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Background.  Insecticide-based vector control is responsible for reducing malaria mortality and morbidity. Its success depends 
on a better knowledge of the vector, its distribution, and resistance status to the insecticides used. In this paper, we assessed Anopheles 
gambiae sensu lato (A gambiae s.l.) population resistance to pyrethroids in different ecological settings.

Methods.  The World Health Organization standard bioassay test was used to assess F0 A gambiae s.l. susceptibility to pyreth-
roids. Biochemical Synergist assays were conducted with piperonyl butoxide (PBO), S,S,S-tributyl phosphotritioate, and diethyl mal-
eate. L1014F, L1014S, and N1575Y knockdown resistance (kdr) mutations were investigated using TaqMan genotyping.

Results.  Anopheles gambiae sensu lato was composed of Anopheles arabienisis, Anopheles coluzzii, and A gambiae in all study 
sites. Anopheles gambiae sensu lato showed a strong phenotypic resistance to deltamethrin and permethrin in all sites (13% to 41% 
mortality). In many sites, pre-exposure to synergists partially improved the mortality rate suggesting the presence of detoxifying en-
zymes. The 3 kdr (L1014F, L1014S, and N1575Y) mutations were found, with a predominance of L1014F, in all species.

Conclusions.  Multiple resistance mechanisms to pyrethroids were observed in A gambiae s.l. in Mali. The PBO provided a better 
partial restoration of susceptibility to pyrethroids, suggesting that the efficacy of long-lasting insecticidal nets may be improved with 
PBO.

Keywords.   A gambiae s.l.; insecticide resistance; Mali; pyrethroids.

The long-lasting insecticidal nets (LLINs) and indoor residual 
spraying (IRS) are at the forefront of control strategy against 
the malaria vector in sub-Sahara Africa. They have been re-
sponsible for the progress made in the reduction of malaria 
burden observed in the past 15 years. However, this progress 
is being threatened [1] partly because of the resistance of ma-
laria vectors to insecticides. One of the main factors causing 
this resistance is the wide deployment of the single class of in-
secticides, the pyrethroids, in both vector control [2] and agri-
culture for crop protection [3–5]. Indeed, because of their low 
toxicity for mammalian and rapid insecticidal activity coupled 
with their repellency or irritant effects, pyrethroids are the 

first-line recommended insecticides for both health and agri-
cultural sectors [6].

Unfortunately, there are widespread resistance malaria vec-
tors to pyrethroid in many places in Africa [7, 8] and in Mali [9, 
10]. Pyrethroid resistance may be the result of either an over-
production of detoxification enzymes (metabolic resistance) 
[11] or modification of the target site (mutation) [12], reduced 
insecticide penetration (cuticular resistance) [13], and behav-
ioral change [14]. Pyrethroids and organochlorines have the 
same site of action and act on the electrical activity of the central 
and peripheral nervous system of the insects by interacting with 
the voltage-gated sodium channel (VGSC). This is reflected in 
the insects by a “knockdown” shock effect [14]. Altered target-
site resistance is mediated through knockdown resistance 
(kdr), involving point mutations in sodium channel genes in 
the mosquito’s nervous system resulting in cross-resistance to 
pyrethroids and dichlorodiphenyltrichloroethane [12, 15]. This 
mutation can lead to the substitution of the leucine with the 
phenylalanine at the 1014 site (L1014F), or the leucine with the 
serine (L1014S) [16]. The first one was first described in West 
Africa and is called Kdr West (Kdr-W) [17], and the second was 
first reported in East Africa [18] and is called Kdr East (Kdr-E). 
Nowadays, Kdr-W can be found in East [16, 19] and Central 
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Africa [20–22] and Kdr-E can be found in West Africa [23–25]. 
Besides these 2 mutations, a new one (N1575Y), which appears 
on the background of Kdr-W and reinforces its action, was re-
ported [26]. This mutation is the substitution of the tyrosine 
with asparagine at position 1575 of the domain III-IV of VGSC 
of A gambiae [26]. The L1014F and the L1014S mutations have 
been described in several localities in Mali [10, 27–30], but not 
the N1575Y mutation.

In the LLNs-based malaria vector control context, close sur-
veillance of vector population susceptibility to pyrethroid and 
the detection of its underlying mechanisms are essential for 
insecticides resistance management adapted to the local con-
ditions. In this study, we investigated Anopheles gambiae sensu 
lato (A gambiae s.l.) population susceptibility to pyrethroids 
and the mechanisms underlying phenotypic resistance (target-
site mutation and metabolic).

MATERIALS AND METHODS

Study Sites

This study was conducted in the following villages: Koula 
(7.65W, 13.12N) and Karadié (7.60W, 13.24N) in Koulikoro 
health district; Kolondialan (7.51W, 13.49N) and N’galamadibi 
(7.48W, 13.48N) in Banamba health district; and Dangassa 
(8.20W, 12.15N) in the health district of Ouéléssébougou 

(Figure 1). In each of these localities, herbicides and pesticides 
are widely used in agriculture. Anopheles gambiae sensu lato is 
the major malaria vector in all of the villages, and vector con-
trol strategy is mainly based on the use of LLINs. Since 2014, 
LLINs coverage was scaled up to universal (2 people for 1 net) 
coverage through mass-distribution campaigns. From 2008 to 
2016, IRS was added to LLINs in Koulikoro, one of the selected 
health districts of the US President Malaria Initiative in Mali.

Insecticide Susceptibility Bioassays

Anopheles gambiae sensu lato larvae (L1 to L4) and nymphs were 
collected in various larval breeding sites found in and around 
each study village by dipping [31] and pooled by site. Collected 
larvae were then transported and kept in the insectary at the 
Malaria Research and Training Center (MRTC) in Bamako 
(temperature, 25–28°C and humidity, 70%–80%) where they 
were raised to adults. Three- to five-day-old adult female were 
used for the insecticide susceptibility tests [32]. Insecticides 
used in this study were deltamethrin (0.05%) and permethrin 
(0.75%). The number of knockdown mosquitoes was recorded 
in the course of exposure to the insecticide at 5, 10, 15, 20, 30, 40, 
50, and 60 minutes. Survivors after 1-hour exposure were hold 
in control tubes, kept in the insectary, and fed with 10% sugar 
solution. Their mortality rate was calculated 24 hours from the 
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Figure 1.  Mali map showing the location of the 5 study sites.
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end of exposure. Just after exposure, dead specimens were pre-
served on silica gel, the 24-hour postexposition survivors were 
preserved in DNALater, and both were kept in a −20°C freezer 
until deoxyribonucleic acid (DNA) extraction. Synergist tests 
were performed by exposing mosquitoes to impregnated papers 
with 4% piperonyl butoxide ([PBO] an inhibitor of oxidases 
[33]), 0.25% S,S,S-tributyl phosphorothioate ([DEF] an inhib-
itor of esterases), and 8% diethyl maleate ([DEM] an inhibitor 
of glutathione S-transferase [GST]) 1 hour before exposure to 
deltamethrin and permethrin [32].

Molecular Identification and Knockdown Resistance Genotyping

Alive and part of the dead mosquito DNAs were individually 
extracted using the Livak extraction protocol [34]. The species 
composition of A gambiae s.l. (Anopheles arabiensis, Anopheles 
coluzzii, and A gambiae) was done using the technique of 
Santolamazza et al [35]. TaqMan SNP genotyping assays for the 
entire target markers (L1014F, L1014S, and N1575Y) were per-
formed in 10 μL total volume containing 2× quantitative poly-
merase chain reaction (qPCR) Sensimix (Bioline), 80× primer/
probe mix, nuclease-free water, and 1 μL template DNA. Probes 
were labeled with 2 specific fluorescent dyes, FAM and HEX. 
The reporter dye, FAM, is used to detect homozygous-resistant 
genotypes (RR), whereas the quencher fluorescent dye, HEX, 
is used for the detection of homozygous-susceptible geno-
types (SS). Both FAM and HEX are also specific for the de-
tection of heterozygous resistant/susceptible genotypes (RS). 
Amplifications were performed in an Agilent MX3000 real-
time qPCR machine with cycling conditions of 95°C for 10 min-
utes, followed by 40 cycles at 95°C for 10 seconds and 60°C for 
45 seconds. FAM and HEX fluorescence are captured at the end 
of each cycle, and genotypes are called from endpoint fluores-
cence using the Agilent MXPro software.

Statistical Analysis

The bioassays results were calculated as percentage of mor-
talities with 95% confidence interval of mean and inter-
preted based on the World Health Organization protocol [32]. 
Mortalities from synergist-pyrethroid exposure were compared 
with those obtained from exposure to pyrethroid alone using 
Pearson χ 2 tests, as implemented in GraphPad Prism 8.3.0, with 

a level of significance set at P < .05. The effect of synergists on 
the mean mortality rates was estimated using the generalized 
linear mixed model in RStudio 1.2.5033 with a quasibinomial 
approach. Allelic frequencies of the Kdr resistance genes were 
calculated in dead and alive mosquitoes using the following 
formula: F (R) nRS+2X(nRR)

2N , where n = total number of mosqui-
toes carrying a given genotype, RR = total number of homozy-
gote resistant, RS = total number of heterozygote resistant, and 
N = total number of mosquitoes investigated. A Fisher’s exact 
test was used in MedCalc easy-to-use online statistical software 
to test for differences between Kdr mutations genotypes in dead 
and alive mosquitoes [36].

Ethical Considerations

The protocol of this project has been approved by the Ethics 
Committee of FMPOS/USTTB under the letter Nº2014/51/CE/
FMPOS. The research activities related to this protocol were 
carried out in accordance with good clinical research practice 
in humans and good laboratory practice as set out in the in-
ternational conventions (Helsinki Declaration; International 
Conference on the Harmonization of Good Practice in 
Biomedical Research). All of our researchers were trained in 
good clinical and laboratory practice during the research. In the 
field, the community (administrative, customary authorities) 
was informed of all aspects of the study.

RESULTS

Distribution of Sibling Species of the Anopheles gambiae sensu lato by 

Site and in Dead and Live Mosquitoes in 2016

A total of 725 specimens of A gambiae s.l. derived from sample 
bioassays including dead and survivors were randomly selected 
for species identification by PCR. Overall, A gambiae s.l. was 
composed of A arabiensis (29.8%), A coluzzii (35.9%), and A 
gambiae (34.3%) (Table  1). Anopheles gambiae was more fre-
quent in the localities of Karadié, N’Galamadibi, Kolondialan; 
A coluzzii was more frequent in Dangassa; and A arabiensis 
was more frequent in Koula. Anopheles arabiensis was the 
main species in the IRS zone compared with the zone without 
IRS. The prevalence of A arabiensis was significantly higher 
(χ 2 = 13.79, P = .0002) in the IRS zone (44.9%, N = 123) com-
pared with the non-IRS zone (20.6%, N = 93%). In contrast, A 

Table 1.   Species Composition of 3 Members of the Anopheles gambiae sensu lato in 5 Localities in Mali in 2016

Localities

Anopheles arabiensis Anopheles coluzzii Anopheles gambiae

N % N % N %

Koula 91 49.7 46 25.1 46 25.1

Karadié 32 35.2 15 16.5 44 48.4

Kolondialan 24 26.1 31 33.7 37 40.2

N’Galamadibi 58 32.0 44 24.3 79 43.6

Dangassa 11 6.2 124 69.7 43 24.2

Total 216 29.8 260 35.9 249 34.3
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coluzzii was the most prevalent species (χ 2 = 9.21, P = .0024) in 
the non-IRS zone (44%, N = 199) compared with the IRS zone 
(22.3%, N = 61). For A gambiae, there no significant difference 
(χ 2 = 0.230, P = .6316) between the IRS (32%, N = 90) and the 
non-IRS zone (35%, N = 159).

Resistance Phenotypes and the Effect of Pre-Exposure to Synergists

Before starting with the susceptibility bioassays, we performed a 
bioefficacy test of the insecticide-impregnated papers using the 
known susceptible strain of Kisumu, where 100% mortality was ob-
served for both permethrin insecticide-impregnated papers. In the 
localities where tests were performed, we observed a strong pheno-
typic resistance to permethrin, with mortality rates ranging from 
25% to 43.5%. A total of 26 replicates of susceptibility bioassay tests 
(8 with deltamethrin alone and 18 with synergist DEF, DEM, or 
PBO) were performed. In all of the replicate tests, mortality rates in 
controls did not exceeded 2%. Strong phenotypic resistance was ob-
served in all study sites with deltamethrin alone (Figure 2). There 
was a significant difference (P < .01) when comparing mortality rates 
with deltamethrin alone and synergist deltamethrin at all sites ex-
cept for Koula village, where no significant difference was observed 
(P = .4080). The PBO-deltamethrin association showed a significant 
increase (P < .01) in mortality rates at Karadié (84.0% vs 15.0%), 
N’Galamadibi (91.0% vs 20.0), and Dangassa (87.0% vs 13.0%), sug-
gesting the implication of metabolic resistance (oxydases) in addi-
tion to the Kdr mutations. The slight increase in mortality (51.0% 
vs 24.2%) observed at Kolondialan with the DEF deltamethrin sug-
gests the implication of esterase resistance mechanism at this site. In 

summary, among the different synergists tested, the PBO showed the 
highest increase in the overall mortality of the A gambiae s.l. popula-
tion (P ≤ .01) in the 5 study sites (Figure 3).

The limited number of larvae obtained in the field did not 
allow us to perform susceptibility bioassay tests with per-
methrin alone and/or synergist permethrin in all localities. In 
the localities where tests were performed, we observed a strong 
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phenotypic resistance to permethrin and deltamethrin, with 
mortality rates ranging from 25% to 43.5%.

Genotyping and Allelic Distribution of Knockdown Resistance L1014F and 

L1014S Mutation in the Anopheles gambiae sensu lato Population From All 

Sites in 2016

The L1014F mutation was detected in the 3 species of A 
gambiae s.l. (A arabiensis, A coluzzii, and A gambiae). There 
was site-to-site variation in the resistance allele frequency, with 
the highest being observed in Dangassa for all species (Table 2). 
The overall frequency of the resistant allele was significantly 
higher (P < .01) in A coluzzii (43.2%) and A gambiae (42.6%) 
compared with A arabiensis (16.3%).

In contrast with its sister mutation L1014F, the frequency 
of the resistance allele of the L1014S Kdr mutation was signifi-
cantly higher (P < .01) in A arabiensis (11.7%) compared with 
A coluzzii (2.0%) and A gambiae (2.1%). Koula site showed the 
highest frequency (16.86%) of this allelic frequency, which was 
not detected in Kolondialan.

The N1575Y Kdr mutation was detected in all sites, and in 
all the species, except for A arabiensis in N’Galamadibi and 
Dangassa. Overall, the resistance allele frequency of this muta-
tion was significantly higher (P < .01) in A coluzzii (12.1%) and 
A gambiae (10.3%) compared with A arabiensis (2.5%).

Role of L1014F, L1014S, and N1575Y Mutations in Pyrethroid Resistance

We observed a change in the allelic frequency of the 3 Kdr muta-
tions in the dead and the survivors after exposure to the insecticide 
in all localities and all species (Tables 2–4). The L1014F mutation 
was present in A arabiensis in all localities with a higher allelic fre-
quency in survivors compared with dead mosquitoes in almost all 
sites except Karadié and N’Galamadibi; however, there was no sta-
tistical difference between their allelic frequencies (P > .05). Still, in 
A arabiensis, the L1014S mutation was absent in Kolondialan and 
Dangassa in the dead and survivors and only in the Karadié dead. 
The L1014S frequency in survivors of A arabiensis was higher than 
in dead specimens in Koula and N’Galamadibi. However, there was 
no statistical difference (P > .05). The N1575Y mutation was absent 
in the A arabiensis specimens from the localities of Dangassa and 
N’Galamadibi. It was present in the other sites with allelic frequen-
cies varying between 1.11% and 15.19% (Table 4). The frequency of 
the L1014F mutation in A coluzzii was higher in postexposure sur-
vivors than in the dead (Table 3). However, we did not observe a sta-
tistical difference between the 2 proportions (P > .05). On the other 
hand, this mutation was not present among the dead in Karadié. 
The L1014S mutation was not found in A coluzzii at Karadié and 
Kolondialan. In N’Galamadibi and Dangassa, it was found only in 
our samples of A coluzzii dead. In Koula, the frequency of L1014S 
was higher among the dead than among the survivors. N1575Y was 
present in survivors of A coluzzii populations and absent in sam-
ples taken after death in this species (Table 4) to Koula, Karadié, 
and Kolondialan. The frequency of the N1575Y R allele was greater Ta
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in survivors compared with deaths. However, there was no statis-
tical difference between these 2 frequencies in N’Galamadibi and 
Dangassa (P ≥ .3232).

The frequency of the Kdr-W mutation in A gambiae (Table 3) 
was higher in survivors compared with that in all sites except 
Koula, with no statistical difference observed (P > .05). In Koula, 
it was statistically higher in the surviving populations com-
pared with that of deaths (P = .0064). The Kdr-E was missing 
from our A gambiae samples in Kolondialan and Dangassa. In 
Koula, its allelic frequency was greater among the dead than 
among the survivors without statistical difference (P = .6598). 
On the other hand, in Karadié, the Kdr-E was absent from the 
specimens of A gambiae dead. The N1575Y mutation was ab-
sent from the Koula and Karadié insecticide samples (Table 4). 
The frequency of its resistant allele was significantly greater in 
deaths compared with the survivors of A gambiae (P > .05) in 
Kolondialan and Dangassa.

DISCUSSION

In this study, we investigated the susceptibility of A gambiae 
s.l. populations to pyrethroids (permethrin and deltamethrin) 
and determined the resistance mechanisms (target site muta-
tion and metabolism) underlying the phenotypic resistance in 
3 health districts. We observed a high phenotypic resistance of 
A gambiae s.l. in all investigated sites, which is in line with the 
current trend of pyrethroid resistance spreading in the major 
malaria vectors across the continent [21, 37–41]. The previously 
reported explanation for this has been the selection pressure 
due to the widespread use of pyrethroids in both malaria vec-
tors and agricultural pests control [39, 42–44]. Indeed, the wide 
deployment of pyrethroid-based control tools in vector control 
and the noncompliance with best agricultural pesticides man-
agement practices by farmers exercise constant selection pres-
sure on anopheline mosquitoes [45].

Among the different synergists tested, the PBO (inhibitor of 
cytochrome P450 enzymes) showed an important partial resto-
ration of A gambiae s.l. population sensitivity to deltamethrin in 
Karadie, N’Galamadibi, and Dangassa. A slight, partial restora-
tion was also observed with the DEF (inhibitor of esterases) at 

Kolondialan and DEM (inhibitor of GST) at N’Galamadibi. This 
suggests the presence of all 3 metabolic resistance mechanisms 
in 1 or most of our study sites in addition to the different Kdr 
mutations (responsible for pyrethroids insecticide resistance) 
[33]. Cytochrome P450 is implicated the most among the 3.

The 3 species of A gambiae s.l. (A gambiae, A coluzzii, and 
A arabiensis) were found in sympatry in the different study lo-
calities as commonly reported in Mali [10, 46]. However, there 
was a variation in their frequency distribution by localities be-
cause of variation in local conditions, with each species having 
specific preferences. Anopheles coluzzii was the predominant 
species in Dangassa, and A gambiae was the predominant spe-
cies in Karadié, N’Galamadibi, and Kolondialan. The diversity 
of the composition of A gambiae s.l. in the study sites could be 
due to an interspecific exclusion competition between the 3 spe-
cies [47]. The high frequency of A coluzzii in Dangassa could 
be due to the presence of the flooding plain between the village 
and the River Niger used for rain-fed rice growing that offer fa-
vorable permanent and semi-permanent breeding habitats for 
this species [41, 46]. Several works in Mali and elsewhere have 
shown the predominance of A coluzzii in rice-growing areas 
[25, 48–50]. The predominance of A gambiae and A arabiensis 
in Karadié, N’Galamadibi, and Kolondialan could be explained 
by the presence of numerous favorable breeding sites (such as 
brick pits and puddles) for the development of these species.

Our study showed a high Kdr_W (L1014F) resistance allele 
frequency in all species at all sites. This is consistent with the 
results observed in several West African countries [30, 40, 51, 
52]. The Kdr_E (L1014S) resistance allele was also detected in 
the 3 species of A gambiae s.l. This allele, originating from East 
Africa, was recently reported in many Central and West African 
countries [23, 25, 53, 54]. Recent studies have reported its pres-
ence in A gambiae and A coluzzii in Mali [29, 55]. However, to 
our knowledge, this is the first report of its presence in wild A 
arabiensis.

Our data showed a relatively high prevalence of the 1575Y 
resistance allele in A coluzzii and A gambiae species, as recently 
reported by Mavridis et  al [55] in Mali and in several other 
countries of West Africa [24–26, 56]; however, this is the first 

Table 4.   N1575Y Allele Frequencies in Alive and Dead Samples of 3 Species of the Anopheles gambiae sensu lato After Exposure to Deltamethrin

Localities

Anopheles arabiensis Anopheles coluzzii Anopheles gambiae

N1575Y Freq (N) N1575Y Freq (N) N1575Y Freq (N)

Alive Dead Alive Dead Alive Dead

Koula 0.00 (45) 1.11 (45) 11.76 (34) 0.00 (12) 6.00 (25) 0.00 (20)

Karadié 6.52 (23) 0.00 (8) 3.57 (14) 0.00 (1) 12.50 (40) 0.00 (2)

N’Galamadibi 0.00 (26) 0.00 (25) 17.65 (17) 7.14 (21) 6.00 (50) 7.89 (19)

Kolondialan 0.00 (1) 15.79 (19) 7.89 (19) 0.00 (7) 17.24 (49) 58.33 (6)

Dangassa 0.00 (2) 0.00 (9) 17.13 (108) 12.50 (16) 9.46 (37) 16.67 (6)

Abbreviations: Freq, frequency.
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report in A arabiensis specimens in Mali. The presence of the 3 
Kdr mutations coupled with the partial restoration of suscepti-
bility when mosquitoes were pre-exposed to PBO indicate the 
involvement of both molecular and metabolic resistance mech-
anisms to pyrethroids in Mali.

CONCLUSIONS

This study showed a widespread and high phenotypic resist-
ance of A gambiae s.l. species to pyrethroids. Both target-site 
mutation and metabolic resistance mechanisms were un-
derlying this resistance in the 3 species of A gambiae s.l. in 
Mali. Besides the Kdr_W mutation, to our knowledge, this is 
the first report to describe the presence of the N1575Y and 
the Kdr E in A arabiensis in Mali. A process that includes a 
good insecticide resistance management strategy under a 
multisectoral system is needed to mitigate the spread of mul-
tiple resistance mechanisms of malaria vectors insecticides 
in Mali.
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