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Abstract

The terrestrial biosphere absorbs about 25% of anthropogenic CO2 emissions, yet the rate of land 

carbon uptake remains highly uncertain, leading to uncertainties in climate projections1,2. 

Understanding the factors that are limiting or driving land carbon storage is therefore important for 

improved climate predictions. One potential limiting factor for land carbon uptake is soil moisture, 

which can reduce gross primary production due to ecosystem water stress3,4, cause vegetation 

mortality5, and further exacerbate climate extremes due to land-atmosphere feedbacks6. Previous 

work has explored the impact of soil moisture availability on past carbon flux variability3,7,8. 

However, the magnitude of the effect of soil moisture variability and trends on the long-term 

carbon sink and the mechanisms responsible for associated carbon losses remain uncertain. Here 

we use four global land-atmosphere models9, and find that soil moisture variability and trends 
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induce large CO2 sources (~2–3 GtC/year) throughout the twenty-first century; on the order of the 

land carbon sink itself1. Subseasonal and interannual soil moisture variability generates a CO2 

source as a result of the nonlinear response of photosynthesis and net ecosystem exchange to soil 

water availability and the increased temperature and vapour pressure deficit caused by land-

atmosphere interactions. Soil moisture variability reduces the present land carbon sink while soil 

moisture variability and its drying trend reduce it in the future. Our results emphasize that the 

capacity of continents to act as a future carbon sink critically depends on the nonlinear response of 

carbon fluxes to soil moisture and on land-atmosphere interactions. This suggests that with the 

drying trend and increase in soil moisture variability projected in several regions, the current 

carbon uptake rate may not be sustained past mid-century and could result in an accelerated 

atmospheric CO2 growth rate.

The vast divergence in terrestrial carbon flux projections from Earth System Models (ESMs) 

reflects both the difficulty of observing and modeling biogeochemical cycles, as well as the 

uncertainty in the response of ecosystems to rising atmospheric CO2
1,2. Rising atmospheric 

CO2 can generate a fertilization effect that initially increases the rates of photosynthesis and 

terrestrial CO2 uptake10. However, this fertilization effect may saturate in the future, due to a 

maximum ecosystem photosynthesis rate being achieved, or because of other limiting 

factors, such as nutrient limitation11.

Here we demonstrate that the net biome productivity (NBP) response to soil moisture 

variability is not a zero-sum game. Reductions in NBP driven by strong dry soil moisture 

anomalies (through increased water stress, fire frequency and intensity, and heat stress) are 

not compensated by increased NBP under anomalously wet conditions. Additionally, drying 

soil moisture trends reduce future global NBP and can transition ecosystem types, thus 

storing less NBP (e.g. a forest to a grassland)12.

Using the data of four models from the Global Land-Atmosphere Coupling Experiment-

Coupled Model Intercomparison Project phase 5 (GLACE-CMIP5)9 (Extended Data Table 

1), we isolate the changes in global terrestrial NBP (NBP(LAND))due to soil moisture 

variations from the climatological annual cycle (NBP(SMVAR)) as well as due to longer-term 

soil moisture trends (NBP(SMTREND)) (see Methods). These experiments allow for the 

systematic quantification of the effect of moisture across models. For each model, the same 

sea surface temperatures and radiative forcing agents (based on historical and Representative 

Concentration Pathway 8.5 (RCP8.5) coupled simulations) are prescribed in all runs. These 

experiments uniquely allow us to isolate the role of soil moisture dynamics in the climate 

system. Previous studies have used these experiments to evaluate various aspects of land-

atmosphere interactions including enhanced extremes and aridity9,13,14.

While simulated soil moisture quantitatively differs between models, the models show a 

robust qualitative agreement on its strong effect on NBP (Fig. 1). Across models, soil 

moisture variability and trends in mean moisture state strongly reduce the land carbon sink, 

with their combined effect (NBP(SMVAR) + (NBP(TREND)) being of the same order of 

magnitude as the land sink (estimated from the CTL runs, (NBP(LAND)) (Fig. 1). It should be 

noted that in contrast to the Global Carbon Budget1, the land sink term defined by NBP 

includes emissions from land use and land cover change (LULC).
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Soil moisture variability alone reduces the global terrestrial sink by over twice its absolute 

magnitude (~2.5GtC/year) at the start of the study period, and by more than half its absolute 

magnitude (~0.8GtC/year) at the end of the 21st century (NBP(SMVAR)) (Fig. 1). Prior 

studies have shown that soil moisture variability induced by extreme events (such as 

droughts and heat waves) can explain a large fraction of the interannual variability in carbon 

fluxes7,15,16. Here we show that beyond impacts on interannual anomalies, soil moisture 

variability significantly reduces the mean long-term (multiyear) land CO2 uptake.

These reductions are due to the nonlinear response of vegetation carbon uptake to water 

stress: photosynthesis sharply drops off once an ecosystem becomes water limited in 

models, which is supported by observational data (Fig. 2 and Extended Data Fig. 1). These 

carbon losses are not recovered during periods with a (similar amplitude) positive moisture 

anomaly. Indeed, dryness reduces evaporation and therefore surface cooling17, which results 

in increases in temperature and vapor pressure deficit (VPD) (Extended Data Figs 2 and 3) 

due to soil moisture-atmosphere feedbacks13,18. These feedbacks further reduce 

photosynthesis through their effect on vegetation stomatal closure. While respiration also 

decreases with soil moisture (Extended Data Figs 4 and 5), the land-atmosphere increase in 

temperature increases the ratio of respiration to GPP (Fig. 4), leading to an overall strong 

NBP reduction with soil moisture (Fig. 1). In addition, NBP is further reduced by fires 

during hot and dry spells from the increased prevalence of dead litter from tree mortality and 

foliage loss as fire fuel12,19.

During the baseline period (1971–2000), the reduction in the mean terrestrial carbon sink 

caused by soil moisture variability is globally widespread (Fig. 3 and Extended Data Fig. 1). 

There are large NBP reductions in seasonally dry climates (western United States and 

Central Europe), tropical savannas (Brazil, India and northern Australia), and semi-arid/

monsoonal regions (the Sahel, South Africa and Eastern Australia) that are known to be 

water-limited ecosystems, and which have been shown to be the main drivers of interannual 

terrestrial CO2 flux variability7,8. In the future (2056–2085) negative impacts on mean NBP 

remain strong in semi-arid (e.g. the Sahel), humid (e.g. south-eastern United States and 

Colombia), and monsoonal (e.g. India and northern Australia) climates.

Soil moisture long-term trends, in most areas displaying a gradual drying (except in some 

areas of the tropics)9,13 (Extended Data Fig. 6), reduce the global terrestrial sink by over two 

thirds its absolute magnitude (~1.1GtC/year) at the end of the 21st century (NBP(SMTREND)) 

(Fig. 1). Regions showing the strongest negative impacts are semi-arid regions bordering 

deserts (eastern Australia, northern Sahel and northern Mexico), humid subtropical climates 

(eastern China, and southern Brazil) and Mediterranean Europe (Fig. 3). Under enhanced 

greenhouse gas forcing within the 21st century, it is expected that these regions will become 

more strongly water limited6,20, which will result in the simulated drop in GPP (Extended 

Data Fig. 1).

The evolution of (NBP(SMVAR)) and (NBP(TREND)) through the 21st century can be 

explained by several co-occurring mechanisms. Firstly, increased vegetation water use 

efficiency due to carbon fertilization effects21 (Extended Data Fig. 7) make ecosystems more 

resistant to a negative soil moisture anomaly. Secondly, an ecosystem can have decreased 
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NBP response due to the vegetation already being in a severely water stressed environment: 

in other words, the overall global drying trend in soil moisture shifts several ecosystems into 

arid conditions, which reduces the influence of soil moisture temporal variability on NBP. 

Thirdly, insufficient drought recovery time for an ecosystem can shift a forest ecosystem to a 

grassland (storing less carbon)5 (Extended Data Fig. 8), and thus an NBP loss from a dry 

year is not necessarily compensated by a wet year (Fig. 2).

Despite the cumulative negative impact of these soil moisture effects on global NBP 

(NBP(SMVAR) + (NBP(SMTREND)), (NBP(LAND)) remains a sink throughout the study period, 

in the mean of the four GLACE-CMIP5 models, mainly due the effects of carbon 

fertilization10. This is due to the strong simulated response of the tropics to increases in CO2 

(Extended Data Fig. 9), the lengthening of the growing seasons in mid- and northern 

latitudes due to increasing temperatures (Extended Data Fig. 2), as well as to reduced cloud 

coverage and associated increases in photosynthesis in energy-limited regions22,23. 

However, despite the continual increase in atmospheric CO2 concentrations in the business-

as-usual emission scenario, the modeled global carbon sink reaches a peak shortly following 

2060, when the terrestrial biosphere has apparently reached its maximum carbon absorption 

capacity, similar to a wider range of ESM predictions24.

Whether the effect of carbon fertilization on the global carbon sink is exaggerated in models 

is unclear due the lack of long-term experiments; there has been, however, evidence that the 

initial increase in photosynthesis rates observed in C3 plants (~97% of plant species) may 

actually reverse after 15–20 years25. Additionally, many of the factors limiting carbon 

fertilization have large uncertainty associated with them or are not well represented in 

models, thus the magnitude of the land carbon sink presented here is likely too high. For 

example, many free-air CO2 enrichment (FACE) studies have shown limited or no response 

to elevated [CO2] levels because of nutrient limitations26. Only one of the four GLACE-

CMIP5 models (CESM) includes the interaction of the nitrogen and carbon cycles and has 

CO2 fertilization rates much lower than the other models (Extended Data Fig. 10). A 

reduced CO2 fertilization effect would mean that our finding regarding the negative effects 

of soil moisture variability on NBP would be proportionally larger and have a greater 

potential of turning the land to a carbon source during the 21st century.

Based on our findings it appears critical to correctly assess and simulate the (nonlinear) 

dependence of GPP and NBP on soil moisture variability in ESMs, as well as the associated 

land-atmosphere feedbacks. However, most current models only include stomatal limitations 

on photosynthesis27 and implement empirical formulations of water stress functions related 

to soil water content and VPD28. They have high degrees of uncertainty associated with their 

representation of canopy conductance, especially in dry environments29, and do not include 

several important plant water stress processes related to plant hydraulics, such as xylem 

embolism30. It has been shown that the vegetation sensitivity to water availability, even 

within a single plant functional type, can vary between a factor of 3 and 5 during drought, 

resulting in large variations of plant response and/or mortality to droughts30. Additionally, 

drought legacy effects, which can last for several years, and drought-related plant mortality 

are not included in ESMs31. Finally, the strength of land-atmosphere interactions is 

underestimated in models32, with potential important implications for VPD and temperature. 
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By quantifying the critical importance of soil water variability for the terrestrial carbon 

cycle, our results highlight the necessity of implementing improved, mechanistic 

representations of vegetation response to water stress and land-atmosphere coupling in 

ESMs, to constrain the future terrestrial carbon flux, and better predict future climate.

Methods

GLACE-CMIP5

GLACE-CMIP57 is a multi-model series of experiments inspired by the original GLACE 

experiment33, and designed to investigate land-atmosphere feedbacks along with climate 

change from 1950–2100. For each model, GLACE-CMIP5 simulations include: (1) a 

reference run (CTL) based on the CMIP5 historic run until 2005, and the high-emission 

business as usual Representative Concentration Pathway (RCP) 8.5 scenario thereafter, 

which accounts for both the indirect impacts of soil moisture and the direct impact of CO2 

fertilization, (2) an experiment set-up identically to CTL but where soil moisture is imposed 

as the mean climatology (i.e. the seasonal cycle) from 1971–2000 throughout the study 

period (ExpA) in order to remove soil moisture variability (short term and inter-annual); and 

(3) an experiment set-up identically to CTL but where soil moisture climatology is imposed 

as a 30-year running mean (ExpB), in order to assess the impact of the trend in soil moisture 

(Extended Data Fig. 6).

The comparison of the CTL and ExpB allows us to assess the impacts on NBP of soil 

moisture variability, which during negative anomalies can cause vegetation water stress, 

resulting in reduced evapotranspiration, warmer temperatures and an increase in the ratio of 

autotrophic respiration (ra) to GPP. The comparison of ExpB and ExpA isolates the effects 

of long-term soil moisture changes, which can also induce vegetation water-stress, increases 

in temperature and the ratio of respiration to GPP if the vegetation cannot adapt quickly 

enough. NBP time series of a third experiment (set up identically to the CTL but without the 

effects of carbon fertilization) are examined for trends to ensure that our results are in carbon 

equilibrium. NBP includes the carbon fluxes due to net primary production, as well as the 

fluxes due to LULC.

While six modeling groups participated in GLACE-CMIP5, four stored information on NBP 

for ExpA and ExpB and are used in this analysis (Extended Data Table 1). Multi-model 

means of NBP are used for the main results to increase robustness. It should be noted that 

the CESM model is the only of the four that includes a carbon cycle model with a nitrogen 

limitation which results in the Earth as a carbon source by the end of the 21st century (hence 

the negative spread in the inset of Fig. 1 inset). However, it has been shown that this version 

(Community Land Model 4.0) overestimates the nitrogen limitation34. All data analysis and 

figure generation for this study are performed in MATLAB.

Isolating the effects of soil moisture

To isolate the effects of soil moisture on changes in NBP, an approach from Friedlingstein35 

is adapted for use (Equation 1). Here, each term is expressed as their corresponding 

influence on NBP (ΔNBP(LAND)), where ΔNBP(SMVAR) is the change in NBP due to soil 
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moisture variability, ΔNBP(SMTREND) is due to a change in mean soil moisture state, and 

ΔNBP(OTHER) is due to CO2 fertilization and changes in temperature. The term ∈ accounts 

for all other limiting and contributing factors to NBP.

Δ NBP LAND =   Δ NBP SMV AR + Δ NBP SMTREND + Δ NBP  OTHER +   ∈ (1)

Using monthly data from the multi-model GLACE-CMIP5 simulations9 the CTL, ExpA, 

and ExpB can be used to isolate the different contributions to ΔNBP due to soil moisture 

variability ΔNBP(SMVAR) = Δ(NBP(CTL-EXPB)) and a soil moisture trend ΔNBP(SMTREND) = 

Δ(NBP(EXPB-EXPA)) (Equation 2).

Δ NBPCTL =   Δ NBP CTL − EXPB + Δ NBP EXPB − EXPA + Δ NBP OTHER +   ∈

(2)

The results from this equation breakdown are used to create Figures 1 and 3. Similarly, 

Extended Data Figures 1,2 and 4 are generated using the same approach, but instead 

investigate the effects of soil moisture on temperature, GPP, and ra. Extended Data Figures 1 

and 4 use the RCP8.5 GPP and respiration data from IPSL due to data availability. 

Autotrophic respiration is used in lieu of ecosystem respiration, because of data availability 

from the GLACE-CMIP5 experiments.

Biosphere photosynthetic activity response curves: models

For the curves of GPP and ra versus soil moisture (Fig. 2 and Extended Data Fig. 5), 

monthly growing season data are used. The growing season is defined for each pixel as the 

months where the climatological mean is greater than or equal to half of the climatological 

maximum. For GPP and respiration, each pixel is normalized by its maximum value for 

better comparability. For soil moisture, due to large differences in magnitude between 

models36, and within the same model between regions, each pixel is standardized by its 

minimum value in time, and its standard deviation in space for easier comparison.

∑m = 1
lon ∑n = 1

lat ∑i = 1
t SMm, n, i − SMmin . in . time

SMσ . in . space
. (3)

In order to ensure that the growing season defined is representative of the entire data record, 

a second analysis is performed where the growing season for each year is defined as the 

months greater than or equal to half of a climatological maximum calculated from a thirty-

year mean. This does not change the nonlinear relationship between soil moisture and GPP 

seen in Figure 2.
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Biosphere photosynthetic activity response curves: observations

For the observational curve in Figure 2, solar induced fluorescence (SIF) data from the 

Global Ozone Monitoring Experiment-2 (GOME-2)37 are used to represent photosynthetic 

activity, while total water storage (TWS) data from the Gravity Recovery and Climate 

Experiment (GRACE)38 are used to represent soil water availability. Similar to the model 

analysis, monthly growing season data are used, defined for each pixel as the months where 

the climatological mean is greater than or equal to half of the climatological maximum.

SIF is a flux byproduct that is mechanistically linked to photosynthesis39, and has been 

shown to have a near-linear relationship with ecosystem GPP at the monthly and ecosystem 

scales40–42. Based on this relation, it has been successfully used as a proxy for GPP for 

numerous applications32,43, and is used in this study as an indicator of biosphere activity. As 

with the model GPP data, the SIF data are normalized by their maximum value in time. The 

SIF data are detrended using a convolution to account for signal deterioration over the 

lifetime of the satellite.

TWS from GRACE is derived from the sum of soil moisture, groundwater, surface water, 

snow and ice, and has been successfully used as a drought and vegetation activity indicator 

in previous studies44,45. In this application it is used as a proxy for soil water availability. 

GRACE data are standardized using the same approach as the soil moisture data for the 

model analysis (both by its minimum value spatially and standard deviation temporally, 

Equation 3).

This observational analysis, based on global remote-sensing products, confirms the 

asymmetric relationship between photosynthetic activity and water availability, as well as 

the sharp drop at low water contents, qualitatively similar to the functional dependence of 

photosynthesis on soil moisture represented in the models. As a result, losses in 

photosynthesis due to dry anomalies are not compensated by a similar magnitude positive 

anomaly.

CO2 Fertilization experimental setup

To isolate the effects of CO2 fertilization on NBP (Extended Data Fig. 9), data from CMIP5 

experiment ESMFixclim1 is used. ESMFixclim1 is an idealized experiment initialized as the 

pre-industrial control, and where the carbon cycle sees a 1% rise in atmospheric [CO2] per 

year while radiation sees pre-industrial levels46; seven models are available for this: 

CanESM2, CESM1-BGC, HadGEM2-ES, IPSL-CM5A-LR, MPI-ESM-LR, MRI-ESM1, 

NorESM1-ME. Although we use the years with the atmospheric [CO2] equivalent to that of 

1950–2100 in RCP8.5, the experimental setup between ESMFixclim1 and RCP8.5 has 

differences not only related to the CO2 concentration rate of increase, but also to the lack of 

LULC and aerosols. Due to these differences in setup, these figures are presented to show 

general NBP trends due to carbon fertilization, but the magnitudes reported should not be 

compared directly to the soil moisture results.
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Extended Data

Extended Data Fig. 1. GPP regional changes.
Percentage changes in GPP due to soil moisture variability and soil moisture trend during a 

baseline (1971–2000) (a, b) and a future period (2056–2085) (c, d). Stippling highlights 

regions where the three models agree on the sign of the change. Latitudinal GPP plots 

accompany these subplots to show how the percentage changes translates to an overall GPP 

magnitude across latitudes. The thick line in each represents the model mean while the 

shaded areas show the model spread.

Extended Data Fig. 2. Temperature regional changes.
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Temperature changes due to soil moisture variability and soil moisture trend during a 

baseline (1971–2000) (a, b) and a future modeled period (2056–2085) (c, d). Stippling 

represents regions where at least three of the four models agree on the sign of the change. 

Latitudinal temperature plots accompany these subplots to show how the regional changes 

translate to a temperature change across latitudes. The thick lines in each represents the 

model mean while the shaded areas show the model spread.

Extended Data Fig. 3. Soil water availability and VPD correlations.
The multi-model GLACE-CMIP5 mean correlations for the CTL run between soil moisture 

and VPD in the baseline (1971–2000) (a) and future (2056–2085) (b) periods. The 

correlation between monthly Gravity Recovery and Climate Experiment (GRACE) total 

water storage (TWS) data (i.e. the sum of soil moisture and groundwater, surface water, 

snow and ice) and Atmospheric Infrared Sensor (AIRS) VPD data for the period of 2007–

2016 (c). Monthly growing season data are used, defined by a SIF (observations) or GPP 

(models) value greater than half of the maximum climatology per pixel, and seasonal cycles 

were removed prior to performing the correlations.
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Extended Data Fig. 4. Autotrophic respiration regional changes.
Percentage changes in autotrophic respiration due to soil moisture variability and soil 

moisture trend during a baseline (1971–2000) (a, b) and a future modeled period (2056–

2085) (c, d). Stippling represents regions where the three models agree on the sign of the 

change. Latitudinal respiration plots accompany these subplots to show how the percentage 

changes translates to an overall respiration magnitude across latitudes. The thick line in each 

represents the model mean while the shaded areas show the model spread.
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Extended Data Fig. 5. Autotrophic respiration response curves.
Plots of normalized growing season autotrophic respiration versus standardized soil moisture 

for a baseline (1971–2000) (a-d) and future period (2056–2085) (e-h) in the GLACE-

CMIP5 reference scenario. Details on the normalization and standardizations can be found 

in the Methods. Probability density functions of the soil moisture data are plotted at the top 

of the x-axes.
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Extended Data Fig. 6. GLACE-CMIP5 soil moisture.
Monthly soil moisture data from the GLACE-CMIP5 experiment from a pixel in Central 

Mexico for the IPSL model over the 21st century (a). The CTL is the RCP8.5 soil moisture, 

while experiment A imposes the mean climatology of soil moisture from 1971–2000, and 

experiment B imposes soil moisture as the 30-year running mean through the 21st century. 

The percent change in mean soil moisture between the future and baseline periods in the 

CTL averaged across the 4 GLACE-CMIP5 models (b), and the percent change in soil 

moisture variability between the future and baseline periods in the CTL averaged across the 

4 GLACE-CMIP5 models (c).
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Extended Data Fig. 7. WUE percentage changes.
The percentage change in WUE between the future (2056–2085) and baseline (1971–2000) 

periods for the CTL run for CESM (a), GFDL (b), echam6 (c) and the IPSL (d) models. 

WUE is calculated from GPP and evapotranspiration data. GPP data for IPSL are from the 

RCP8.5 scenario which the CTL run is based.
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Extended Data Fig. 8. Percent change in land cover types.
The multi-model mean percentage change between the future (2056–2085) and baseline 

(1971–2000) periods for grass land (a), and for forested land (b). Data was not available for 

the CESM model in this analysis.

Extended Data Fig. 9. CO2 fertilization effects on NBP.
Regional and latitudinal changes in NBP during a baseline (1971–2000) (a) and future 

(2056–2085) (b) period due to the effects of CO2 fertilization. Maps are based on the results 

from seven CMIP5 models for the ESMFixClim1 scenario that are listed (c).
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Extended Data Fig. 10. GLACE-CMIP5 CTL NBP.
NBP predicted through the 21st century for the CTL runs of the GLACE-CMIP5 models 

listed in Extended Data Table 1 (a). The multi-model mean value of the GLACE-CMIP5 

runs, and the multi-model mean of 17 CMIP5 models from RCP8.5 are also displayed. 

Models used from RCP8.5 are also listed (b).

Green et al. Page 15

Nature. Author manuscript; available in PMC 2019 July 23.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Extended Data Table 1.
GLACE-CMIP5 model information.

Adapted from Seneviratne, S. I. et al. 20139.

ESM Acronym Atmospheric Model Land Surface Model References

CESM National Center for 
Atmospheric Research 
Community Atmospheric 
Model (CAM4)

Community Land Model 
(CLM4)

Neale et al. [2013]47 

Lawrence et al. [2011]48

GFDL Geophysical Fluid Dynamics 
Laboratory (GFDL) Earth 
System Model 2 (ESM2)

Land Model 3.0 (LM3.0) Dunne et al. [2012; 
2013]49,50 Milly et al. 
[2014]51

IPSL* Laboratoire de Météorologie 
Dynamique atmospheric 
model (LMDZ5A)

Organizing Carbon and 
Hydrology in Dynamic 
Ecosystems (ORCHIDEE; 
with two-layer soil hydrology 
scheme)

Dufresne et al. [2013]52 

Hourdin et al. [2013]53 

Cheruy et al. [2013]54

MPI-ESM (echam6) European Centre/Hamburg 
forecast system

Jena Scheme for Biosphere- 
Atmosphere Coupling in 
Hamburg (JSBACH)

Stevens et al. [2013]55 

Hagemann et al. [2013]56 

Raddatz et al. [2007]57 

Brovkin et al. [2009]58

*
In plots of GPP and respiration from the GLACE-CMIP5 CTL run (Figs 2, 4 and Extended Data Figs 1, 4, 5 and 7), 

results for the IPSL model are based on RCP8.5. Results from IPSL are not included in GPP and respiration results that 
require the manipulation of ExpA and ExpB from the GLACE-CMIP5 experiments due to data availability. It is unlikely 
that this should change results significantly.
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Figure 1. Global NBP during the 21st century.
The evolution of total global NBP (NBP(LAND)), along with changes in NBP that can be 

attributed to soil moisture variability (NBP(SMVAR)) and a soil moisture trend 

(NBP(SMTREND)) through the 21st century. The shaded areas in the figure inset shows the 

spread of the four model results for each of the NBP components.
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Fig. 2. Biosphere photosynthetic activity response curves.
Plots of normalized growing season GPP versus standardized soil moisture for a baseline 

(1971–2000) (a-d) and future period (2056–2085) (e-h) in the GLACE-CMIP5 reference 

scenario. Normalized and detrended observational solar induced fluorescence (SIF), a proxy 

for photosynthesis, versus standardized total water storage (TWS) from the Gravity 

Recovery and Climate Experiment (GRACE) (2007–2016) (i). Probability density functions 

of the soil moisture and TWS data are plotted at the top of the x-axes. Details on the 

observational data, as well as of the normalization and standardizations of all datasets can be 

found in the Methods.
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Figure 3. NBP regional changes.
Percentage changes in NBP (NBP(LAND)) due to soil moisture variability (NBP(SMVAR)) and 

a soil moisture trend (NBP(SMTREND)) during a baseline (1971–2000) (a, b) and a future 

period (2056–2085) (c, d). Stippling highlights regions where the three models agree on the 

sign of the change. Latitudinal NBP plots accompany these subplots to show how the 

percentage changes translates to an overall NBP magnitude across latitudes. The thick line in 

each represents the model mean while the shaded areas show the model spread.
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Figure 4. Correlations with the ratio of Autotrophic Respiration to GPP.
The correlations with temperature in a baseline (1971–2000) (a) and future (2056–2085) (b) 

modeled period. The correlations with soil moisture in a baseline (1971–2000) (c) and future 

(2056–2085) (d) modeled period. All data are from the GLACE-CMIP5 CTL run.
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