organic compounds

 $0.40 \times 0.20 \times 0.10 \text{ mm}$

48636 measured reflections 2127 independent reflections 1803 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.049$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Redetermination of 5-iodouracil

Gustavo Portalone

Chemistry Department, 'Sapienza' University of Rome, P. le A. Moro, 5, I-00185 Rome, Italy

Correspondence e-mail: g.portalone@caspur.it

Received 18 December 2007: accepted 21 December 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.025; *wR* factor = 0.072; data-to-parameter ratio = 24.7.

The title compound (systematic name: 2,4-dihydroxy-5-iodopyrimidine), C₄H₃IN₂O₂, which was first reported by Sternglanz, Freeman & Bugg [Acta Cryst. (1975), B31, 1393-1395], has been redetermined, providing a significant increase in the precision of the derived geometric parameters. The asymmetric unit comprises a non-planar molecule in a slightly distorted B₂₅ boat conformation. The molecules are associated in the crystal structure to form ribbons stabilized by N-H···O hydrogen bonds which involve NH groups and two carbonyl O atoms.

Related literature

For the previous structure determination, see: Sternglanz et al. (1975). For a general approach to the use of multiplehydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents, see: Portalone et al. (1999); Brunetti et al. (2000, 2002); Portalone & Colapietro (2007, and references therein). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999). the B₂₅ boat confromation is defined by Cremer & Pople (1975).

For related literature, see: Portalone et al. (2002).

Experimental

Crystal data

$C_4H_3IN_2O_2$
$M_r = 237.98$
Monoclinic, P2 ₁
a = 4.89650 (18) Å
b = 4.45921 (13) Å

c = 14.2167 (2) Å $\beta = 92.341 \ (2)^{\circ}$ V = 310.16 (1) Å³ Z = 2Mo Ka radiation

μ =	5.08 mm^{-1}
T =	298 (2) K

Data collection

Oxford Diffraction Xcalibur S CCD
diffractometer
Absorption correction: multi-scan
(SCALE3 ABSPACK; Oxford
Diffraction, 2006).
$T_{\min} = 0.252, \ T_{\max} = 0.602$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.071$	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.03 \ {\rm e} \ {\rm \AA}^{-3}$
2127 reflections	Absolute structure: Flack (1983)
86 parameters	934 Friedel pairs
1 restraint	Flack parameter: -0.01 (2)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O2 ⁱ	0.88	2.22	2.897 (3)	133
$N3-H3\cdots O1^{ii}$	0.86	1.92	2.767 (3)	170
		(**)	1	

Symmetry codes: (i) x + 1, y - 1, z; (ii) -x + 1, $y + \frac{1}{2}$, -z + 2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX.

The author thanks MIUR (Rome) for financial support in 2006 of the project 'X-ray diffractometry and spectrometry'.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2237).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Brunetti, B., Piacente, V. & Portalone, G. (2000). J. Chem. Eng. Data, 45, 242-246
- Brunetti, B., Piacente, V. & Portalone, G. (2002). J. Chem. Eng. Data, 47, 17-19..
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55,
- 1044-1056
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED, including ABSPACK. Versions 1.171.32.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Portalone, G., Ballirano, P. & Maras, A. (2002). J. Mol. Struct. 608, 35-39.
- Portalone, G., Bencivenni, L., Colapietro, M., Pieretti, A. & Ramondo, F. (1999). Acta Chem. Scand. 53, 57-68.
- Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, 0650-0654.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sternglanz, H., Freeman, G. R. & Bugg, C. E. (1975). Acta Cryst. B31, 1393-1395.

supplementary materials

Acta Cryst. (2008). E64, o365 [doi:10.1107/S1600536807068043]

Redetermination of 5-iodouracil

G. Portalone

Comment

5-iodouracil, 5IUrac, was determined some 30 years ago (Sternglanz *et al.*, 1975). In this study, 591 unique reflections were collected at ambient temperature on an automatic diffractometer, and the heavy-atom method was employed to solve the crystal structure. Only non-H atoms were localized and refined. The final refinement, carried out on a fairly small data set, led to R = 0.044, a data-to-parameter ratio of 7.2, S = 2.52 and standard deviations of 0.018Å in C—C bond lengths and 0.9° in bond angles, As a part of a more general study of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents (Brunetti *et al.*, 2000, 2002; Portalone *et al.*, 1999; Portalone *et al.*, 2002; Portalone & Colapietro, 2007), this paper reports a redetermination of the crystal structure of the title compound, (I), with greater precision and accuracy. The asymmetric unit of (I) comprises a non-planar independent molecule (Fig. 1) in a slightly distorted B₂₅ boat conformation (Cremer & Pople, 1975). Analysis of the crystal packing of (I), (Fig. 2), shows that the structure is stabilized by two intermolecular N—H…O interactions of descriptor C¹₁(3) (Etter *et al.*, 1990; Bernstein *et al.*, 1995; Motherwell *et al.*, 1999) (Table 1) between NH moieties and two carbonyl O atoms (O2ⁱ and O1ⁱⁱ) [symmetry code: (i) x + 1, y - 1, z; (ii) -x + 1, y + 1/2, -z + 2] which link the molecules into ribbons.

Experimental

The title compound (0.1 mmol, Sigma Aldrich at 98% purity) was dissolved in water (6 ml) and heated under reflux for 1 h. After cooling the solution to ambient temperature, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent.

Refinement

The H atoms were included in the riding model approximation with C—H = 0.96 Å and N—H = 0.86-0.88 Å, and with refined isotropic displacement parameters.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level.

Fig. 2. Crystal packing diagram for (I) viewed approximately down c. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.

2,4-dihydroxy-5-iodopyrimidine

Crystal data	
$C_4H_3IN_2O_2$	$F_{000} = 220$
$M_r = 237.98$	$D_{\rm x} = 2.548 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: P 2yb	Cell parameters from 29638 reflections
<i>a</i> = 4.89650 (18) Å	$\theta = 2.9 - 32.4^{\circ}$
<i>b</i> = 4.45921 (13) Å	$\mu = 5.08 \text{ mm}^{-1}$
c = 14.2167 (2) Å	T = 298 (2) K
$\beta = 92.341 \ (2)^{\circ}$	Tablets, colourless
$V = 310.157 (15) \text{ Å}^3$	$0.40\times0.20\times0.10~mm$
Z = 2	

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer	2127 independent reflections
Radiation source: Enhance (Mo) X-ray source	1803 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.049$
Detector resolution: 16.0696 pixels mm ⁻¹	$\theta_{\text{max}} = 32.4^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.9^{\circ}$
ω and ϕ scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006), Empirical absorption correction using spherical harmonics, im- plemented in SCALE3 ABSPACK scaling algorithm	$k = -6 \rightarrow 6$
$T_{\min} = 0.252, T_{\max} = 0.602$	$l = -21 \rightarrow 21$
48636 measured reflections	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.025$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0471P)^{2} + 0.0442P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\text{max}} = 0.002$

 $wR(F^2) = 0.071$

<i>S</i> = 1.04	$\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$
2127 reflections	$\Delta \rho_{min} = -0.03 \text{ e } \text{\AA}^{-3}$
86 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 934 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.01 (2)
\mathbf{C}	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.75060 (5)	0.9092	0.595431 (10)	0.05858 (9)
01	0.7917 (3)	0.3946 (8)	0.99376 (14)	0.0427 (4)
O2	0.4156 (4)	1.0571 (5)	0.78388 (17)	0.0399 (4)
N1	0.9717 (4)	0.4223 (8)	0.84883 (14)	0.0309 (3)
H1	1.097	0.289	0.8642	0.037 (9)*
C2	0.7939 (5)	0.5077 (6)	0.91511 (19)	0.0295 (4)
N3	0.6128 (4)	0.7269 (5)	0.88650 (15)	0.0291 (4)
Н3	0.5025	0.7887	0.9279	0.058 (12)*
C4	0.5871 (4)	0.8604 (5)	0.79868 (16)	0.0279 (5)
C5	0.7757 (5)	0.7440 (6)	0.73108 (17)	0.0310 (4)
C6	0.9626 (5)	0.5361 (6)	0.75921 (19)	0.0310 (4)
H6	1.0922	0.4663	0.7153	0.032 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.09427 (18)	0.05428 (13)	0.02713 (9)	0.00258 (15)	0.00173 (8)	0.00149 (12)
O1	0.0349 (8)	0.0491 (11)	0.0446 (9)	0.0025 (12)	0.0084 (6)	0.0184 (14)
O2	0.0367 (10)	0.0376 (10)	0.0451 (11)	0.0138 (8)	-0.0008 (8)	0.0023 (8)
N1	0.0250 (7)	0.0282 (8)	0.0396 (9)	0.0038 (11)	0.0016 (6)	-0.0020 (13)
C2	0.0226 (9)	0.0279 (9)	0.0381 (12)	-0.0016 (7)	0.0017 (8)	0.0041 (8)
N3	0.0260 (9)	0.0294 (9)	0.0322 (10)	0.0052 (8)	0.0058 (7)	-0.0008 (8)
C4	0.0255 (9)	0.0272 (14)	0.0308 (9)	0.0021 (8)	-0.0004 (7)	-0.0011 (8)
C5	0.0370 (11)	0.0305 (12)	0.0254 (10)	0.0009 (9)	0.0026 (8)	-0.0041 (8)
C6	0.0295 (10)	0.0306 (10)	0.0333 (11)	0.0000 (8)	0.0042 (8)	-0.0084 (9)

Geometric parameters (Å, °)

I1—C5	2.063 (2)	C2—N3	1.370 (3)
O1—C2	1.227 (3)	N3—C4	1.384 (3)
O2—C4	1.226 (3)	N3—H3	0.8600
N1—C2	1.363 (3)	C4—C5	1.456 (3)
N1—C6	1.370 (4)	C5—C6	1.351 (4)
N1—H1	0.8762	С6—Н6	0.9600
C2—N1—C6	122.8 (3)	O2—C4—N3	119.9 (2)
C2—N1—H1	118.6	O2—C4—C5	126.2 (2)
C6—N1—H1	118.6	N3—C4—C5	113.9 (2)
01—C2—N1	123.0 (3)	C6—C5—C4	119.3 (2)
O1—C2—N3	122.3 (3)	C6—C5—I1	122.37 (19)
N1—C2—N3	114.7 (2)	C4—C5—I1	118.33 (17)
C2—N3—C4	127.5 (2)	C5—C6—N1	121.7 (2)
С2—N3—H3	116.3	С5—С6—Н6	119.2
C4—N3—H3	116.3	N1—C6—H6	119.2
C6-N1-C2-O1	175.9 (3)	N3—C4—C5—C6	-3.4 (3)
C6—N1—C2—N3	-2.9 (4)	O2—C4—C5—I1	-2.2 (3)
O1—C2—N3—C4	-176.7 (3)	N3—C4—C5—I1	177.51 (16)
N1-C2-N3-C4	2.1 (4)	C4—C5—C6—N1	2.8 (4)
C2—N3—C4—O2	-179.3 (2)	I1—C5—C6—N1	-178.1 (2)
C2—N3—C4—C5	0.9 (3)	C2—N1—C6—C5	0.5 (4)
O2—C4—C5—C6	176.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1····O2 ⁱ	0.88	2.22	2.897 (3)	133
N3—H3····O1 ⁱⁱ	0.86	1.92	2.767 (3)	170
$(1, \dots, (1, \dots, (1, \dots, (1)))) + (1, \dots, (1, \dots$	12 12			

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) -*x*+1, *y*+1/2, -*z*+2.

