metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[(2,2'-bipyridine)(μ_3 -7-oxabicyclo-[2.2.1]heptane-2,3-dicarboxylato)cadmium] monohydrate]

Ling-Ling Zhang,^a Shi-Kun Li,^{a,b} Jie Feng^a and Qiu-Yue Lin^{a,b}*

^aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and ^bZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China Correspondence e-mail: sky51@zjnu.cn

Received 21 April 2011; accepted 8 September 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.022; wR factor = 0.059; data-to-parameter ratio = 15.9.

The title compound, $\{[Cd(C_8H_8O_5)(C_{10}H_8N_2)] \cdot H_2O\}_n$, was obtained by the reaction of cadmium acetate with 2,2'bipyridine and 7-oxabicyclo(2.2.1)heptane-2,3-dicarboxylic anhydride. The Cd^{II} atom is seven-coordinated in a distorted pentagonal-bipyramidal configuration, defined by five O atoms from the carboxylate groups of three 7-oxabicyclo-[2.2.1]heptane-2,3-dicarboxylato ligands and two N atoms from the 2,2'-bipyridine ligand. Two O atoms link two Cd^{II} atoms, forming a dinuclear center: the Cd-O-Cd bridging angle is 110.19 (6)°. The polymeric structure extends along [100] and is linked by intermolecular $O-H \cdots O$ hydrogen bonds involving the solvent water molecule. Extensive $\pi - \pi$ stacking exists between 2,2-bypiridine ligands along [010] with centroid-centroid distance of 3.650 (2) Å

Related literature

For background to the applications of norcantharidin [systematic name: 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride], see: Wang et al. (1989). F or related structures, see: Yin et al. (2003); Wang et al. (2009).

 $\gamma = 102.749 \ (1)^{\circ}$

Z = 2

V = 867.94 (2) Å³

Mo $K\alpha$ radiation

 $0.33 \times 0.14 \times 0.07 \text{ mm}$

13190 measured reflections

3972 independent reflections

3699 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.30 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.021$

refinement

 $\Delta \rho_{\text{max}} = 0.34 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Experimental

Crystal data

[Cd(C₈H₈O₅)(C₁₀H₈N₂)]·H₂O $M_{-} = 470.75$ Triclinic, $P\overline{1}$ a = 8.2599 (1) Å b = 10.5950 (2) Å c = 11.1097 (2) Å $\alpha = 111.784(1)^{\circ}$ $\beta = 94.066 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.803, T_{\max} = 0.918$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.059$ S = 0.953972 reflections 250 parameters 3 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} O1W-H1WA\cdots O3^{i}\\ O1W-H1WA\cdots O1W^{ii} \end{array} $	0.92 (2)	2.19 (4)	2.980 (4)	144 (5)
	0.92 (2)	2.38 (6)	2.833 (8)	110 (5)

Symmetry codes: (i) -x, -y, -z; (ii) -x + 1, -y, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from the undergraduate innovative project of Zhejiang Province, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2016).

References

Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Wang, G.-S. (1989). J. Ethnopharmacol. 26, 147–162.
Wang, N., Wang, Y.-J. & Lin, Q.-Y. (2009). Acta Cryst. E65, m782.

Yin, F.-L., Shen, J., Zou, J.-J. & Li, R.-C. (2003). Acta Chim. Sin. 61, 556–561.

Acta Cryst. (2011). E67, m1390-m1391 [doi:10.1107/S1600536811036634]

Poly[[(2,2'-bipyridine)(μ_3 -7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)cadmium] monohydrate]

L.-L. Zhang, S.-K. Li, J. Feng and Q.-Y. Lin

Comment

7-oxabicyclo(2,2,1)heptane-2,3-dicarboxylic anhydride (norcantharidin) is a variety of pharmacologically important compound such as protein kinase inhibitors and antitumor properties (Wang, 1989). Demethylcantharate is the acid radical of norcantharidin. A copper complex of 2,2'-bipyridine and demethylcantharate was reported (Yin *et al.*, 2003); and a similar cadmium complex of demethylcantharate (Wang *et al.*, 2009) has been reported.

Cadmium acetate can react with 2,2'-bipyridine and norcantharidin to form the title compound. X-ray crystallography measurement confirmed the molecular structure and the atom connectivity for the title compound (Fig. 1). The cadmium atom is seven-coordinated in a distorted pentagonal bipyramidal configuration, defined by five oxygen atoms (O1,O2,O1A,O3B,O4B) from carboxylate groups of three demethylcantharates and two nitrogen atoms (N1,N2) from 2,2'-bipyridine. O1 and O1A link two cadmium atoms(Cd1,Cd1A) to form a dinuclear center, and the The angle of the bridging O1(Cd1—O1—Cd1A)), is 110.19 (6)°.Each demethylcantharate acts as a four-coordinated bridging linker that connects two cadmium centers.

It showed that the polymeric molecules grow in [100] direction, and are linked by H-bonds(O1W—H1WA···O3; O1W—H1WA···O1W) to form a plane. Extensive pi-stacking is observed between 2,2-bypiridine ligands propagated along [010], linking the planes with the distance between planes of 3.4738 Å.

Experimental

A mixture of 0.5 mmol norcantharidin, 0.5 mmol 2,2'-bipyridine,0.5 mmol cadmium acetate and 10 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 433 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block shaped colorless transparent crystals were obtained.

Refinement

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic of tertiary carbon C—H = 0.98 Å, aliphatic of secondary carbon C—H = 0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability, hydrogen atoms and water molecules were omitted.

$Poly[[(2,2'-bipyridine)(\mu_3-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)cadmium] \ monohydrate]$

Crystal data	
$[Cd(C_8H_8O_5)(C_{10}H_8N_2)]\cdot H_2O$	Z = 2
$M_r = 470.75$	F(000) = 472
Triclinic, <i>P</i> T	$D_{\rm x} = 1.801 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.2599 (1) Å	Cell parameters from 7860 reflections
b = 10.5950 (2) Å	$\theta = 2.0-27.6^{\circ}$
c = 11.1097 (2) Å	$\mu = 1.30 \text{ mm}^{-1}$
$\alpha = 111.784 \ (1)^{\circ}$	T = 296 K
$\beta = 94.066 \ (1)^{\circ}$	Block, colourless
$\gamma = 102.749 \ (1)^{\circ}$	$0.33\times0.14\times0.07~mm$
$V = 867.94 (2) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD diffractometer	3972 independent reflections
Radiation source: fine-focus sealed tube	3699 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
ω scans	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.803, \ T_{\max} = 0.918$	$k = -13 \rightarrow 13$
13190 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.059$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.95	$w = 1/[\sigma^2(F_o^2) + (0.0358P)^2 + 0.509P]$ where $P = (F_o^2 + 2F_c^2)/3$

3972 reflections	$(\Delta/\sigma)_{max} < 0.001$
250 parameters	$\Delta\rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.622884 (17)	0.135016 (14)	0.438680 (14)	0.02838 (6)
N1	0.7226 (2)	0.34613 (18)	0.41261 (17)	0.0312 (4)
N2	0.5919 (2)	0.32243 (19)	0.62096 (18)	0.0329 (4)
O1W	0.4578 (5)	0.1298 (4)	0.0551 (3)	0.1174 (12)
H1WA	0.411 (7)	0.057 (5)	-0.024 (3)	0.176*
H1WB	0.400 (8)	0.088 (6)	0.104 (5)	0.176*
01	0.37311 (19)	-0.02140 (17)	0.40538 (16)	0.0371 (3)
O2	0.3303 (2)	0.11060 (18)	0.30183 (19)	0.0449 (4)
03	-0.3040 (2)	-0.0038 (2)	0.22846 (18)	0.0500 (5)
O4	-0.1199 (2)	0.09023 (19)	0.40964 (15)	0.0432 (4)
O5	-0.0940 (2)	-0.27932 (18)	0.14335 (18)	0.0474 (4)
C1	0.2765 (2)	0.0124 (2)	0.33481 (19)	0.0274 (4)
C2	0.0974 (2)	-0.0774 (2)	0.29330 (19)	0.0267 (4)
H2A	0.0520	-0.0788	0.3721	0.032*
C3	0.0822 (3)	-0.2314 (2)	0.1986 (2)	0.0361 (5)
H3A	0.1177	-0.2882	0.2426	0.043*
C4	0.1675 (3)	-0.2356 (3)	0.0796 (2)	0.0452 (6)
H4A	0.1784	-0.3293	0.0290	0.054*
H4B	0.2776	-0.1685	0.1058	0.054*
C5	0.0417 (4)	-0.1935 (4)	0.0024 (3)	0.0565 (7)
H5A	0.0937	-0.1068	-0.0067	0.068*
H5B	-0.0049	-0.2675	-0.0841	0.068*
C6	-0.0928 (3)	-0.1738 (3)	0.0910(2)	0.0439 (6)
H6A	-0.2029	-0.1827	0.0448	0.053*
C7	-0.0255 (3)	-0.0357 (2)	0.21353 (19)	0.0296 (4)
H7A	0.0382	0.0371	0.1878	0.036*
C8	-0.1600 (3)	0.0185 (2)	0.2884 (2)	0.0305 (4)
C9	0.7903 (3)	0.3532 (3)	0.3088 (2)	0.0402 (5)
H9A	0.7896	0.2695	0.2400	0.048*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C10	0.8609 (3)	0.4784 (3)	0.2992 (3)	0.0465 (6)
H10A	0.9063	0.4794	0.2252	0.056*
C11	0.8631 (4)	0.6025 (3)	0.4012 (3)	0.0477 (6)
H11A	0.9115	0.6889	0.3979	0.057*
C12	0.7923 (3)	0.5967 (2)	0.5088 (2)	0.0407 (5)
H12A	0.7914	0.6793	0.5784	0.049*
C13	0.7229 (3)	0.4670 (2)	0.5117 (2)	0.0295 (4)
C14	0.6425 (3)	0.4529 (2)	0.6236 (2)	0.0295 (4)
C15	0.6177 (3)	0.5688 (2)	0.7256 (2)	0.0393 (5)
H15A	0.6548	0.6591	0.7273	0.047*
C16	0.5372 (4)	0.5476 (3)	0.8235 (2)	0.0476 (6)
H16A	0.5199	0.6237	0.8924	0.057*
C17	0.4825 (3)	0.4128 (3)	0.8190 (2)	0.0463 (6)
H17A	0.4261	0.3964	0.8835	0.056*
C18	0.5134 (3)	0.3037 (3)	0.7171 (2)	0.0410 (5)
H18A	0.4784	0.2129	0.7145	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02580 (9)	0.02276 (9)	0.03633 (9)	0.00709 (6)	0.00848 (6)	0.01055 (6)
N1	0.0303 (9)	0.0274 (9)	0.0358 (9)	0.0080 (7)	0.0086 (7)	0.0118 (7)
N2	0.0360 (10)	0.0287 (9)	0.0367 (9)	0.0109 (7)	0.0097 (8)	0.0139 (7)
O1W	0.152 (3)	0.093 (2)	0.087 (2)	0.012 (2)	-0.004 (2)	0.0295 (18)
01	0.0269 (8)	0.0421 (9)	0.0458 (9)	0.0071 (6)	0.0014 (6)	0.0233 (7)
O2	0.0348 (9)	0.0379 (9)	0.0687 (11)	0.0044 (7)	0.0074 (8)	0.0317 (8)
O3	0.0282 (8)	0.0570 (11)	0.0526 (10)	0.0190 (8)	0.0038 (7)	0.0047 (8)
O4	0.0451 (10)	0.0547 (10)	0.0328 (8)	0.0276 (8)	0.0114 (7)	0.0118 (7)
O5	0.0317 (9)	0.0380 (9)	0.0558 (10)	0.0016 (7)	0.0018 (7)	0.0058 (8)
C1	0.0246 (9)	0.0265 (10)	0.0305 (9)	0.0095 (7)	0.0078 (8)	0.0086 (8)
C2	0.0238 (9)	0.0296 (10)	0.0299 (9)	0.0072 (8)	0.0074 (7)	0.0147 (8)
C3	0.0306 (11)	0.0291 (11)	0.0454 (12)	0.0065 (8)	0.0051 (9)	0.0122 (9)
C4	0.0414 (13)	0.0494 (14)	0.0414 (12)	0.0219 (11)	0.0124 (10)	0.0078 (11)
C5	0.0595 (17)	0.078 (2)	0.0342 (12)	0.0364 (15)	0.0134 (12)	0.0131 (13)
C6	0.0334 (12)	0.0545 (15)	0.0339 (11)	0.0177 (11)	-0.0002 (9)	0.0042 (10)
C7	0.0254 (10)	0.0361 (11)	0.0298 (9)	0.0104 (8)	0.0068 (8)	0.0144 (8)
C8	0.0291 (10)	0.0288 (10)	0.0385 (11)	0.0101 (8)	0.0113 (8)	0.0163 (9)
C9	0.0457 (13)	0.0340 (12)	0.0401 (12)	0.0102 (10)	0.0141 (10)	0.0130 (10)
C10	0.0549 (15)	0.0436 (14)	0.0423 (13)	0.0054 (11)	0.0162 (11)	0.0212 (11)
C11	0.0589 (16)	0.0339 (13)	0.0485 (14)	-0.0002 (11)	0.0099 (12)	0.0214 (11)
C12	0.0507 (14)	0.0261 (11)	0.0401 (12)	0.0038 (10)	0.0052 (10)	0.0115 (9)
C13	0.0264 (10)	0.0273 (10)	0.0334 (10)	0.0066 (8)	0.0009 (8)	0.0117 (8)
C14	0.0283 (10)	0.0273 (10)	0.0324 (10)	0.0087 (8)	0.0017 (8)	0.0110 (8)
C15	0.0475 (13)	0.0276 (11)	0.0396 (12)	0.0107 (9)	0.0082 (10)	0.0091 (9)
C16	0.0561 (16)	0.0411 (14)	0.0384 (12)	0.0153 (11)	0.0118 (11)	0.0058 (10)
C17	0.0537 (15)	0.0497 (15)	0.0385 (12)	0.0149 (12)	0.0174 (11)	0.0186 (11)
C18	0.0489 (14)	0.0344 (12)	0.0436 (12)	0.0112 (10)	0.0156 (11)	0.0183 (10)

Geometric parameters (Å, °)

Cd1—O1	2.2511 (15)	С3—НЗА	0.9800
Cd1—O4 ⁱ	2.2963 (16)	C4—C5	1.541 (4)
Cd1—N2	2.3285 (18)	С4—Н4А	0.9700
Cd1—N1	2.3382 (17)	C4—H4B	0.9700
Cd1—O1 ⁱⁱ	2.4513 (15)	C5—C6	1.534 (3)
Cd1—O3 ⁱ	2.4546 (17)	C5—H5A	0.9700
Cd1—O2	2.6704 (17)	С5—Н5В	0.9700
Cd1—C8 ⁱ	2.720 (2)	C6—C7	1.535 (3)
Cd1—C1	2.826 (2)	С6—Н6А	0.9800
N1—C9	1.336 (3)	С7—С8	1.521 (3)
N1—C13	1.343 (3)	С7—Н7А	0.9800
N2—C18	1.341 (3)	C8—Cd1 ⁱⁱⁱ	2.720 (2)
N2—C14	1.341 (3)	C9—C10	1.373 (3)
O1W—H1WA	0.915 (19)	С9—Н9А	0.9300
O1W—H1WB	0.922 (19)	C10-C11	1.377 (4)
O1—C1	1.275 (2)	C10—H10A	0.9300
O1—Cd1 ⁱⁱ	2.4513 (15)	C11—C12	1.383 (3)
O2—C1	1.232 (3)	C11—H11A	0.9300
O3—C8	1.249 (3)	C12—C13	1.381 (3)
O3—Cd1 ⁱⁱⁱ	2.4546 (17)	C12—H12A	0.9300
O4—C8	1.252 (3)	C13—C14	1.490 (3)
O4—Cd1 ⁱⁱⁱ	2.2963 (16)	C14—C15	1.395 (3)
O5—C3	1.438 (3)	C15—C16	1.376 (4)
O5—C6	1.438 (3)	C15—H15A	0.9300
C1—C2	1.504 (3)	C16—C17	1.380 (4)
C2—C7	1.540 (3)	C16—H16A	0.9300
C2—C3	1.550 (3)	C17—C18	1.373 (3)
C2—H2A	0.9800	C17—H17A	0.9300
C3—C4	1.533 (3)	C18—H18A	0.9300
O1-Cd1-O4 ⁱ	127.85 (6)	С7—С2—Н2А	108.5
O1—Cd1—N2	99.82 (6)	C3—C2—H2A	108.5
O4 ⁱ —Cd1—N2	121.75 (6)	O5—C3—C4	102.84 (19)
O1—Cd1—N1	137.35 (6)	O5—C3—C2	101.22 (16)
O4 ⁱ —Cd1—N1	88.94 (6)	C4—C3—C2	110.98 (19)
N2—Cd1—N1	70.49 (6)	O5—C3—H3A	113.6
O1—Cd1—O1 ⁱⁱ	69.81 (6)	С4—С3—НЗА	113.6
O4 ⁱ —Cd1—O1 ⁱⁱ	84.38 (6)	С2—С3—НЗА	113.6
N2—Cd1—O1 ⁱⁱ	83.14 (6)	C3—C4—C5	101.08 (19)
N1—Cd1—O1 ⁱⁱ	143.93 (6)	C3—C4—H4A	111.6
O1—Cd1—O3 ⁱ	93.72 (6)	С5—С4—Н4А	111.6
O4 ⁱ —Cd1—O3 ⁱ	54.58 (6)	C3—C4—H4B	111.6
N2—Cd1—O3 ⁱ	162.62 (7)	С5—С4—Н4В	111.6

N1—Cd1—O3 ⁱ	92.16 (7)	H4A—C4—H4B	109.4
O1 ⁱⁱ —Cd1—O3 ⁱ	111.97 (6)	C6—C5—C4	101.4 (2)
O1—Cd1—O2	51.77 (5)	С6—С5—Н5А	111.5
O4 ⁱ —Cd1—O2	141.20 (6)	С4—С5—Н5А	111.5
N2—Cd1—O2	92.73 (6)	С6—С5—Н5В	111.5
N1—Cd1—O2	86.47 (5)	C4—C5—H5B	111.5
O1 ⁱⁱ —Cd1—O2	119.82 (5)	H5A—C5—H5B	109.3
O3 ⁱ —Cd1—O2	87.10 (6)	O5—C6—C5	102.7 (2)
O1—Cd1—C8 ⁱ	112.42 (6)	O5—C6—C7	102.64 (18)
O4 ⁱ —Cd1—C8 ⁱ	27.27 (6)	C5—C6—C7	109.6 (2)
N2—Cd1—C8 ⁱ	146.41 (7)	O5—C6—H6A	113.6
N1—Cd1—C8 ⁱ	90.67 (6)	С5—С6—Н6А	113.6
O1 ⁱⁱ —Cd1—C8 ⁱ	98.88 (6)	С7—С6—Н6А	113.6
O3 ⁱ —Cd1—C8 ⁱ	27.32 (6)	C8—C7—C6	114.70 (18)
O2—Cd1—C8 ⁱ	114.24 (6)	C8—C7—C2	113.22 (16)
O1—Cd1—C1	26.07 (5)	C6—C7—C2	101.20 (17)
O4 ⁱ —Cd1—C1	140.84 (6)	С8—С7—Н7А	109.1
N2—Cd1—C1	96.88 (6)	С6—С7—Н7А	109.1
N1—Cd1—C1	111.81 (6)	С2—С7—Н7А	109.1
O1 ⁱⁱ —Cd1—C1	95.02 (5)	O3—C8—O4	121.56 (19)
O3 ⁱ —Cd1—C1	90.48 (6)	O3—C8—C7	120.25 (19)
O2—Cd1—C1	25.70 (5)	O4—C8—C7	118.12 (18)
C8 ⁱ —Cd1—C1	116.18 (6)	O3—C8—Cd1 ⁱⁱⁱ	64.41 (12)
O1—Cd1—Cd1 ⁱⁱ	36.61 (4)	O4—C8—Cd1 ⁱⁱⁱ	57.15 (11)
O4 ⁱ —Cd1—Cd1 ⁱⁱ	107.21 (5)	C7—C8—Cd1 ⁱⁱⁱ	174.70 (15)
N2—Cd1—Cd1 ⁱⁱ	91.35 (5)	N1—C9—C10	123.0 (2)
N1—Cd1—Cd1 ⁱⁱ	160.51 (4)	N1—C9—H9A	118.5
O1 ⁱⁱ —Cd1—Cd1 ⁱⁱ	33.21 (4)	С10—С9—Н9А	118.5
O3 ⁱ —Cd1—Cd1 ⁱⁱ	105.99 (5)	C9—C10—C11	118.7 (2)
O2—Cd1—Cd1 ⁱⁱ	87.42 (3)	C9—C10—H10A	120.7
C8 ⁱ —Cd1—Cd1 ⁱⁱ	108.70 (4)	C11—C10—H10A	120.7
C1—Cd1—Cd1 ⁱⁱ	62.06 (4)	C10-C11-C12	119.0 (2)
C9—N1—C13	118.48 (19)	C10-C11-H11A	120.5
C9—N1—Cd1	123.34 (14)	C12—C11—H11A	120.5
C13—N1—Cd1	117.99 (14)	C13—C12—C11	119.3 (2)
C18—N2—C14	119.07 (19)	C13—C12—H12A	120.4
C18—N2—Cd1	122.58 (15)	C11—C12—H12A	120.4
C14—N2—Cd1	118.11 (14)	N1—C13—C12	121.7 (2)
H1WA—O1W—H1WB	95 (2)	N1—C13—C14	116.21 (18)
C1—O1—Cd1	103.02 (13)	C12—C13—C14	122.13 (19)
C1—O1—Cd1 ⁱⁱ	143.44 (13)	N2—C14—C15	121.1 (2)
Cd1—O1—Cd1 ⁱⁱ	110.19 (6)	N2—C14—C13	116.89 (18)
C1—O2—Cd1	84.22 (12)	C15—C14—C13	121.98 (19)

C8—O3—Cd1 ⁱⁱⁱ	88.27 (13)	C16—C15—C14	119.0 (2)
C8—O4—Cd1 ⁱⁱⁱ	95.58 (13)	C16—C15—H15A	120.5
C3—O5—C6	96.14 (17)	C14—C15—H15A	120.5
O2—C1—O1	120.98 (19)	C15—C16—C17	119.7 (2)
O2—C1—C2	123.43 (18)	C15—C16—H16A	120.2
O1—C1—C2	115.57 (17)	C17—C16—H16A	120.2
O2—C1—Cd1	70.08 (12)	C18—C17—C16	118.4 (2)
O1—C1—Cd1	50.91 (10)	C18—C17—H17A	120.8
C2—C1—Cd1	166.44 (14)	С16—С17—Н17А	120.8
C1—C2—C7	117.17 (16)	N2-C18-C17	122.8 (2)
C1 - C2 - C3	112.65 (16)	N2-C18-H18A	118.6
$C^{\prime} = C^{\prime} = C^{\prime}$	101.19 (16)	С17—С18—Н18А	118.6
CI-C2-H2A	108.5		1=0.00 (10)
OI—CdI—NI—C9	-98.43 (19)	NI—CdI—CI—OI	-170.00 (12)
O4 ¹ —Cd1—N1—C9	53.92 (18)	$O1^{11}$ —Cd1—C1—O1	-14.62 (16)
N2—Cd1—N1—C9	178.32 (19)	$O3^{i}$ —Cd1—C1—O1	97.48 (13)
O1 ⁱⁱ —Cd1—N1—C9	132.87 (17)	O2—Cd1—C1—O1	179.8 (2)
O3 ⁱ —Cd1—N1—C9	-0.57 (18)	C8 ⁱ —Cd1—C1—O1	87.84 (13)
O2—Cd1—N1—C9	-87.53 (18)	Cd1 ⁱⁱ —Cd1—C1—O1	-10.42 (11)
C8 ⁱ —Cd1—N1—C9	26.71 (18)	O1—Cd1—C1—C2	-4.7 (5)
C1—Cd1—N1—C9	-91.96 (18)	O4 ⁱ —Cd1—C1—C2	68.0 (6)
Cd1 ⁱⁱ —Cd1—N1—C9	-159.50 (14)	N2—Cd1—C1—C2	-103.0 (6)
O1—Cd1—N1—C13	86.62 (17)	N1—Cd1—C1—C2	-174.7 (5)
O4 ⁱ —Cd1—N1—C13	-121.02 (15)	O1 ⁱⁱ —Cd1—C1—C2	-19.3 (6)
N2—Cd1—N1—C13	3.37 (14)	O3 ⁱ —Cd1—C1—C2	92.8 (6)
01 ⁱⁱ —Cd1—N1—C13	-42.07 (19)	O2—Cd1—C1—C2	175.1 (6)
O3 ⁱ —Cd1—N1—C13	-175.52 (15)	C8 ⁱ —Cd1—C1—C2	83.2 (6)
02-Cd1-N1-C13	97.52 (15)	Cd1 ⁱⁱ —Cd1—C1—C2	-15.1 (5)
C8 ⁱ —Cd1—N1—C13	-148.23 (15)	O2—C1—C2—C7	-4.4 (3)
C1—Cd1—N1—C13	93.09 (15)	O1—C1—C2—C7	177.14 (17)
Cd1 ⁱⁱ —Cd1—N1—C13	25.6 (2)	Cd1—C1—C2—C7	-178.8 (5)
O1—Cd1—N2—C18	37.44 (19)	O2—C1—C2—C3	112.4 (2)
O4 ⁱ —Cd1—N2—C18	-109.65 (19)	O1—C1—C2—C3	-66.1 (2)
N1—Cd1—N2—C18	174.4 (2)	Cd1—C1—C2—C3	-62.1 (6)
O1 ⁱⁱ —Cd1—N2—C18	-30.63 (18)	C6—O5—C3—C4	-56.7 (2)
O3 ⁱ —Cd1—N2—C18	178.09 (18)	C6—O5—C3—C2	58.15 (19)
O2—Cd1—N2—C18	89.09 (18)	C1—C2—C3—O5	-162.72 (17)
C8 ⁱ —Cd1—N2—C18	-126.37 (18)	C7—C2—C3—O5	-36.8 (2)
C1—Cd1—N2—C18	63.63 (19)	C1—C2—C3—C4	-54.1 (2)
Cd1 ⁱⁱ —Cd1—N2—C18	1.61 (18)	C7—C2—C3—C4	71.8 (2)
O1—Cd1—N2—C14	-136.90 (15)	O5—C3—C4—C5	34.9 (2)
O4 ⁱ —Cd1—N2—C14	76.02 (16)	C2—C3—C4—C5	-72.7 (2)
N1—Cd1—N2—C14	0.04 (14)	C3—C4—C5—C6	-0.3 (3)
$O1^{ii}$ —Cd1—N2—C14	155.04 (16)	C3—O5—C6—C5	56.3 (2)
	× /		

O3 ⁱ —Cd1—N2—C14	3.8 (3)	C3—O5—C6—C7	-57.48 (19)
O2—Cd1—N2—C14	-85.25 (15)	C4—C5—C6—O5	-34.4 (3)
C8 ⁱ —Cd1—N2—C14	59.3 (2)	C4—C5—C6—C7	74.2 (3)
C1Cd1N2C14	-110.71 (15)	O5—C6—C7—C8	-88.6 (2)
Cd1 ⁱⁱ —Cd1—N2—C14	-172.72 (15)	C5—C6—C7—C8	162.76 (19)
O4 ⁱ —Cd1—O1—C1	-130.25 (12)	O5—C6—C7—C2	33.6 (2)
N2—Cd1—O1—C1	85.57 (13)	C5—C6—C7—C2	-75.0 (2)
N1—Cd1—O1—C1	13.77 (17)	C1—C2—C7—C8	-111.9 (2)
O1 ⁱⁱ —Cd1—O1—C1	164.46 (17)	C3—C2—C7—C8	125.18 (18)
O3 ⁱ —Cd1—O1—C1	-83.48 (13)	C1—C2—C7—C6	124.80 (19)
O2—Cd1—O1—C1	-0.13 (11)	C3—C2—C7—C6	1.9 (2)
C8 ⁱ —Cd1—O1—C1	-104.04 (13)	Cd1 ⁱⁱⁱ —O3—C8—O4	-0.2 (2)
Cd1 ⁱⁱ —Cd1—O1—C1	164.46 (17)	Cd1 ⁱⁱⁱ —O3—C8—C7	-177.16 (17)
O4 ⁱ —Cd1—O1—Cd1 ⁱⁱ	65.30 (9)	Cd1 ⁱⁱⁱ —O4—C8—O3	0.2 (2)
N2—Cd1—O1—Cd1 ⁱⁱ	-78.88 (7)	Cd1 ⁱⁱⁱ —O4—C8—C7	177.23 (16)
N1—Cd1—O1—Cd1 ⁱⁱ	-150.68 (7)	C6—C7—C8—O3	-31.7 (3)
O1 ⁱⁱ —Cd1—O1—Cd1 ⁱⁱ	0.0	C2—C7—C8—O3	-147.1 (2)
O3 ⁱ —Cd1—O1—Cd1 ⁱⁱ	112.06 (7)	C6—C7—C8—O4	151.3 (2)
O2—Cd1—O1—Cd1 ⁱⁱ	-164.59 (10)	C2—C7—C8—O4	35.8 (3)
C8 ⁱ —Cd1—O1—Cd1 ⁱⁱ	91.51 (8)	C13—N1—C9—C10	0.4 (4)
C1—Cd1—O1—Cd1 ⁱⁱ	-164.46 (17)	Cd1—N1—C9—C10	-174.6 (2)
O1—Cd1—O2—C1	0.13 (12)	N1-C9-C10-C11	0.4 (4)
O4 ⁱ —Cd1—O2—C1	105.62 (14)	C9—C10—C11—C12	-0.9 (4)
N2—Cd1—O2—C1	-100.23 (13)	C10-C11-C12-C13	0.7 (4)
N1—Cd1—O2—C1	-170.48 (13)	C9—N1—C13—C12	-0.6 (3)
O1 ⁱⁱ —Cd1—O2—C1	-16.58 (15)	Cd1—N1—C13—C12	174.62 (17)
O3 ⁱ —Cd1—O2—C1	97.17 (13)	C9—N1—C13—C14	178.72 (19)
C8 ⁱ —Cd1—O2—C1	100.38 (13)	Cd1—N1—C13—C14	-6.1 (2)
Cd1 ⁱⁱ —Cd1—O2—C1	-9.00 (12)	C11—C12—C13—N1	0.1 (4)
Cd1—O2—C1—O1	-0.22 (19)	C11-C12-C13-C14	-179.2 (2)
Cd1—O2—C1—C2	-178.62 (18)	C18—N2—C14—C15	1.2 (3)
Cd1—O1—C1—O2	0.3 (2)	Cd1—N2—C14—C15	175.77 (16)
Cd1 ⁱⁱ —O1—C1—O2	155.28 (18)	C18—N2—C14—C13	-177.6 (2)
Cd1-01-C1-C2	178.79 (13)	Cd1-N2-C14-C13	-3.1 (2)
Cd1 ⁱⁱ —O1—C1—C2	-26.2 (3)	N1—C13—C14—N2	6.1 (3)
Cd1 ⁱⁱ —O1—C1—Cd1	155.0 (3)	C12-C13-C14-N2	-174.6 (2)
O1—Cd1—C1—O2	-179.8 (2)	N1—C13—C14—C15	-172.8 (2)
O4 ⁱ —Cd1—C1—O2	-107.13 (14)	C12-C13-C14-C15	6.5 (3)
N2—Cd1—C1—O2	81.94 (13)	N2-C14-C15-C16	-1.1 (3)
N1—Cd1—C1—O2	10.24 (14)	C13—C14—C15—C16	177.7 (2)
O1 ⁱⁱ —Cd1—C1—O2	165.61 (13)	C14-C15-C16-C17	-0.2 (4)
O3 ⁱ —Cd1—C1—O2	-82.28 (13)	C15-C16-C17-C18	1.2 (4)
C8 ⁱ —Cd1—C1—O2	-91.92 (13)	C14—N2—C18—C17	-0.1 (4)

Cd1 ⁱⁱ —Cd1—C1—O2	169.82 (14)	Cd1—N2—C18—C17	-174.43 (19)
O4 ⁱ —Cd1—C1—O1	72.63 (16)	C16—C17—C18—N2	-1.1 (4)
N2-Cd1-C1-O1	-98.30 (13)		
Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1$,	-y, -z+1; (iii) $x-1, y, z.$		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—H1WA···O3 ^{iv}	0.92 (2)	2.19 (4)	2.980 (4)	144 (5)
O1W—H1WA···O1W ^v	0.92 (2)	2.38 (6)	2.833 (8)	110 (5)
Symmetry codes: (iv) $-x, -y, -z$; (v) $-x+1, -y, -z$.				

Fig. 1

