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Abstract
Japanese encephalitis is a flaviviral disease that is endemic to the South,
Southeast Asia, and Asia Oceania regions. Given that about 60% of the world’s
population (about 7.4 billion) resides in this region (about 4.4 billion), this
disease poses a significant threat to global health. Active vaccination
campaigns conducted in endemic countries have led to a decrease in the
number of reported cases over the years. In this article, we strive to briefly
highlight recent advances in understanding the role of microRNAs in disease
pathology, focus on providing brief summaries of recent clinical trials in the field
of Japanese encephalitis therapeutics, and review the current prophylactic
strategies.
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Ecology and epidemiology of Japanese encephalitis
Japanese encephalitis (JE) is a mosquito-borne flaviviral disease, 
primarily affecting children between the ages of 0 to 15 years and 
occasionally adults. The enzootic life cycle of the virus results in 
its transmission to vertebrate hosts by mosquitoes, mainly belong-
ing to the Culex sp. Ardeid birds and bats serve as virus reservoirs. 
Humans are “dead end hosts” as the virus cannot be transmitted 
from one infected person to another1. Pigs serve as amplification 
hosts as the virus aggressively replicates, resulting in viremia 
with a very high viral titer. Usually, infected pig–to–non-infected 
pig transmission was thought to be carried out by the mosquitoes.  
However, a recent investigation reports that viral transfer between 
pigs could be independent of the vector. It was reported that  
oronasal secretion of pigs contains the JE virus (JEV) at sufficiently 
high titers so as to infect another naïve animal2. This could explain 
the viral persistence in pigs during winter, when there is a decrease 
in the vector population. This also means that vector control would 
not be a sufficient measure to arrest the spread of the disease in 
cases of outbreak. According to the World Health Organization 
(WHO), annually there are about 67,900 global cases of JE, of 
which 20–30% are fatal, and 30–50% of survivors have significant 
neurological sequelae3. The current endemic region of JE encom-
passes the entire South, Southeast Asia, eastern parts of the Russian 
Federation, parts of Australia, and a few Western Pacific islands 
such as Saipan and Papua New Guinea. In cases of human infection, 
the virus rapidly infects the central nervous system (CNS), result-
ing in severe neuroinflammation and ultimately neuronal death.  
Concomitantly, JEV disrupt the neural stem/progenitor cell pool 
in the germinal niches of the CNS and their efficacy at generating 
functional neurons, thereby stalling the neuronal repair4.

MicroRNAs: the new players in the field
MicroRNAs (miRNAs) are small (about 22-nucleotide) non-coding  
RNAs that are involved in RNA-directed gene expression regula-
tion in a wide spectrum of biological systems. Viruses are known 
to manipulate host miRNA expression for their replication, propa-
gation, or immune evasion5. Flaviviruses are known to generate 
viral sub-genomic RNAs in infected cells and to modulate cellular 
miRNAs6,7. The earliest studies relating miRNAs and flaviviruses 
primarily focused on attenuation of neuro-virulence of the viruses 
by insertion of miRNA targets within the viral genome, thereby 
making them ideal candidates for vaccine development8,9. A cou-
ple of years ago, we first reported a causal role of miRNAs in  
JEV-induced neuroinflammation. We observed that miRNA-29b 
was significantly increased in mouse microglial cells following 
infection. MiRNA-29b was predicted to target tumor necrosis 
factor alpha–induced protein 3, a negative regulator of the nuclear 
factor kappa B (NFκB) signaling pathway. As microglia is involved 
in modulating CNS inflammation, our study suggested a role of 
miRNA-29b in such processes10. Later, miRNA-155 was also 
identified to stimulate the NFκB pathway through activation of 
TANK-binding kinase 1 (TBK-1) via inhibition of SHIP1 protein 

in cultured mouse and human microglial cells as well as in brain 
samples11. However, somewhat contradictory to this finding, another 
study reported that in the human microglial cell line, induction of 
miRNA-155 reduced JEV-induced innate immune gene expression 
and probably limited viral replication12. MiRNA-146a was found 
to be overexpressed in microglia during JEV infection, leading 
to suppression of NFκB activity and inhibition of the anti-viral 
JAK-STAT pathway, thus helping the virus to evade the host’s 
innate immune mechanism. Interestingly, this mechanism seemed 
to be virus strain–specific; whereas the JaOArS982 strain of the 
virus led to induction of miRNA-146a, the P20778 strain had the 
exact contradictory effect in the same model13. Another study 
reported that miRNA-15b is overexpressed in microglial cells and, 
in mouse brain as a whole during JEV infection, inhibited ring finger  
protein 125 (a negative regulator of RIG-I signaling), thereby lead-
ing to a higher production of pro-inflammatory cytokines and type I  
interferons. Knockdown of virus-induced miRNA-15b attenu-
ated the pro-inflammatory response and had multiple pro-survival 
effects in the JEV-infected mouse model14. Mechanistically, it was 
shown that the virus-induced expression of miRNA-15b is modu-
lated by NFκB subunit c-Rel and cAMP-response element-binding 
protein (CREB) in response to JEV infection15. Similarly, miRNA-
19b-3p has been reported to positively regulate the JEV-induced 
inflammatory response in mouse brain and specifically glial cells 
by targeting ring finger protein 11, a negative regulator of NFκB 
signaling. Inhibition of ring finger protein 11 by miRNA-19b-3p 
activated NFκB pathway, which in turn led to higher production 
of inflammatory cyto/chemokines during infection16. MiRNA-432 
and miRNA-370 are examples of miRNAs that are downregulated 
in mouse brain and microglial cell lines following infection with 
JEV17,18. The SOCS5 gene is negatively regulated by miRNA-432,  
and during JEV infection SOCS5 is upregulated, leading to nega-
tive regulation of the anti-viral JAK-STAT pathway which helps 
in viral immune evasion. MiRNA-370 has been suggested to 
negatively regulate NFκB-mediated inflammatory pathways and 
interferon production. Thus, JEV-induced downregulation of this 
miRNA would facilitate inflammatory and anti-viral pathways 
in microglial cells. However, in in vitro conditions, a miR-370 
mimic was found to inhibit replication of JEV, which is contrary 
to its proposed mechanism of action18. JEV infection of HEK293 
(human embryonic kidney cell line) resulted in downregulation of 
miRNA-33a-5p, which acts as a regulator of eukaryotic translation 
elongation factor 1A1 (EEF1A1). EEF1A1 binds to and stabi-
lizes the viral replicase complex consisting of the NS3 and NS5  
proteins, thereby facilitating JEV replication19. Another recent study 
reported the role of miRNA-124 in JEV infection20. MiRNA-124 
is highly expressed in neurons and has recently been reported to 
be one of many (113) miRNAs to be differentially expressed in 
porcine cells infected with JEV21. Its expression is upregulated in 
JEV-infected swine testis cells. Overexpression of miRNA-124 
in PK15 (porcine kidney 15) cells resulted in inhibition of repli-
cation of the infecting JEV. MiRNA-124 was found to target the 
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dynamin 2 (DNM2) gene of the host cell which produces a GTPase  
responsible for vesicle scission. MiRNA-124 possibly negatively 
regulates DNM2 production, thereby depriving access to the  
cellular membrane vesicular system which is required for viral  
replication and propagation22,23 and thus is part of the host response 
aimed at limiting JEV infection. Another miRNA that is likely to 
be involved in the regulation of neuroinflammation following JEV 
infection is miRNA-22. MiRNA-22 has recently been reported to 
be induced in glial cells after treatment with polyinosinic:poly-
cytidylic acid (poly I:C) (double-stranded RNA mimetic) which 
potentially results in inhibition of pro-inflammatory cyto/chemok-
ines and suppresses anti-viral interferon responses by acting upon 
mitochondrial anti-viral signaling protein (MAVS)24. Interestingly, 
MAVS lies downstream of the RIG-I-STING pathway of JEV sens-
ing which leads to activation of interferon responses25,26. Thus, any 
JEV-induced upregulation of miRNA-22 would facilitate survival 
of the virus in host cells. In this context, it should be noted that type 
1 interferon response has been shown to impart protection against 
flavivirus (including JEV)-mediated cytotoxicity in glial cells27.

Subsequent to the identification of roles that these miRNAs play 
in regulating inflammation or viral replication, investigations 
have been carried out to identify miRNAs that are differentially 
expressed in a particular cell type or organ following JEV infection 
and the pathways affected by them18,21,28–30. These investigations 
have led to detection of more than a thousand different miRNAs 
(known or novel) to be differentially expressed in JE. The genes 
or pathways affected by these are being worked out; some of them 
are pathways in cancer, the neurotrophin signaling pathway, the 
Toll-like receptor signaling pathway, the Notch signaling pathways, 
and the JAK-STAT signaling pathway. In exosomes isolated from 
cerebrospinal fluid of JEV-infected human subjects, miR-21-5p, 
miR-150-5p, and miR-342-3p levels were found to be elevated, a 
trend that is also observed in infected mice brain31. Bioinformatic 
analysis for putative target genes of these three miRNAs indicated 
the involvement of transforming growth factor-beta (TGF-β), nerve 
growth factor (NGF), axon guidance, and mitogen-activated pro-
tein kinase (MAPK) signaling pathways31. Thus, a vista of novel 
information has begun to be available that would help in better 
understanding the molecular pathology of JE and hopefully also in 
developing newer therapeutic interventions.

Therapeutic approach to Japanese encephalitis: dark 
clouds with silver linings
More than a century of research has not been able to develop an 
effective therapeutic countermeasure to tackle JE (or any other 
flavivirus for that matter). In many cases, promising drugs/ 
molecules that have been found to be efficacious in in vitro or  
in vivo animal models either were not deemed suitable for or failed to 
replicate their success in actual human trials. Supplementary Table 1  
(an updated version of a similar table in a book chapter by the same 
authors32) gives a detailed list of all those drugs/molecules that have 

been reported to date to counter JE in various models of the dis-
ease. Clinical trials involving administration of dexamethasone33, 
interferon alpha 2a34, and ribavirin35 were not successful. However, 
three recent trials with two different drugs or molecules hold prom-
ise for further investigations. The first of them is minocycline, a 
second-generation tetracycline antibiotic whose protective role in 
JE has been investigated and reported by our group during the last 
8 years36–41. A concise description of the probable mechanisms of 
action of minocycline can be found in a review we authored a few 
years ago42. A culmination of those efforts was the first randomized 
placebo-controlled clinical trial of minocycline administration to 
patients with JE conducted in the pediatrics department of King 
George’s Medical University, in Lucknow, in the Indian state of 
Uttar Pradesh. Owing to logistic constraints, the subject recruit-
ment criteria encompassed all cases falling under acute encepha-
litis syndrome (AES)43. AES is characterized by abrupt onset of 
fever and often is accompanied with headache and vomiting fol-
lowed by convulsions. Thus, in many cases when the patients were  
hospitalized or enrolled for the trial, they were in a coma and were 
hemodynamically unstable. Minocycline (or placebo) was adminis-
tered as suspension through a nasogastric tube for 7 days at a loading 
dose of 5 mg/kg per day followed by 2.5 mg/kg every 12 hours in 
children up to 12 years old and a 200 mg loading dose followed 
by 100 mg every 12 hours in older patients. A total of 140 patients 
received minocycline and 141 received placebo. Even though there 
was not a statistically significant difference in survival between 
the drug and placebo groups, when the Glasgow Outcome Score at 
3 months after discharge was compared between survivors of 
the two groups, there was a clear significant improvement with 
minocycline. Moreover, if the data from patients who succumbed 
within 24 hours of hospitalization/enrollment were excluded, then 
significantly better overall outcome was observed at 3 months 
in those receiving minocycline along with a trend toward lower 
cumulative mortality.

The second trial with minocycline was conducted in the Baba 
Raghav Das Medical College, in Gorakhpur, also in the Indian state 
of Uttar Pradesh, on a much smaller population; only 44 patients 
were enrolled. However, this study included only confirmed cases 
of JE. The dosage of minocycline used for this study was 5 to 6 
mg/kg in two divided doses administered for 10 days through a 
feeding tube, which was started from the day of hospitalization/
enrollment. At the conclusion of the trial, it was observed that 
minocycline was effective in reducing the duration of symptoms 
like fever and unconsciousness and the mean duration of hospi-
talization. However, owing to the small sample size and the avail-
ability of advanced life support and the early referral facility of 
patients from remote areas, decreased mortality and increased full 
clinical recovery observed in the drug-treated group could not be  
statistically correlated with treatment alone44. The other significant 
difference of this study from the previous one is in the methodol-
ogy used to evaluate neurological deficits and behavioral outcomes. 
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Whereas the earlier study used the Glasgow outcome scoring45, this 
study used the Liverpool outcome scoring, devised specifically to 
assess neurological disability in patients with JE46.

The third report was from a feasibility study conducted in Nepal, 
involving administration of intravenous immunoglobulin (IVIG) to 
patients with JE47. Theoretically, IVIG purified from pooled plasma 
of healthy donors from JE-endemic zones would have high titers 
of specific neutralizing antibody, as a large part of the popula-
tion is postulated to have been exposed to the virus, and thus have 
antibodies48,49. In fact, IVIG that is not hyper-immune to JEV has 
already been reported to impart therapeutic benefits in the recovery 
from JE50. This concept has also been adopted for West Nile virus 
infection with some success51,52. A comparison was done between 
IVIG collected from four different commercial sources (two from 
India and two from China), and the one that showed maximum 50% 
plaque reduction neutralization titers against wild-type JEV infect-
ing a standard culture of Vero cells was chosen for the study. A 
small group of children (11 per group; ages between 1 and 14 years) 
manifesting symptoms of AES was recruited for the study and  
randomly divided into IVIG and placebo groups. IVIG administra-
tion is an onerous process requiring trained personnel and constant 
monitoring. It is delivered using a syringe driver, initially at a low 
infusion rate, which can be increased over time if the treatment 
is well tolerated. In this study, the AES-affected patients received 
either IVIG at a dose of 400 mg/kg per day for 5 days or an 
equivalent volume of 0.9% normal saline. The initial infusion rate 
was kept at 0.01 to 0.02 mL/kg body weight/minute and, if well 
tolerated, was gradually increased over 30 to 60 minutes to a 
maximum rate of 0.08 mL/kg body weight/minute. At hospital 
discharge, most of the patients belonging to either group demon-
strated major sequelae; at 3- to 6-month follow-up, 45% in the 
IVIG group and 18% in the placebo group exhibited complete 
recovery (no neurological sequelae). However, no significant 
difference was observed between the two groups when analyzed 
by intention-to-treat to determine the proportion of patients 
exhibiting complete recovery either at hospital discharge or at  
follow-up. JEV neutralizing antibody titers were expectedly higher 
in patients who received IVIG compared with placebo. The other 
interesting aspect of IVIG is its ability to induce anti-inflamma-
tory responses in the subjects non-specifically, usually by sup-
pression of various pro-inflammatory mediators, including cyto/ 
chemokines, and metalloproteinases53. In this trial, the investigators 
report that the level of interleukin-4 (IL-4) was found to be signifi-
cantly elevated in IVIG-treated patients. IL-4 is a complex cytokine 
that affects various regulatory pathways54 and its higher levels have 
been detected in survivors of JE as compared with non-survivors55. 
Thus, in summary, it can be said that all three trials, despite their 
limitations, do provide hope for the future when we might be able 
to counter JE therapeutically.

Apart from drugs that target the virus or disease pathologies, 
those that could possibly boost the host’s endogenous anti-viral  
mechanisms could also provide a novel approach to anti-viral  
therapy. As indicated earlier, type I interferons (IFN-α/β) are potent 
anti-viral proteins synthesized as a response to viral infection and 
lead to the production of a broad range of anti-viral proteins and 
immunoactive cytokines56. The 2′,5′-oligoadenylate synthetase is 
one such protein that has been reported to be effective in inhibit-
ing flaviviral replication57. An important class of interferon-induced 
proteins are the members of the tripartite motif-containing (TRIM) 
protein superfamily that are now known to be involved in a broad 
range of biological processes associated with innate immunity. 
Recently, TRIM52, a unique member of the C-V sub-family of 
TRIM proteins, was reported to impart anti-JEV activity by targeting  
and degrading JEV non-structural protein 2A, a part of the viral 
replication complex58. Another novel therapeutic approach could 
involve the CRISPR/Cas9 system to target a specific nucleotide 
sequence of the viral genome. This technique has already been suc-
cessfully tried in experimental conditions on some human viruses 
and soon may be part of a comprehensive therapy for viral infec-
tions59.

Prevention is better than cure
Immunization policy against JEV has been implemented in most 
of the countries in the endemic zone, and as a result, there has 
been a decline in the number of cases and the fatality ratio due 
to the disease. The first-generation vaccines that were used were 
mouse brain-derived and were made from either Nakayama or 
Beijing-1 virus strains. These were highly efficacious and exten-
sively employed in multiple countries for mass immunization. 
However, uncertainty over duration of protection, requirement 
of multiple booster doses, and rare reports of acute disseminated 
encephalomyelitis temporally associated with this type of vaccine 
resulted in the search for a newer generation of vaccines with a 
better safety profile. The current crop of JE vaccines are either 
inactivated Vero (African green monkey kidney epithelial) cell-
based (JEBIK V, ENCEVAC, JEVAC, IXIARO/JESPECT, JEEV, 
and JENVAC) or PHK (primary hamster kidney) cell-based live 
attenuated (SA-14-14-2 CD.JEVAX) vaccines. The fourth type that 
is currently available is a recombinant chimeric virus vaccine. It 
was developed using the YFV17D vaccine vector of Yellow fever 
virus by replacing the cDNA encoding the envelope proteins of YFV 
with that of an attenuated SA14-14-2 strain of JEV (IMOJEV). This 
vaccine has also been found to be safe for use as a booster dose 
in children who have been previously immunized with the live 
attenuated vaccine60. A detailed description of the characteris-
tics, properties, and required dosages of these vaccines is avail-
able from the background paper on JE vaccines published by the  
Strategic Advisory Group of Experts of the WHO in 201461. A con-
cise idea can be generated from Appendix 4 of the same report. 
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Based on the model of recombinant chimeric virus vaccine, a new 
recombinant modified vaccinia virus (Ankara) vaccine expressing 
JEV prM/E has been recently reported to be efficacious in mice 
models. Interestingly, when this vaccine was administered via a 
sub-lingual route, it elicited a protective immune response compa-
rable to the one administered by the usual intramuscular route62. 
A similar approach involving baculovirus vectors and subsequent 
immunization of mice also imparted protection against infection63.

Among the various vaccines currently available, IMOJEV and 
SA-14-14-2 CD.JEVAX in single doses have been shown to elicit 
identical seroconversion and seroprotection rates64; a single dose of 
IMOJEV also induced protective immunity similar to that induced 
in adults by three doses of a mouse brain-derived inactivated JE 
vaccine65. Another study comparing usage of JENVAC (two 
doses, 28 days apart) and SA-14-14-2 CD.JEVAX (one dose) 
showed greater seroconversion and seroprotection in case of  
immunization with the former66. However, this kind of compari-
son between an inactivated vaccine and a live attenuated vaccine is  
necessarily skewed and thus cannot be considered to be the basis 
for efficacy.

In spite of effective vaccine availability in almost all of the 
countries coming under the endemic region, there are reported 
cases of JE every year from many of them. Lack of awareness 
about the disease and lax immunization schedules could be 
blamed to a certain extent67. Moreover, there is a possibility of JE 
affecting adults, especially in virgin areas, where there is low 
natural immunity against the virus68,69. Another cause of concern 
is the emergence of other genotypes of JEV in particular areas. 
There are five genotypes of JEV (I, II, III, IV, and V) currently cir-
culating in the endemic regions. Genotypes IV and V are the oldest 
whereas I, II, and III are newer. Genotype III JEV was once domi-
nant across all of the South and Southeast Asia and was most 

frequently isolated in JE-endemic areas until the 1990s. However, 
a gradual shift from genotype III to I has occurred in many such 
regions over the last three or four decades70,71. With this shift in 
genotype patterns comes a concern of vaccine efficacy. Almost all 
of the currently available vaccines are developed against genotype 
III strains of JEV. Even though studies have shown that these are 
still effective against genotype I72, concerns remain for their effec-
tiveness against genotype V virus73. Thus, to summarize, we can 
say that the war is still raging and will be continued until JE is 
defeated.
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