0.85– 1.15) for 
all 4 experiments at 1 µM and 3 µM (± C18); (2) the mean 
AUC was below 1.15 for both experiments at 10 µM (± C18).

RESULTS

Eighteen disease- relevant gene sets were compiled and 
used to query 1309 molecules from CMap and 13,000 from 
LINCS L1000, quantifying the degree to which each small 
molecule alters the expression of genes in each disease gene 
set (see Figure 1a). The 18 CF gene sets included 9 expert- 
curated pathways related to CFTR processing and traffick-
ing, as well as 9 lists of DEGs extracted from 3 signatures 
derived from meta- analyses of (1) CF versus WT pig and 
human airways, (2) low- temperature rescue of ΔF508- 
CFTR, and (3) RNAi- based rescue of ΔF508- CFTR. Scores 
were summarized across the 18 gene sets and then across cell 
lines to yield an overall score per molecule predicting its rel-
evance to CFTR rescue. Based on two different connectivity 
score metrics (KS and XSum) and two different ways to sum-
marize across cell lines (CellSpecific and CellConsensus), 
this resulted in four distinct summary scores (i.e., KS- 
CellSpecific, KS- CellConsensus, XSum- CellSpecific, and 
XSum- CellConsensus) for each of the two databases, LINCS 
and CMap. See Methods and File S1 for details.

In silico evaluation of small molecule scoring

Small molecule ranking significantly prioritizes 
known CFTR correctors

As an initial test of our scoring strategy, a list of 15 small mol-
ecules (13 of which are represented in LINCS L1000) with 
prior evidence of ΔF508- CFTR correction was compiled and 
used as a validation set (see Methods and File S1). For each 

of the summary scores as well as the individual pathway and 
signature scores, we tested whether the rankings of the known 
correctors were significantly higher than those of randomly 
selected molecules. Results are shown in Figure 2a. Figure 2a 
shows the most significant ranking, which was for one of the 
integrative scores— XSum- CellSpecific, where the validation 
set achieved an enrichment score (ES) of 0.55 in the range 
(−1 to 1; p = 1.7e- 4). Figure 2b summarizes these results for 
the eight overall rankings (in the first two columns) in addi-
tion to the individual signature-  and pathway- based rankings. 
A few observations can be made from this figure. First, we 
see that the integrative scoring strategies were generally bet-
ter than or competitive with the nonintegrative (signature and 
pathway) approaches, and this was particularly true for the 
scores using the CellSpecific approach to summarize across 
cell lines. The second observation is that the signature- based 
scores tended to have better performance than the pathway- 
based scores. Finally, we see that ranking molecules by the 
absolute value of the disease signature connectivity score 
(i.e., allowing molecules that either mimic or reverse this sig-
nature) gave better performance than using the signed score 
(“disease abs” and “disease raw” columns, respectively), 
leading us to use the former score within our integrative 
small molecule scores.

Small molecule selections are consistent between 
chemogenomic databases

As an additional sanity check, we tested whether the mol-
ecules selected from each of the two databases had a signifi-
cant overlap. Indeed, we found that among the 974 molecules 
represented in both databases, 17 were selected from CMap, 
25 from LINCS L1000, and 7 were in the intersection 
(Fisher’s exact p = 4.9e- 8).

Experimental validation

Based on these scores, 120 molecules were selected (see 
Methods for details) for an initial screen using a transepi-
thelial conductance assay to test for rescue of ΔF508- CFTR 
anion channel function in the CFBE23 cell line.

Eight molecules significantly increase CFTR- 
dependent chloride conductance in CF cell line

Of the 120 small molecules screened, 38 had a mean AUC 
ratio of at least 1.3 at one or more concentrations, alone or 
with the ΔF508- CFTR corrector compound C18, suggesting 
potential efficacy (however, the sample size did not allow 
us to make judgments on significance). Of these, 19 were 
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selected (using a triage strategy based on various factors in 
the results, such as number of significant experiments and 
maximum efficacy across the 6 experiments) for validation 
at an additional n = 3, again testing at 3 concentrations (1, 3, 
and 10 µM) both with and without corrector compound C18. 
Among these, eight small molecules demonstrated signifi-
cant efficacy (adjusted p < 0.05, AUC ratio > 1.2) for at least 
one concentration and background (see Figure 3a). Herein, 
we refer to these eight small molecules as the “CFBE hits.”

Results in primary human airway cells

Among the CFBE hits, five small molecules were selected for 
further evaluation in human primary CF airway epithelial cells, 
using the same conductance assay. Molecules were selected 
based on the combination of mean AUC and significance across 
concentrations and backgrounds (and strophanthidin was ruled 
out due to the existence of prior studies). Of these, three demon-
strated significant efficacy (adjusted p < 0.05, AUC ratio > 1.2) 
in at least one concentration and background (see Figure 3b).

Investigation of potential mechanisms for 
hit molecules

To provide insight into potential mechanisms by which 
the identified molecules partially rescue the trafficking of 

ΔF508- CFTR, we returned to their chemogenomic profiles 
from the LINCS L1000 data (i.e., the profiles that were used 
to prioritize them initially for experimentation). We focus 
first on all 8 CFBE hits and compare them to a set of 13 mole-
cules for which we felt the most confident to label as inactive 
(see Methods). A comparative enrichment analysis of the as-
sociated small molecule- induced transcriptional signatures is 
shown in Figure 4. The pathways shown were selected based 
on the criteria that they each rank in the top 10 enrichments 
for at least 2 of the 8 CFBE hits. First, we observe that there 
is marked similarity in the enrichments across hit molecules 
and also in some of the inactive molecules. We also observe 
that multiple pathways highlighted are associated with cel-
lular stress, including UV response, hypoxia, apoptosis, and 
P53 signaling. Two pathways that stand out from the results 
are “PERK- mediated UPR,” which had particularly high fold 
enrichments, and “TNFα signaling via NF- κB,” which was 
the most significant enrichment for many of the small mol-
ecules. Comparison of the fold ESs between hits and inactive 
molecules revealed that eight of these pathways were signifi-
cantly different (adjusted p < 0.05) between the two groups, 
as shown in Figure 4b. Finally, a closer look at individual 
enrichment results for the three primary hits (see Table S2) 
reveals a similar story. Most notably, upregulation of “TNFα 
signaling via NF- κB,” was by far the most significant enrich-
ment for all three molecules, with fold enrichments greater 
than or equal to 9.66 and adjusted p less than or equal to 1e- 
29 in all cases.

F I G U R E  2  In silico validation of integrative scoring strategy. (a) Ranking and corresponding enrichment of the molecules from the validation 
set that are represented in the L1000 data, based on the XSum- CellSpecific score. Numbers next to each molecule name correspond to the ranks 
(lower number means higher prioritization). (b) Overview of analogous computations performed for a variety of score types, including those from 
our integrative approach (left 2 columns) as well as the individual signature- based scores (next 4 columns), and pathway- based scores (remaining 
columns). Pathway information is included in Table S3. Signature scores indicate the mean across the three values of K. “disease_raw” indicates 
the signed score, whereas “disease_abs” indicates the ranking resulting from the absolute value of this score. CMap, Connectivity Map; LINCS, 
Library of Integrated Network- based Cellular Signatures



   | 507CHEMOGENOMIC ANALYSIS OF ΔF508- CFTR RESCUE

DISCUSSION

In this work, we describe an integrative bioinformatic pipe-
line to prioritize small molecules with predicted efficacy in 
restoring function to mutant ΔF508- CFTR. The pipeline was 
first validated computationally and then experimentally in 
both CFBE cells and primary CF cells. We identified 8 of 
120 molecules (6.7%) with modest but significant efficacy 
in CFBE cells, and 3 of these with evidence of efficacy in 
primary CF epithelial cells.

Analysis of the molecules’ chemogenomic profiles led 
us to identify eight pathways that were significantly dif-
ferentially regulated between hits versus inactive mole-
cules. In particular, this highlights PERK- mediated UPR 
and/or TNFα signaling as candidate pathways that may 
be a common mechanism among the CFBE hits. The con-
nections between the UPR and CFTR rescue are well- 
recognized,12,35– 37 and the activation of UPR is perhaps 
not that surprising given the prominence of UPR in both 
the RNAi and low temperature signatures, as discussed 
in ref. 19. Regarding TNFα signaling, there is recent evi-
dence that modulation of this pathway can positively affect 
ΔF508- CFTR trafficking and function.38

CD1530 had the most robust effects in primary cells, 
demonstrating significant improvements in chloride con-
ductance at all three concentrations compared with DMSO. 
CD1530 is a retinoic acid receptor- gamma (RARγ) agonist. 
Notably, RARγ has been previously associated with TNFα/
NF- κB signaling.39,40 Withaferin- A, also called Ashwagandha 
or Indian winter cherry, is a natural compound tradition-
ally used in Ayurvedic medicine for a variety of purposes. 
Withaferin- A has multiple bioactivities, including Hsp90 in-
hibition and induction of endoplasmic reticulum (ER) stress 
through proteasome inhibition.41 Interestingly, Withaferin- A 
also exhibits antimicrobial activity against multiple bacterial 
strains, including P. aeruginosa, the most common bacterial 
pathogen affecting individuals with CF.42 BRD- K94991378 
(also called BRD1378) was initially identified in a screen for 
inducers of reactive oxygen species (Pubchem Bioassay ID 
624156). An increase in reactive oxygen species can cause 
ER stress and subsequently UPR43,44 and hence may explain 
the rescue observed here.

The number of effective molecules observed in the chloride 
conductance assay was generally greater in CFBE cells com-
pared with primary CF cells, which is expected for this assay. 
This observation makes particular sense here in light of the 

F I G U R E  3  (a) Eight molecules significantly increase chloride conductance in CFBE cells. The ratio of the AUC of small molecule- treated 
cells compared to the AUC of control- treated cells are displayed for each of three concentrations. For the top panel, the controls (and hence the 
denominator) are AUCs from DMSO, whereas the bottom panel denominator comes from corrector compound C18- treated cells. (b) Three small 
molecules significantly increase chloride conductance in primary CF airway epithelial cells. The ratio of the AUC of small molecule- treated 
cells compared to the AUC of control- treated cells are displayed for each of three concentrations. For the top panel, the controls (and hence the 
denominator) are AUCs from DMSO, while the bottom panel denominator comes from C18- treated cells. In all figures, the horizontal bar at 1.2 
indicates our minimum threshold to be considered a hit (1.0 corresponds to no effect), and (*) indicates both an adjusted p less than 0.05 and AUC 
ratio greater than 1.2. AUC, area under the curve, CF, cystic fibrosis
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evidence for activation of UPR. As discussed above, the UPR 
has been shown to downregulate expression of endogenous 
ΔF508- CFTR (relevant in primary cells). However, the CFBE 
cell line used in the primary screen stably expresses ΔF508- 
CFTR cDNA under the control of a cytomegalovirus promoter, 
which to the best of our knowledge is not affected by UPR.

Statistical evaluation of our rankings revealed several 
findings. First, we found that the two chemogenomic da-
tabases yielded small molecule selections with significant 
overlap, demonstrating some degree of consistency between 
databases. Second, our integrative approach showed generally 
better performance than scoring strategies based on individ-
ual signatures or pathways, suggesting that data integration 
may be a fruitful path forward in future connectivity mapping 
endeavors. Finally, we found that when using the CF disease 
signature, seeking both positive and negative connections to 
small molecule signatures performed better than simply seek-
ing negative connections. We emphasize, however, that these 
results are for one specific disease context and are based on 
a relatively small number of molecules in the validation set, 
which may or may not share a common mechanism.

Our small molecule scoring approach has some limita-
tions. First, we did not consider all possible connectivity 

mapping metrics (e.g., Zhang et al.45), which may have led 
to an even better ranking. Second, whereas the signature and 
pathway integration approach used was straightforward, it did 
not take into account pathway crosstalk. However, we believe 
that identifying the maximal connectivity across multiple 
pathways is a rational approach that would rank highly those 
small molecules which induce complex effects on multiple 
disease- relevant pathways, as long as at least one pathway has 
strong transcriptional connectivity.

In summary, we used an innovative informatic approach 
incorporating disease- associated transcriptional signatures 
and pathways to query the two primary chemogenomic da-
tabases. This approach identified small molecules with ther-
apeutic activity in cystic fibrosis epithelia, partially rescuing 
ΔF508- CFTR function. This work paves the way for novel, 
integrative connectivity mapping approaches and sound val-
idation strategies for other diseases, demonstrating its power 
for lead identification and mechanistic insight.
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